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Abstract

At the end of the 20th century, Ubiquitous Computing and Ambient Intel-

ligence were introduced as a vision of the future society. In this context,

the paradigm of Ambient Assisted Living (AAL) has allowed the evolution

of methods, techniques and systems to improve everyday life, by supporting

people in both physical and cognitive aspects, especially in case of the so-

called “fragile people”. The state-of-the-art research develops means for vital

data measurements, for recognizing activities and inferring whether a self-care

task has been performed. These results are obtained through the simultane-

ous presence of different technologies deployed into physical environments in

which people live.

The monitoring of human activities is fundamental to enable the AAL

paradigm. For instance, people spend sleeping several hours a day, thus mon-

itoring this activity is fundamental in understanding and characterizing a

person’s sleep habits. On the other hand, at daytime, several indoor activi-

ties can be inferred by knowing the exact position of a subject. In this view,

the main goal of this thesis is the proposal of advancements in the field of both

daytime and night-time monitoring of human activities, focusing on indoor

localisation and sleep-monitoring as key enablers for AAL.

Regarding Indoor Positioning Systems (IPSs), the lack of a standardized

benchmarking tool and of a common and public dataset to test and to compare

results of IPSs is still a challenging open issue. Advancements in this direc-

tion can lead to improve the performance evaluation of heterogeneous systems,

and, consequently, to obtain improvements of the IPSs. Some steps have been

made towards introducing benchmarking tools, for example, through the in-

troduction of the EvAAL framework, that defines tool and metrics usable



viii Contents

for comparing both real-time and offline methods. This thesis contributes by

proposing (i) some improvements to the EvAAL benchmarking framework,

especially considering real-time smartphone-based positioning systems; (ii)

presenting a common, public, multisource and multivariate dataset, gathered

using both a smartwatch and a smartphone, to allow researchers to test their

own results. Then, this thesis focuses on both single-device and multiple-

device localisation. Concerning single-device positioning strategies, several

smartphone-based systems have been recently presented, based on data gath-

ered from smartphone built-in sensors, though with performances not com-

pletely satisfactory. In this view, the thesis proposes a novel approach based

on deep convolutional neural networks, in order to improve the use of the

pedometer (one of the main smartphone built-in sensors used in IPSs) e con-

sequently the Pedestrian Dead Reckoning algorithm performances. Finally,

we extend the concept of a single-device localisation to several devices in in-

door environments. Localising multiple devices into the same environment can

lead to detect, for example, social behaviour and interaction. Several systems

try to reach the goal in AAL scenarios, but using an intrusive and expensive

ad-hoc infrastructure. Instead, we propose a novel approach for finding the

presence of people in indoor locations, through a cheap technology as Wi-Fi

probes, demonstrating the feasibility of this approach.

Regarding the sleep monitoring problem, recent findings show that sleep

plays a critical role in reducing the risk of dementia and preserving the cog-

nitive function in old adults. However, state-of-the-art techniques for under-

standing the sleep characteristics are generally difficult to deploy in an AAL

scenario. This suggest that more effort should be spent to find sleep moni-

toring systems able to detect objective sleep patterns and, at the same time,

easy to use in a home setting. In this thesis we propose a system able to per-

form the human sleep monitoring in an unobstrusive way, using force-sensing

resistor sensors placed in a rectangular grid pattern on the slats, below the

mattress; it can also detect human bed postures during sleep sessions and

to identify patient movements and sleep stages, an information particularly

useful, for instance, to assure the pressure ulcer prevention.

The proposed advancements have been thoroughly evaluated in the labo-

ratory and in real-world scenarios, demonstrating their effectiveness.
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Chapter 1

Introduction to Ambient

Assisted Living

Ubiquitous Computing and Ambient Intelligence (AI) were introduced in 1991

as a vision of the future society [1]. Simultaneously to the introduction of

ubiquitous computing, the technological evolution has been more effective

and pervasive.

Nowadays, according to the dominant role of computers in people’s lives,

we can benefit of intelligent interfaces displaced in every human context, (for

instance, furniture, devices, or clothes), and supported by networking tech-

nologies. As a consequence, many services have been introduced, in order to

try to make these objects able to react with people and environments. Fur-

thermore, in the last decade, efforts were spent to create unobtrusive solution

able to interact with people in a transparent manner. The interaction between

smart devices, environment, and people are often defined into a Smart Envi-

ronment. Nowadays, Smart Environment paradigm is applied on several and

different scenarios and contexts (i.e. smart city, smart industry, smart health,

smart home). Basically, the idea behind these scenarios is the same: apply-

ing advanced technology and computing resources to support individuals in

their daily routines, tasks and operations. This wide range of possibilities has

attracted a huge participation and interest of researchers and industries.

A typical scenario, called Ambient Assisted Living (AAL), is composed

of both the Smart Home and the Smart Health scenarios. On one hand,
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Smart Transport Smart Factory

Ambient Assisted Living

Smart Education Smart SecuritySmart Health

Smart Home

Figure 1.1: Ambient Assisted Living and typical smart scenarios.

Ambient Intelligence into a Smart home scenario, may be seen as a layer

on the top of domotics. The purpose of Ambient Intelligence is to create

integration between isolated devices, based on network protocols, and to make

interoperability capabilities. Figure 1.1 shows a graphical representation of

AAL and typical smart scenarios.

The presence of intelligent systems that support long-term monitoring of

selected behaviours and, more generally, human well-being, can prevent the

emergence of illnesses or pathological situations related to unhealthy buildings

or bad user’s habits like sedentariness, absence of socialization, and nutritional

issues. Wireless Sensor Networks (WSN) Intelligent systems can be used

to complement or replace human observers altogether, and while they may

convey a slight sense of surveillance, this perception is likely reduced as sensors

get smaller and smaller, and consequently less obtrusive.

On the other hand, Ambient Intelligence into the Smart Health context

provides solutions to improve the health management, especially of the el-

derly or chronically sick people, providing short and long term monitoring.

In fact, with a continuously increasing percentage of old population, interven-

tions to preserve health, and tools to assist people, are urgently needed. Such

needs require to identify old people at greatest risk of adverse health events.
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In fact, old adults are often the ones who experience frailty and vulnerabil-

ity.) subset [2]. Many old people experience age-related losses in different

domains of functioning (i.e., loss of mobility, vision, cognitive abilities, or so-

cial contacts), which can lead to a complex mixture of problems. Mobility

issues and losses in the user’s social network can result in social isolation;

furthermore, several chronic conditions can cause low physical fitness and a

depressed mood. Such issues increase the risk of adverse outcomes, such as

unsuccessful ageing, inadequate use of health care, hospitalization, decrease

in social activities, dependence on others, caregiver burden, lower levels of

well-being, and, ultimately, death [3]. To this regard, in September 2011 1,

the European Commission has published an interesting book, titled “e-Health

Projects. Research and Innovation in the field of ICT for Health and Well-

Being: an overview”, containing a collection of European projects focused on

various approaches on this research field. Furthermore, the European research

program H2020 Societal Challenge 1 (Health, demographic change and well-

being) contains many calls for the study and the development of ICT tools for

Health technologies, with the clear objective of promoting an easy technology

transfer to the people, especially to the elderly. Consequently, nowadays it is

common to denote this trend using the “Active and Healthy Aging” label and,

in this field, the European commission has set the goal to reach increasing life

expectancy and to allow a more independent life for older adults.

In conclusion, AAL can be described as the collection of concepts, prod-

ucts and services that combine new technologies and social environment to

improve the quality of life for people in all the phases of life. AAL is an impor-

tant component for addressing the challenges of the demographic evolution

performed by the so-called “aging society”. In fact, by using assistive tech-

nologies, people can reach and maintain good level of Productivity and health,

both at home and at work. Essentially, AAL uses new technologies combined

with social services to extend the part of life when people are productive (at

work) and independent (at home), and also to improve the quality of life for

people in need of care (e. g. with chronic diseases). Figure 1.2 shows an

partial overview of existing and future application fields involving the AAL

1http://ec.europa.eu/digital-agenda/en/news/ehealth-projects-research-and-

innovation-field-ict-health-and-wellbeing-overview
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Ambient Assisted Living
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dementia
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Fall
detection

Health
Alarms

Social 
events
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Daily
activities 

support

Physical and
cognitive

Social 
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Activity 
recognition

Sleep
Monitoring

Figure 1.2: An overview of the application and services in AAL paradigm

paradigm, visualizing how almost all the services in this scenario can become

interconnected, and highlighting the approach proposed in this thesis.

AAL systems are particularly useful for old people but, in general, the

AAL vision can be extended to all people with special needs. The Ambient

Assisted Living Association categorises users into primary, secondary and

tertiary users:

• Primary end-users are old adults who are using AAL solutions.

• Secondary end-users are families, friends, organisations that are related

to the primary end-users. Also in this case, people benefits directly and
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Factors influencing technology acceptance Factors influencing the need for technology

Costs User generation / cohort

Compliance with individual needs Housekeeping style

Personal experience with technology usage Number and type (partner, children) of inhabitants in household

Accessibility barriers (physiological, cognitive) Personal attitude towards technology

Table 1.1: Factors promoting technology use

indirectly from AAL products and services.

• Tertiary end-users are mainly public organisations and institutions that

play a role in providing or enabling AAL services.

An important aspect to consider, regarding the primary end-users, is that

despite younger people’s perceptions, seniors’ use of technology is the rule

rather than the exception. As reported in [4], seniors (age 65 to 75) report an

average of 19 to 31 interactions per day with their daily appliance, including

computers and devices. In general, elderly users are considered less inclined

to accept new technology than younger people. Typically, the reason is the

motivation. In fact, if they are motivated to use new technological solutions –

because the benefits are clearly perceived – this inclination changes. Table 1.1

shows factors that can promote acceptance of new technologies or not. The

most important predictor in terms of technology acceptance is the interest

in innovation. Instead, rejection of technology arises from: a lack of trust in

particular technological capabilities [5] and the feeling to be unable to handle

technology.

Seniors of 65 and more are still far less experienced with ICT than younger

users, but they are rapidly catching up, as the following statistics from Ger-

many prove 2:

• 59% of seniors use computers;

• 26% of seniors surf the Internet regularly;

• 12% of seniors surf the Internet daily;

• 3% of seniors are members of social online communities;

2Generali Altersstudie (2013): Wie ältere Menschen leben, denken und sich engagieren.
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• 55% of seniors own a mobile phone.

Furthermore, the actual levels of technology use by users between 50 and 64

years are often much higher.

According to aal-europe3, Table 1.2 lists the usual arguments in favour

of and against the purchase of an AAL solution from the primary end-users’

perspective.

Factors for AAL solutions Factors against AAL solutions

Enhanced quality of life and comfort Unclear personal benefit (e.g. compared to classical emergency systems)

Detection of an emergency Fear of stigmatisation

Enhanced security Disturbance of daily routine owing to the system

Enhanced autonomy and independence Fear of not being able to control or use the system

Improved contact with family/friends Unclear follow-up costs

Support in cases of helplessness Number and type (partner, children) of inhabitants in household

Living alone, having health problems Living with others, healthy

Table 1.2: Factors that promote or inhibit the purchase of an AAL system from the

end-user perspective

Turning these findings into design recommendations, including security or

comfort functions (instead of only focusing on compensating for deficits), offer

an opportunity to make AAL solutions more appealing to senior end-users

(especially to healthy seniors living with others). It is important to ensure

that application scenarios fit in the daily routines, otherwise they will not be

used. Finally, it is worth noting that users prefer does not allow others to

draw inferences about recorded data, protecting their privacy. Installing AAL

solutions in familiar surroundings is preferred over relocating elsewhere. Avoid

using cameras or microphones (except for communication) may represent a

solution.

Furthermore, it is relevant to adduce the fact that the AAL research com-

munity is recently focused on AAL Packages and integrated solutions. Basi-

cally, the future research in this field is to support innovative, transnational

and multi-disciplinary collaborative projects, highlighting a clear route to the

market and producing added-value products specifically designed for different

types of end-users. In fact, many solutions have been founded to address to

3http://www.aal-europe.eu/
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specific needs, but those have not yet been integrated and incorporated into

everyday life, and, furthermore, they have not yet been evaluated sufficiently.

Which kind of activities and daily routines can be considered in AAL

scenario? The answer to this question is not simple, and, in general, it depends

on the level of details is to be considered. For example, entailing the knowledge

of the exact position of a people, a system can infer about the part of the house

that is occupied by an user and, consequently, about the kind of activities the

user is performing. A higher level of generalization can lead to Activities

of daily living (ADLs) recognition. This term generally refers to people’s

daily self-care activities recognition, such as: dressing, personal hygiene, self-

feeding, ability to walk, get in and out of bed. On such a wide range of

research questions, this thesis focuses on two different aspects of people’s

daily life: first, on indoor localisation and positioning as a key component

for monitoring and inferring activities, especially at daytime, and then, on

human sleep activities for night-time monitoring activities. The following

section will show how both of these aspects are particularly useful into an

ambient assisted living scenario and it will convey. Some more details about

the context behind this thesis and the contributions presented to the research

community.

1.1 Research perspectives

The paradigm of AAL has recently moved from mere research to practical

use products, as the western population gets older. But even more feasible

solutions must be developed in order to allow elderly people to live at home

longer and to remain independent. Research develops the means for the mea-

surement of vital data, to recognise or even prevent emergencies, and develop

better mobile healthcare systems and home care systems. At the same time,

elderly people still in good health can be supported by systems and services

that offer both security at home and “lifestyle functionalities”. These systems

need ambient and vital context to react properly.

Take, for example, the scenario of people affected by dementia. It is

desirable to detect this disease as soon as possible before accidents happen,

such as a forgotten cooking pot on the stove, or a lit cigarette in an ash
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tray. If in the house an object finder has been installed, the person can find

important and tagged items, like keys, a cell phone, a wallet, and the first

hint of an abnormality may be detected when the object finder is often called.

Additionally, the warning systems in the house reacts better if the position

of the person is known. For instance, the warning information that the stove

is still running is useless if the person stands next to it, but it becomes more

effective if it is known that the user has not been in the kitchen in the last 10

minutes. However, dementia patients in hospitals present a different scenario:

It might only be necessary to know whether they are inside the area they are

allowed to be, or if they have left it. Activities based on positions or position

shifts can include information like walking, sitting, lying, falling, leaving a

room, or no movement at all. Another example of areas where Smart Devices

can be used is the healthcare of people affected with Alzheimer: they suffer

from a reduction of flexibility and mobility, and they might need the same

warning information that have been proved to be useful with people affected

with dementia.

Symptoms of dementia or Alzheimer can then be detected by examining

a change in movement pattern, or in the general reduction of the movement

activity. The goal here is to detect anomalies as soon as possible, so that pre-

cautions can be installed in the patience’s home, and a caretaker can be found

or the person can be quickly moved into a nursing home. After Alzheimer

is diagnosed, monitoring the movement behaviour represents a way to follow

the disease’s progress. Furthermore, devices help the patience, even if non-

affected by particular disease progress, navigate through a large, unknown

building, which, especially for elderly people, can be very hard and most

likely stressful.

From a technological point of view, as a matter of fact, the last decade have

been characterised by a vibrant proliferation of embedded sensing technologies

in mobile devices, and several wearable devices have been presented to the

market, equipped with several and different technologies and sensors, such

as accelerometers as well as biological parameters transducers. The main

drawbacks of this kind of approaches are related to the user experience and

comfort. In literature, the need of semi or completely unobtrusive solutions

has been managed using video cameras, although this approach leads to issues
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from the end user perspective. Indeed, privacy aspects and the feeling of being

watched are the key concerns involved with this approach. Besides, these

solutions present some technical hurdles, mainly due to low resolution, poor

light condition, fields-blind, especially in indoor environments, and a general

computational complexity demand, which is a big issue in real-time scenarios.

Indeed, thanks to an accurate indoor positioning detection, it is possible

to infer more complex activities. It is well known that outdoor localization is

well performed through the Global Positioning System (GPS) technology. In

general, GPS is not available to indoor positioning scenarios, due to the fact

that the signal received from the satellites is not strong enough to reach indoor

places through the walls. In literature, several works have been presented in

order to reach the ambitious goal of having a stable indoor standard de-facto

as the GPS solution, but it is still an open issue with a trade-off between

performance and costs. In indoor scenarios, like hospitals and nursing homes,

some hardware and technology deployment may not be allowed. Considering

the reference AAL scenario, systems have, in general, to deal with low cost

and unobtrusive constraints.

On the other hand, smartphones and, in general, other mobile devices,

are by their own nature ubiquitous, and applications that are able to leverage

contextual information, such as location, have become increasingly powerful.

Furthermore, many time critical emergency scenarios are based on location

information about a person, which makes the position a key context informa-

tion. In general, Indoor Positioning System (IPS) have proved to be essential

in AAL scenarios [6, 7, 8]. In fact, in recent years, the development of IPS

has been under constant improvement, especially with the availability of new,

small and inexpensive sensors. Some modern IPS are based on the use of

a variety of sensors and devices that are embedded in smartphones (e.g.,

accelerometer, gyroscope, magnetometer) since they does not require a dedi-

cated infrastructure or higher processing capabilities. Considering the reasons

already discussed, the focus of this dissertation will mainly be on indoor lo-

calization and positioning system, in particular on the smartphone-based one.

However, even smartphone-based solutions present some drawbacks. Mainly,

they require a little interaction human-machine, in terms of maintenance. For

this purpose, in this thesis other approaches will be discussed, based on a com-
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pletely different points of view. In particular, a discussion on infrastructure

based solution is presented and two different technologies are implemented

and discussed.

The idea behind this thesis is to guarantee the life quality, especially for

elderly and sick people, in its totality. Consequently, a key aspect in the

daily life is related to night-time, and in particular to sleep issues and sleep

monitoring. Sleep assessment and the related evaluation research has grown

steadily [9]. In this field, a hard task to reach is related to obtaining a sleep

dataset and, in the last years, many researchers have tried to address this

problem [10]. These works demonstrate how to gather sleep features through

accurate sleep session logs, particularly developing systems able to capture

the sleeping behaviour in terms of regularity, length of bed time, number of

night awakenings, sleep on set and sleep disorders.[11]. These disorders are

summarised in two different, secondary and primary, grades.

The main primary sleep problems identified are related to the Sleep Dis-

ordered Breath (SDB), the Rapid eye movement Sleep Behaviour Disorder

(RBD), Restless Leg Syndrome (RLS) and to the Periodic Limb Movement

in Sleep (PLMS). Research also identifies secondary sleep disorders, caused

by discomfort, protracted pains, dysponea, and medical treatments which can

interfere with the sleep quality. Several subjects might suffer from coexisting

sleep disorders. This aspect can lead to situations of psychiatric disorders,

especially in the case of a persistent insomnia. Furthermore, the human sleep

behaviour can change as a consequence of life–style modifications (i.e. be-

reavement, retirement, environmental changes). Information and Communi-

cations Technology (ICT) solutions can help to better manage patients with

chronic diseases and to overcome these different challenges. In particular, in

[12, 13], the impact of “Humans and ICT interaction” has been deepened

demonstrating that such technologies can efficiently support researchers in

this field, leading to the development of artificial devices able to understand

cognitive processes and consequently improving both human well-being and

human-machine interactions.
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1.2 Contributions of the thesis

As a summary of this dissertation, it is possible to affirm that this work

addresses the monitoring indoor human activities, focusing on activities at

daytime, indoor positioning and related research questions, and at night-time

in terms of sleep monitoring system.

Daytime monitoring - Indoor localisation systems

This thesis contributes to addressing the need for context-awareness in AAL

by:

• Overcoming the lack of a common evaluation benchmarking framework

- this dissertation introduces improvements within the EvAAL bench-

marking framework, which aims at fairly comparing indoor positioning

systems through a challenging competition under complex, realistic con-

ditions. Although there are many papers in literature trying to solve the

indoor localisation issue, the lack of a common dataset and standardised

frameworks to compare and evaluate solutions is the main drawback in

this field. Each approach presents algorithms and results using its own

dataset. Under these conditions, it is not possible to compare different

solutions since experiments are impossible to be reproduced [14].

• Addressing the lack of a common dataset for Indoor Localization Sys-

tems (ILSs) - the main contribution of this work is the creation and

the release of a publicly available dataset, that can be used to validate

different systems proposed in this field using a common dataset [15]

• Overcoming a common problem of the pedometer, the main sensor used

in smartphone-based solutions, by proposing a novel deep learning ap-

proach to improve indoor positioning smartphone-based solution perfor-

mances [16].

• Creating an open-source smartphone-based indoor localisation applica-

tion - this work tackles the latter problem by proposing a free software

framework enabling the development of indoor localization applications

on the Android platform [17].
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Details of these contribution are given in Chapter 3. Finally, this dis-

sertation try to address the indoor activity recognition issue, extending the

concept of a single device and/ or a single person to many. In particular:

• Performing crowd localisation through cheap and common technologies

- this dissertation demonstrate the feasibility of using Wi-Fi probes to

identify frequented regions by experimenting in three different indoor

environments with sniffing devices [18]. Details of this contribution are

given in Section 3.3.

Night-time monitoring - Sleep monitoring systems

This thesis contributes to addressing the night-time monitoring of human

sleep by:

• Proposing a novel system able to perform human sleep monitoring in an

unobstrusive way, using forty–eight Force Sensing Resistor (FSR) placed

in a rectangular grid pattern on the slats and below the mattress. FSRs

are connected to a single–board Raspberry responsible for gathering

and sending data collected to a central unit using a middleware layer.

Our proposal overcomes classical problems of the sleep monitoring so-

lutions. In fact, these technologies use wrist and/ or wearable devices

(actigraphy-based), particularly complicated to use in a real test bed

scenario. Instead, our work is based on cheap technology and does not

require active interactions between the users and the system [19, 20, 21].

• Proposing a system able to detect human bed postures during sleep ses-

sions, involving several machine learning techniques in order to extract

a global model for different users [19, 20, 21].

• Proposing a system able to identify patient movements and sleep stages.

This information is particularly useful, for example, in order to assure

pressure ulcer prevention. Regarding this illness, especially elderly peo-

ple deal with the inability of repositioning or to reach desirable positions,

promoting blood circulation problems and, indeed, ulcers [19, 20, 21].

Details of these contribution are given in Chapter 4.
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1.3 Organisation of the Thesis

The structure of this Ph.D. Thesis is the following: Chapter 2 introduces

the human indoor activity recognition system in active and assisted living

scenarios. Furthermore, the challenge posed by indoor positioning and sleep

monitoring are highlighted, especially providing the state of the art of these

research fields, which represent a fundamental part of the overall scenario

under consideration in this work.

Chapter 3 studies the activities at daytime, mainly considering indoor

positioning issues and the relative research open question. It also contains

some innovative contributions to indoor positioning field provided by this work

as well as some experiments. All the considered cases present qualitative and

quantitative evaluation metrics. Moreover, an extension from one person to

many is considered and discussed, realizing a crowd sensing approach. The

results presented in this chapter have been published in [14, 16, 15, 17, 22, 23]

Chapter 4 studies the activities at night-time. It provides the description

of a sleep monitoring unobstrusive system able to infer about sleep positions

and to estimate sleep information. The results presented in this chapter have

been published in [19, 20, 21]

Finally, the Chapter 5 resumes the main contributions of this Ph.D. Thesis,

as well as the planned future works.
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Chapter 2

Background and related work

This Chapter introduces the background concepts and related works for the

research topics described in Chapter 1, namely daytime and night-time mon-

itoring for AAL.

In this thesis, the daytime monitoring regards mainly indoor localisation

systems and the related research questions. In particular, a general discus-

sion about common evaluation frameworks and datasets is provided and, for

this purpose, we consider the EvAAL scenario, an annual international com-

petition that addresses the challenge of evaluation and comparison of AAL

systems and platforms. Then we focus both on the indoor localisation of a

single device, in particular considering smartphone-based approaches, and on

the indoor localisation of multiple devices, in particular via Wi-Fi probes.

Finally, the issue posed by multiple devices localisation and positioning leads

us to deal with room occupancy and social interaction detection, as a natural

consequence of the need for developing services and applications for well-being

in AAL scenario.

Concerning the night-time monitoring, this chapter first describes the

state-of-the-art of sleep monitoring approaches and actigraphy-based solution.

Secondly, the main goals and strategies related to sleep monitoring issues are

discussed. Then, we focus on actigraphy-based solution and finally we present

a general purpose sleep monitoring system able to infer sleep stages, sleep pat-

terns and to detect postures in bed. These information may be used for the

pressure ulcer risk assessment, to monitor bed exits, and to observe the influ-
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ence of medication on the sleep behaviour. Our proposal is based on cheap

technology and does not require active interactions between the users and the

system.

2.1 Daytime monitoring of indoor human

activities

One of the main basic mechanisms of AAL systems is the recognition of human

activities. This possibility optimises the prevention of emergencies, which can

have important effects on public and private healthcare services. Also age

related chronic diseases, such as dementia, depression, cardiac insufficiency,

or arthritis, can be faced in a proactive and preventive way in order to let

patients take advantage of more adequate assistance services [24, 25].

In the literature of behavioural monitoring and health state assessment, a

great standardisation effort has been done by means of the so called Activities

of Daily Living (ADLs). ADLs are daily activities carried out by individuals,

such as feeding, dressing, sleeping, walking, watching TV, etc. [26, 27], which

act as a basis to represent habits of healthy people. Health professionals can

thus refer to the ability or inability to perform ADLs as a measurement of the

functional status of people with disabilities. Most AAL research is currently

carried out with the purpose of allowing software systems/agents to detect

ADLs on the basis of suitable processing, reasoning and manipulation of sen-

sors data. There are many settings in which Ambient Intelligence can greatly

impact on our lives, enriching environments to create “smart homes”. Several

artefacts and items in a house can be enriched with sensors to gather infor-

mation about their use and in some cases even to independently act without

human intervention [28]. The main expected benefit of this technology is the

increasing safety of people with specific demands and of elders. By monitor-

ing lifestyle patterns or everyday activities and providing assistance when a

possibly harmful situation it is going to happen, a smart home realises the so

called Ambient Assisted Living paradigm [29].

With the maturity of sensing and pervasive computing techniques, exten-

sive research has been carried out aimed at using different types of sensors for

understanding human behaviour [30]. Behaviour modelling can be realised
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through different approaches. Probabilistic models are the most common.

Discriminative approaches, as well as approaches based on behaviour pattern

clustering and variability, are also used. The main distinction among these

techniques is the modality of inferring the context and identifying an emer-

gency or a significant event in the user’s behaviour; i.e. by data-driven sensors

or knowledge-based methods [31]. The former approach faces the problem of

recognition of human activities and the detection of anomalies during their

occurrence by using the information provided by sensors, in order to build,

infer, or calibrate a behaviour model [32]. Machine learning techniques have

been extensively used with this purpose, and, more specifically, probabilistic

models [33, 34], data mining [35, 36], and inductive learning [37, 38].

The research results presented in this thesis focuses on the data-driven ap-

proach, with particular emphasis on smartphone-based systems, as kinds of

context sources that can be exploited in pervasive environments. Sensory data

sources typically deployed in smart homes are related to positioning sensors,

home automation systems, and energy monitoring devices. Several research

works have been conducted in the indoor context inference in order to offer

solutions in elderly care facilities. These solutions are based on dedicated po-

sitioning sensors, like passive infrared detectors (PIR) and magnetic sensors

[39], fall sensors [40], wireless sensor networks and radio frequency identifi-

cation (RFID) sensors [41], and off-the-shelf conventional home automation

sensors [42]. The idea behind this thesis is to investigate the efficiency of

smartphone-based and range-based systems as potential sources of informa-

tion, and to propose several advancements in this field.

2.1.1 Indoor localisation

Localisation of people and devices is a key component of context aware sys-

tems [43, 44]. The user position represents the core information for detecting

user’s activities, to discover devices activation, to implement proximity-based

services, to perform people short or long term monitoring [7, 45, 46].

It is well known that outdoor localisation is well performed through Global

Positioning System (GPS) technology. In general, GPS is not available to

indoor positioning scenarios, due to the fact that the signal received from the

satellites is not strong enough to reach indoor places through the walls. In
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literature, several works have been presented in order to reach the ambitious

goal of having a stable indoor standard as the GPS solution, but it is still an

open issue [8, 23] with a trade-off between performance and costs.

The state-of-the-art of the indoor localisation systems is mainly repre-

sented by range-based systems. In detail, these systems work using radio

characteristics, such as: received signal strength intensity (RSSI), time of ar-

rival (TOA), angle of arrival (AOA) and time difference of arrival (TDOA)

[47]. All these features can be extracted by knowing the exact positions of

the station and anchors involved into the communication protocol. Conse-

quently, they require an ad-hoc and accurate hardware deployment. In this

thesis a novel range-based system is shown in order to evaluate the indoor

positions of single/ multiple devices using Wi-Fi probe request packets gath-

ered by APs or sniffing devices. However, especially in AAL scenarios, an

ad-hoc hardware deployment can be not allowed. As a consequence, several

advancements for infrastructure-free indoor positioning systems are shown, in

order to offer reliable and efficient solutions in our scenario.

2.1.2 Comparing Indoor Localisation systems

Some criteria to evaluate Indoor Positioning Systems (IPSs) for personal net-

works were proposed in [48], as for example: privacy, cost, performance and

robustness. In [48], it is observed that the two main performance parameters

are the accuracy and the precision, where the former is related to the geomet-

ric error and the latter was defined as the success of the position estimations

with respect to a predefined accuracy (e.g., the space-based location or the

percentage of error in positioning below a threshold). In general, the choice

of an evaluation metric is implementation-dependent.

RADAR [49], the first Wi-Fi based indoor positioning system, used the

quartile values of the error (defined as the Euclidean distance between the ac-

tual and the estimated positions) in order to compare the proposed method to

other (näıve) solutions in a basic analysis. The experimental testbed was lo-

cated on the second floor of a 3-storey building, with an area of 43.5x22.5 /m2,

more than 50 rooms and 3 Wi-Fi APs. HORUS, another well-known IPS de-

veloped in 2003 [50], provided the median error in positioning and it was

tested in two environments: an area of 68x26 /m2 with 172 locations and 21
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APs, and an area of 36x12 /m2 with 110 locations and 6 APs. The two testing

approaches are quite different because the density of APs was 0.003 APs/m2

in RADAR, whereas HORUS provided two scenarios with densities of 0.012

APs/m2 and 0.14 APs/m2 respectively, i.e. the scenarios where HORUS was

tested had approximately four times the AP density of the evaluation testbed

of RADAR. Therefore, comparing the results provided in the original refer-

ences might not be fair.

In order to provide a fair comparison between RADAR (the deterministic

method developed by Microsoft) and HORUS (the probabilistic technique

developed by the University of Maryland), they were both implemented and

evaluated using the same testbeds in [50, 51]. According to the data provided

in [52, 50, 51], the density of access points in the testbed used in [50], a

university department corridor, was higher than in [52, 51]. This change

might be due to an improvement of the WiFi network. Despite this minor

change in one of the evaluation testbeds, the work done in [50, 51] showed

that a fair comparison requires to use the same testbed, or testbeds, rather

than reusing the results provided in the literature.

Apart from the diversity of environments, there is also a certain variabil-

ity both in the hardware used for localisation and in the metrics employed

to evaluate an IPS. In fact, each research work uses specific hardware even

when they use the same base technology for positioning. A Huawei Mate

smartphone was used in [53], 6 different devices where used in [54], and a

simulation was carried out in [55]. Using multiple devices in the set-up might

be more challenging than using a single device or simulated data. Therefore

comparing the results of those works might not be easy at all.

Although the vast majority of papers agree that the error in positioning

is defined as the shortest distance between the estimate and current position,

consensus in using a particular metric to evaluate the IPS has not been reached

yet. This conclusion is in line to a study where 195 papers of the first edition

of the Indoor Positioning and Indoor Navigation (IPIN 2010) Conference were

analyzed [56].

The in-deep literature review previously shown opens two research ques-

tions: how to evaluate results produced by different indoor localisation sys-

tems? How to evaluate different data-fusion strategies and algorithms of a
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single indoor localisation system?

2.1.3 How to evaluate indoor localisation systems

As in any mature technology field, common evaluation criteria are funda-

mental in order to add transparency to the market, by defining a common

performance language and eventually to build and nurture stakeholders’ trust.

The problem with indoor localisation systems is that they are generally

complex. While in the laboratory the base techniques are individually anal-

ysed and optimised, real working systems use many techniques that work

synergically, thanks to the use of data fusion methods. At the base of these

techniques, a wide spectrum of sensors work together to provide raw data.

On the top of these techniques, applications are dedicated to a wide variety

of use cases. It is therefore not straightforward to devise ways to evaluate

indoor localisation systems through a series of parameters. It is not even

easy to simply compare two of them, because a comparison is possible and

meaningful on many dimensions, depending on the particular use case.

In 2010, the EU FP7 universAAL project started its work towards cre-

ating a universal framework for developing applications for AAL and, more

generally, for smart homes and smart environments, building on advances in

ubiquitous computing, distributed middleware and pervasive computing and

communication [57]. The universAAL framework is intended to support an

ecosystem of independent applications, so that the problem of comparing and

evaluating their performance naturally came forward.

As an answer to this demand, the universAAL project started EvAAL,

with the purpose of evaluating AAL systems through competitive benchmark-

ing [58]. The idea was to gather together working systems, both prototypal

and mature, and independently compare their performance in one or several

specific areas, with the long-term objective of creating a set of evaluation

benchmarks for indoor pervasive systems. In fact, two areas were consid-

ered during EvAAL competitions, starting in 2011 in Valencia (ES): indoor

localisation and indoor activity recognition.

EvAAL competitions were organised yearly during the lifespan of the uni-

versAAL project, until 2013. In 2014, the IPIN conference decided to start

an indoor competition on its own, building on EvAAL’s experience, and the
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first IPIN competition was born.

In the same year, the Microsoft Indoor Localisation Competition was

launched, in association with the International Conference on Information

Processing in Sensor Networks (IPSN) [59]. Rather than focusing on rigor-

ous evaluation of working systems as the EvAAL and IPIN competition did,

such a competition focused on simplicity and comparison of basic functional-

ity, even for very prototypal systems, with the result of attracting a higher

number of contestants with respect to EvAAL and IPIN.

The EvAAL indoor localisation competition

When EvAAL was born, its long-term goal was to build one or more frame-

works for evaluating entire AAL systems, a huge task which was tackled step

by step by considering single system modules. The first module was in fact in-

door localisation. In 2012, a second track was added, namely Activity Recog-

nition for AAL. Both tracks were present in the 2013 edition too.

During the years 2011-2013, the Indoor Localisation and Tracking com-

petition has been based on the same idea: inside a living lab, that was a

small house instrumented with various sensors, a path, unknown to competi-

tors, was drawn in advance; competing systems were given a fixed time for

installing their devices in the smart home and estimating in real time the

position of an actor walking the path. The basic criteria used for the setup

are listed below.

Accommodating any technology – Competitors were free to use any technol-

ogy that could be installed in the living lab and on the actor ’s body in

one hour’s time.

Natural movements and environment – Measurements were done in real time

on an actor moving in a natural way, in a natural environment: heshe

walked around the house, sit on the bed or the coach, looked for a book

in a bookshelf, turned on the TV set or the shower tap.

Reproducible path, equal for all competitors – The path followed by the

actor was precisely known (in fact, drawn step by step on the floor) and

travelled at a precisely known speed following a chime marking each
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step. This arrangement allowed for an estimated path reproducibility

with 10 cm error in space and 100 ms error in time, well below the

accuracy required for human indoor localisation.

Secret path – Competitors got to know the path shape only after their own

installation was complete and the measurement was going to begin,

because the markers on the floor were hidden by carpets before the

measurement phase and only one competitor at a time was admitted to

the area.

Independent measurements – Competing systems had to send location esti-

mates in real time to a central database, twice per second.

Accurately controlled timing – Each competitor had one hour for installing

their hardware in the living lab and checking the communication with

the measurement system provided by the organisers.

Different scenarios – Three scenarios were used; first, a person was located

as being inside one of several Areas of Interest (AoI) or outside any AoI;

second, a person was located with absolute coordinates inside the living

lab; the third situation was like the previous one but with a second

D isturbing actor moving on a predefined path different from the main

path.

The evaluation was based on a set of predefined metrics, both objective

and subjective, the latter based on scores given by a small committee after

an interview to the competitors. The final score was a weighted average of

the metric scores listed below.

Accuracy (objective, weight 0.35) – The third quartile of the point localisa-

tion error, where the error is defined as the distance from the ground

truth position (the mark on the floor) and the position estimated by the

competing system, computed through linear time interpolation.

Availability(objective, weight 0.20) – The rate of real-time samples, produced

by the competing system, that were at a distance of 500 ms from each

other.
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Installation complexity (objective, weight 0.10) – The time taken by the

competitors to install their system, with a min time of 10 minutes and

maximum of one hour.

User acceptance (subjective, weight 0.2) – Interview scoring based on char-

acteristics like battery duration, possibility of hiding the installation in

a house, need of cabling, need of periodic recalibration, and so on.

Interoperability (subjective, weight 0.15) – Interview scoring based on char-

acteristics like presence of documented API, use of a free software li-

cense, use of standard protocols and libraries, operating systems sup-

ported and so on.

The score with the highest weight was the accuracy performance, as should

be expected for evaluation metrics of a positioning and tracking system. The

choice of the third quartile favors result stability and credibility [58], and was

a prominent distinguishing characteristic of the EvAAL competitions.

The setup and the evaluation criteria made EvAAL a rigorous and difficult

competition, and, in fact, the number of attendants for the localisation track

was seven or eight in all the three editions. Competing systems not only

had to show good performance, but they had to be installed from scratch in

an unknown environment in one hour, they had to interact with an external

logging system, and to work without interruption for the ten minutes or so

of the longest path walked by the actor. All these requirements were hard to

meet for prototypal or unstable systems.

The major advantage was that EvAAL competitions were realistic. The

actor moved in a realistic way in a real domestic environment and the results

were gathered and displayed in real time. As a consequence, the accuracy

performance was significantly lower than that reported in academic papers,

as it reflected real-life situations. From this point of view, the EvAAL com-

petitions were a breakthrough, as for the first time they provided realistic

performance measurements of indoor localisation systems.

In this thesis, improvements of the EvAAL benchmarking framework are

shown in Section 3.1. This contribution has been accepted as state-of-the-art

of benchmarking tools for indoor localisation systems by the Indoor Position-

ing Indoor Navigation (IPIN) conference.
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2.1.4 Strenghts and weakness of common datasets for

evaluating indoor positioning systems

In the literature, many papers deal with geo-magnetic field- and RSS-based

fingerprinting methods for indoor localisation solutions. In this section, we fo-

cus on the datasets used for testing such solutions and we also survey whether

they are publicly available or not.

A state-of-the-art analysis of both available and not available datasets for

IPS purpose is shown as follows, highlighting strengths and weakness, with

the purpose to demonstrate which kind of information are considered useful

by the researchers in this area.

In [60], geo-magnetic field data authors collected in different environments,

like corridors, intersections of two squares, and rooms. Only geo-magnetic

field values were gathered, although the authors stated that WiFi may be used

to avoid errors in the proposed localisation solution. In [61], an environment

of 67x12 /m2 is considered, composed by a corridor, a lab, an office, and a

library. Data are statically collected with 45 cm intervals and 10 seconds

spent in each location. The created database consists of 350 samples from

a 3-axes magnetometer. However, how the information has been collected is

not described.

In [62], all the samples were taken in a 260 /m2 laboratory, which is com-

posed by 8 corridors, at the Universitat Jaume I. The 8 corridors and the 19

intersections were mapped in two different directions with a Google’s Nexus 4

and Android 5.0.1. As a result, there were 54 different alternative paths. Sam-

pling on every path was repeated 5 times, so that the database designed for

training purposes is composed of a total of 270 different continuous samples.

Data from magnetometer, accelerometer and orientation sensors are included

in a public database 1.

Besides differences of environments, number of points and samples, it is

important to analyse which kind of information are considered useful by re-

searchers in this field. This aspect is related to which kind of algorithms is

implemented, or better, which kind of sources information is used as input of

different algorithms and strategies.

Many papers, in the literature, deal with RSS-based methods for indoor

1http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag
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Table 2.1: Comparing the datasets in the literature.

Paper Infrastructure Spaces # of features # of samples # of reference points source available

[60] N.A. 1D and 2D magnetic 125 - smartphone no

[61] N.A. 1D magnetic 350 - smartphone no

[67] N.A. 2D magnetic - - smartphone no

[68] N.A. 2D magnetic 29 - smartphone no

[69] N.A. 2D magnetic 78000 - smartphone no

[62] N.A. 1D magnetic, accelerometer, orientation 40159 270 smartphone yes

[49] based 2D RSS - 280 smartphone no

[63] free 2D RSS 10000 167 smartphone no

[64] free 2D RSS - 96 smartphone no

[65] free 2D RSS 9358 1176 smartphone no

[66] based 2D RSS - 320 smartphone no

[70] free 2D RSS 21049 933 smartphone yes

localisation [49, 63, 64, 65, 66]. In [49], the impact of the number of finger-

printing points, number of samples, user orientation, and the issue of tracking

a mobile user have been investigated.

Although we presented several state-of-the-art works, the related datasets

are not completely available or detailed regarding the use cases and the envi-

ronments analysed.

Table 2.1 shows a comparison of the surveyed datasets available in the

literature. In this thesis we propose a new dataset, shown in detail in Chapter

3, as the only one able to provide information derived from both a smartphone

and a smartwatch and, at the same time, to present a higher number of

samples. The simultaneous presence of two different sources of information

can be particularly useful in order to validate or to propose new IPS.

2.1.5 Indoor positioning of a single-device: multiple

information sources and smartphone-based approaches

Researchers have developed various indoor positioning techniques to satisfy

indoor Location-based services (LBS) requirements. In general, these systems

utilise position signals, including Ultra Wide Band (UWB), Radio Frequency

Identification (RFID), echo, Wi-Fi, and magnetic field. UWB and RFID

based schemes allow to reach high positioning accuracy, but they need to

deploy dedicated infrastructures [71, 72]. Also echo schemes allow good re-

sults in terms of accuracy, but dense sampling prevents it from continuous

positioning in large scale [73]. Wi-Fi signals almost exist in every modern

building, but using Wi-Fi based approaches lead to achieve low accuracy, due
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to the fluctuation of this signal [74, 75]. The indoor magnetic field is also

ubiquitous due to the pervasiveness of magnetic field, but magnetic schemes

allow to achieve high precision only in local areas [76].

Both Wi-Fi and magnetic field signals are pervasive and complementary,

so researchers have tried to combine them to implement an accurate and re-

liable indoor positioning system. In [77], RADAR [49] and a magnetic field

approach combined, using particle filter, achieving good accuracy. However,

this method needs to restrict the phone attitude, aligning it with the user

moving direction, which is not often detectable. Another drawback is caused

by the need of sampling Wi-Fi and magnetic field training data separately, be-

cause of their different positioning principles. This aspect increases sampling

and environment survey workloads.

Considering the wide range of sensors generally available into a single-

device, or more specifically into a smartphone, accelerometers can be used as

a pedometer and magnetometer as a compass heading provider [78], and they

can be used as well to supplement other positioning and navigation methods.

Pedestrian Dead Reckoning (PDR) allows to reach high accuracy, in particular

when the Inertial Measurement Unit (IMU) which gathers inertial signals is

mounted on the shoes. In this way, the user moving distance can be calculated

through the double integral of acceleration [79].

Unfortunately, smartphones have little chances to be mounted on shoes.

The positioning research community proposed to utilise pedometers, in order

to detect a step event and, consequently, to estimate an average step length

as the moving distance [80]. Step detection techniques mainly belong to two

classes: foot mounted and hand-held like methods. For the foot-mounted

case, it is relatively easy to implement step detection due to the fact that

a step must contain a phase in which the foot makes contact with the floor

for few seconds, which is also known as zero velocity update (ZUPT) [81].

Therefore, researchers can use acceleration variance, acceleration-magnitude,

or angular rate energy detectors to detect a step event [79].

For the hand-held like case, users tend to hold the phone in their swing

hand, in the bag, or in a phone call posture. When users walk, phones at

these positions have no zero velocity phenomena, so the detection method

cannot be used in the foot-mounted case. In order to detect steps, researchers
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take advantage of the low frequency of steps, that is, step acceleration signal

contains low frequency peaks for each period [80], and hence step detectors

detect these peaks as steps.

In order to reduce false alarm rates, step detectors further remove false step

peaks by comparing the similarity of several continuous step periods [82, 83].

This method reduces the false positive rate, but the initial multi-period com-

parison causes a lag for the pedometer first response. On the other hand, steps

apart, many human movements are periodic and occur at low frequency, like

shaking hands or legs. Therefore, the above mentioned multi-period compar-

ison has little effect on these periodic movements. Traditional step detectors

tend to be error-prone with respect to periodic negative-step movements. Def-

initely, for a PDR based positioning system, these two drawbacks will cause

the system to be unfriendly to users. For instance, the initial lag problem

makes the system seem stutter, especially when the users stop frequently. On

the other hand, the problem of periodic movements causes inexact position

results when a static user shakes hands.

Besides the discussion about different types of signals and hardware com-

ponents, it is worth considering that the user location tracking is challenging

because it is a mathematical high dimensional problem. The particle filter ap-

proach is a good choice of processing these issues [84]. Consequently, current

works or indoor positioning problems combine particle filter and magnetic fin-

gerprint maps by updating particle weights with the map matching results. In

general, matching is evaluated using similarity measures, but it is difficult to

establish the similarity metric between two warping fingerprints. Therefore,

researchers use a well-known algorithm coming from the time series analy-

sis domain, the Dynamic Time Warping (DTW) algorithm, to measure the

likeness between training and positioning fingerprints [76]. In detail, without

assuming Line-of-Sight (LoS) measurement, Wi-Fi fingerprinting is a process

of signal collection and association with indoor locations. A position is char-

acterised by its detected signal patterns (e.g., a vector of Received Signal

Strength Indication (RSSI) from different Wi-Fi access points (APs)). Thus,

without knowing exact AP locations, fingerprinting requires neither distance

nor angle measurements, leading to its high feasibility in indoor deployment.

Unfortunately, DTW based positioning algorithms are computationally
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hungry, especially when they are applied to large amounts of particles. Con-

sidering also the limited battery capacity of the smartphone, in order to reduce

power consumption and guarantee strong performances, indoor positioning

providers tend to adopt a client/server scheme. The client, composed by the

smartphone, only collects environment signals. Then using an external server,

sophisticated positioning algorithms are able to evaluate user and/ or device

positions. Using the traditional algorithm, in order to serve mass user, com-

panies and industries should spend more hardware cost for realising efficient

indoor positioning services.

2.1.6 Indoor positioning of multiple devices: localising

crowds through Wi-Fi probes

Few works concentrate on sniffing Wi-Fi probes with the aim of localising

people.

The main technical difficulty is that probes are sent only occasionally, as

discussed in [85], with an experimental study of several factors that influ-

ence the number and the frequency of the probes sent by the popular smart-

phones. There are two major factors determining the behaviour of such de-

vices, namely the Operating System (OS) and the existence of known Wi-Fi

networks. As an example, devices based on Android 5.0.1 are observed to

emit about 1500 probes per hour in general, while for iOS devices (iOS 8.1.3)

the number drops to 120 per hour. Devices usually send bursts of probes, the

frequency of bursts strongly depending on the existence of known networks.

The observed frequency of bursts ranges from one every 66 s (Android 5.0.1)

to one every 330 s (iOS 8.1.3).

As a consequence, it is only possible to get sparse samples of people’s po-

sitions. In [86], Wi-Fi probes are used to estimate the trajectory of devices,

which is a tracking task. This is made possible by equipping an arterial road,

2.8 km long, with 7 Wi-Fi monitors. The authors manage to track some indi-

vidual devices with a median error of about 50 m with monitors placed at a

distance of 460 m. They use a Hidden Markov Model of possible trajectories

and make the final estimate using the Viterbi algorithm. They do not only

sniff for Wi-Fi probes spontaneously sent by mobile devices, but use several

additional techniques to elicit response packets from devices and increase the
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length of packet bursts sent by each device, thus improving the tracking per-

formance once the device radio is on. Anyway, they can do nothing when the

device turns off the radio or decides not to transmit. Accuracy performance of

this approach is very good, considered how much far are the monitors, but it is

only achievable in an environment where two requirements are simultaneously

satisfied: few well-defined possible trajectories and device tracking. Our work

instead is aimed at being applicable in wide unstructured indoor areas, such

as a mall, where a great number of trajectories are possible and configuring a

Markov model would be a complex and long task, which contradicts our aim

of a simple setup.

To the best of our knowledge, the only other paper that exploits Wi-Fi

probe messages for localisation purposes is [87], where pedestrians are tracked

in an outdoor environment using triangulation. A 1 m average positioning

error is reported, based on a single experiment without any details on the

number of samples taken. While it is possible to observe this high accuracy

in a small outdoor environment with few obstacles, the adopted triangulation

method is not generally usable in an indoor environment, where reflections

from ceiling and floors are strong and no line of sight from the device to the

monitor exists, leading to a generally weak relationship between received sig-

nal strength and distance, which makes triangulation unreliable. Moreover,

many modern devices’ operating system use some form of probe anonymi-

sation which prevents tracking, unless the device is associated with a Wi-Fi

network, which is generally not true.

In this thesis, our goal is to study whether Wi-Fi probes are usable to

identify the presence of unspecified people in a given indoor area, without any

attempt to track or identify specific devices. Specifically, our contribution,

explained in detail in Section 3.3, focuses on the accuracy of the position

samples through experimentation in a static environment. To the best of our

knowledge, no measurement campaigns, whether extensive or not, have yet

been published on the positioning accuracy obtained by eavesdropping Wi-Fi

probe request packets using APs or sniffing devices.



34 2. Background and related work

2.2 Night-time monitoring of indoor human

activities

People experience changes, especially, both in mental and physical aspects,

especially as they grow old. As a consequence, people deal with life-changing

problems. One of this problem generally affects the characteristics of the sleep

habits: changes in pattern, sleep duration, and quality [88]. Elderly people

with ageing deals exhibit difficulty of falling asleep, sleep fragmentation and

maintaining sleep. According to [89], sleep disturbances increases of 50% for

people over 65 years old. Many factors can influence these phenomena in old

adults: heart failure, allergies, depression, Alzheimer’s disease, social isola-

tion, loneliness, and drug use. Health-care professionals should be aware that

the sleep problems of the elderly people are an integral part of life. An ac-

curate sleep monitoring is fundamental in order to detect early signs of sleep

deprivation and insomnia, evaluating their sleeping habits, and consequen-

tially implementing mechanisms and systems for preventing and overcoming

these problems [90]. As a conclusion, a better quality of life in elderly people

may be achieved by increasing sleep quality as well as promoting good sleep

[91].

Recent findings show that sleep quality plays a critical role in reducing the

risk of dementia and preserving cognitive function in old adults [92]. Under-

standing changes in sleep quality may help in detecting cognitive decline, and

becomes a research imperative [93]. In literature, sleep quality has been as-

sessed using different techniques, including subjective and self-reported mea-

sures (e.g., the Pittsburgh Sleep Quality Index, the Consensus Sleep Diary,

the Richards-Campbell Sleep Questionnaire, the Karolinska Sleep Diary) and

objective measures (e.g., polysomnography and actigraphy). Current research

efforts focus on the methods used to quantify some parameters of the sleep

quality [94]. It is worth noticing that, unfortunately, sleep quality is a com-

plex construct, making it challenging to define and to evaluate. The following

part introduces the importance of the objective measures of sleep quality using

both subjective and objective measures. Lastly, to conclude, actigraphy-based

and unobtrusive systems are shown. In fact, the advancements proposed in

this thesis, and explained in details in Chapter 4, are not made to answer what
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sleep quality is but, rather, they offer a reliable method in AAL to understand

characteristics of sleep and human behaviours during bed rest.

2.2.1 The importance of objective measures for the sleep

quality

The term sleep quality is generally used in the sleep medicine research commu-

nity, but there is no exact definition widely accepted. Sometimes, it is used to

signify a series of sleep measures, including Sleep Onset Latency (SOL), Sleep

Efficiency (SE), Total Sleep Time (TST), Wake After Sleep Onset (WASO),

arousals and frequencies of apnea events [95].

The term quality may be not referred to the amount of sleep and awak-

enings, but it signifies how the experience of sleep changes. Sleep quantity

variables (e.g., TST, SOL, WASO, number of awakenings) may not reflect

people’s total sleep experiences. This aspect have to be taken into account in

order to better characterise people’s sleep experiences. Sleep quality repre-

sents some sleep experience’s characteristics that are not gathered from other

subjective indices. As a result, further study of objective indices may lead to

a better understanding of user’s sleep experience.

It is important to explore how sleep quality estimation differs for subjective

vs. objective measures, in particular for old adults.

2.2.2 Potential measures of sleep quality through invasive

systems

Sleep quality may characterise some aspects of sleep experience not currently

understood, and the development of objective correlates for these ratings has

the potential to allow an improved characterisation of the experience of sleep.

Whereas there are many potential correlates, traditional Polysomnography

(PSG) measures, NREM sleep EEG spectral indices, CAP rate, and actigra-

phy all should be considered for further study.

The following discussion highlights the limitations of traditional PSG

and considers these alternate methodologies, exploring other invasive anal-

ysis methods, self-report diaries, actigraphy-based and unobstrusive systems.

Among these are scoring methods for characterizing the cycling alter-
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nating pattern (CAP), sleep EEG spectral analysis, self-report diaries and

actigraphy-based systems.

Traditional polysomnography

PSG is considered the gold standard methodology for detecting the sleep

pattern by analysing epoch by epoch sleep records [96].

Furthermore, PSG provides measures strictly related to sleep architecture

such as Rapid Eye Movement (REM) sleep, Slow Wave Sleep (SWS), stage 1

sleep, and stage 2 sleep. These sleep characteristics cannot be self-reported,

but they have been also involved as a part of some indices of sleep quality.

In [97, 98, 99] authors show, that for some time, individuals show sleep com-

plaints while SOL, WASO, TST, and number of awakenings that are close to

those seen in non-complaining individuals.

These parameters, considered together, provide indices of:

• the relative distribution and amount of each of the sleep stages

• the time and quantity of occurrence of sleep

• the quantity of pathological events as indicators of periodic limb move-

ment disorder (PLMD) and sleep disordered breathing (SDB)

Sleep quantity variables may be particularly useful in different context,

such as in insomnia treatment studies [95]. PLMD and SDB have become the

standard for both diagnosis and treatment of these conditions. Unfortunately,

the nature of sleep is a continuous process and the traditional PSG-derived

sleep stage scoring, is a crude indicator able to provide only four categories

for a sleep session (stage 1, stage 2, slow wave sleep, EMEM). A night record

using the PSG methodology (generally performed using a resolutions of 24

bit, 12 channels at 500 Mhz) is simplified to four categories. Consequently,

the deep nature of sleep, provided using this information, may be useful for

individuals who meet diagnostic indices which differ from normal sleepers

[97, 98, 99], but the sleep quality may in general be not correctly addressed.



2.2. Night-time monitoring of indoor human activities 37

Non-REM EEG frequency spectral analysis

Non-REM (NREM) spectral analysis allows the identification of the frequency

content of electroencephalography (EEG) signals gathered during NREM sleep

events. These signals are generally elaborate applying Fast-Fourier trasforms

(FFTs) in order to obtain measures of the activity considering a set of classic

frequency bands in EEG data analysis (from 0.5 Hz to 45 Hz). Consequently,

this method generates a continuous analysis of the nature of sleep, using a

sleep stage categorisation. The main weakness of this analysis is that the

identification of clinically important aspects might be not guaranteed. More

specifically, it has been hypothesised that a greater high-to-low EEG fre-

quency ratio during sleep is an indicator of bad sleep in that it is similar

to the EEG signal during waking. Furthermore, the EEG pattern has been

found to correlate with the cortical activity, as measured with positron emis-

sion tomography during sleep [99, 100, 101].

In terms of the relationship of NREM EEG spectral measures and self-

reported sleep, NREM EEG activity has been found in patients with insomnia

who show no sleep pathology (relative to normal sleepers) on traditional PSG

[101]. In [99], authors found no overall relationship of any PSG measure with

subjective sleep quality in a group of 30 primary insomnia patients and 20

normal sleepers.

However, the sleep quality is related to greater high frequency activity

during NREM sleep among a subgroup of insomnia patients whose traditional

PSG indices (SOL, WASO, TST, etc.) are comparable to normal sleepers.

These findings suggest the possibility that NREM EEG spectral indices may

have some potential as objective indices of sleep quality ratings. However,

relatively little research has been carried out with this technique, and the

methods are still not standardised.

The Cyclic Alternating Pattern (CAP)

CAP is a manualized measure of NREM sleep state instability which derives

from PSG data. It quantifies the presence of particular types of NREM sleep

EEG patterns and the degree to which shifts occur between these patterns

over time [102]. Because CAP rate is an analysis of data occurring during

identified sleep periods, it is, like NREM EEG spectral analysis, a potential
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measure of the nature/depth of sleep rather than an index of the quantity and

timing of sleep. It therefore may be of interest as a measure of sleep quality.

In this regard, CAP rate has been hypothesised to reflect the mechanisms that

control arousal level during sleep. Consistent with this hypothesis, increased

CAP rate has been observed in individuals who experience continuous acoustic

perturbation [103] and it is significantly more common in individuals with

insomnia or sleep apnea [103] compared with normal sleepers. Of particular

note, CAP rate was found to be the strongest correlate of sleep quality ratings,

having a stronger relationship with these ratings than any of the traditional

PSG measures [104].

In summary, CAP rate has sown promising as a potential measure of the

sleep quality because it provides a possible indicator of aspects of sleep be-

yond what is provided by traditional PSG indices. Like NREM EEG spectral

indices, the major limitation of CAP is that relatively little work has been

carried out to date and its intrusive approach form a user point of view.

Self-report diaries

The effort for understanding humans’ sleep has traditionally utilised self-

report methodology to gather data on sleep behaviour. As previously de-

scribed, a discrepancy between objective PSG measures of sleep and subjec-

tively collected information is expected. However, the debate on what exactly

is important to measure in order to better characterise sleep is ongoing. Self-

report questions on the sleep behaviour have used several different formats.

Despite the lack of a standardised format, the sleep diary has been regarded as

the gold standard for subjective sleep assessment, and several efforts have been

made to understand the validity of self-reported sleep indices. This process

may facilitate interpretation and understanding of sleep data. The following

discussion focuses on four different self-report diaries Pittsburgh Sleep Quality

Index (PSQI),Consensus Sleep Diary (CSD), Karolinska Sleep Diary (KSQ),

Richards-Campbell Sleep Questionnaire (RCSQ)), exploring their strengths

and weaknesses.

Sometimes, sleep quality is inferred through the evaluation of objectives

indices performed from PSG. These objective parameters are measures such

as TST, SOL, WASO, SE, and number of awakenings that, in general, corre-
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spond to measures taken from self-report methods (e.g., PSQI, sleep diaries)

[105]. Self-report indication present a good level of validity and reliability and

these data have to take in consideration but, especially in elderly, age related

cognitive changes in memory and/ or executive capabilities may lead to errors

in reporting.

Pittsburgh Sleep Quality Index

The widely adopted PSQI evaluates the sleep quality variable based on user’s

evaluation, generally calculated in the previous month, and it includes a se-

ries of sleep measures, including sleep latency, sleep duration, habitual sleep

efficiency, sleep disturbances, the use of sleeping medication, and daytime

dysfunction [106].

The PSQI was originally developed to provide clinicians with a valid,

standardised measure of sleep quality that could reliably categorise individuals

as either good or poor sleepers. This 19-item questionnaire assesses sleep

quality using subjective ratings for 7 different components (i.e., sleep duration,

sleep quality, sleep efficiency, sleep latency, use of sleeping medication, sleep

disturbance, daytime dysfunction).

Respondents are asked to answer the questionnaire retrospectively, sur-

veying sleep components spanning the previous month. Since its introduction

the PSQI has emerged as the de facto gold standard subjective measure of

sleep quality. However, as [106] explained, the PSQI does not correlate well

with PSG. PSG, as already described, is the gold standard objective measure

of sleep [107]. In [106], it is suggested that the retrospective nature of the

PSQI (a global sleep quality estimate spanning the previous month), could

explain its limited agreement with single night PSQI recordings. Perhaps

PSG recordings averaged over the same period queried by the PSQI would

be correlated, but this assertion needs to be confirmed empirically. However,

the invasive nature of PSG usually requiring an overnight stay in a sleep

laboratory or clinic—makes long-term multi-night recordings impractical.

PSQI requires respondents to express answers that are suitable to reflect

their sleep during the previous month. This task requires the capacity to

accurately remember one’s recent past due to the fact that the response ac-

curacy depends at least in part on the cognitive capacity to reflect on the
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past month [108]. As a consequence, discrepancies between PSQI-based sleep

quality evaluation and actigraphy-based systems may be observed, especially

in elderly.

Basically, PSQI estimation may discriminate between poor and good sleep-

ers. However, this methodology might not identify important clinical changes

in users’ sleep quality, due to disease and interventions, and to age.

Consensus Sleep Diary

The CSD [109] is the product of collaborations with insomnia experts and po-

tential users. This workgroup designed, tested, and refined a consensus based

standardised sleep diary to be used primarily for the purposes of insomnia

research, but also for clinical and research applications for both good and

poor sleepers. CSD contains 9 questions about: the time of getting into bed,

the time at which the individual attempted to fall asleep, sleep onset latency,

number of awakenings, duration of awakenings, time of final awakening, fi-

nal rise time, perceived sleep quality, and an additional space for open-ended

comments from the respondent.

However, in [109], authors observe that users express limitation about

the diary format, and in particular about its ability to address efficiently the

sleep experience. They advocated for additional questions or items in order

to describe these experiences. The CSD, and other diaries, should be seen

as a good source of information for some aspects, but not good enough for

all the aspects of sleep. This aspect is also caused by the fact that sleep is a

highly variable phenomenon across different nights [110]. Sleep diaries must

be used together with other patient monitoring tools or clinical instruments

where a broader assessment of sleep is needed.

The main point of interest is the verification of sleep parameters gathered

using CSD, to prove if they match those of the actigraphy-based data, and

to investigate their accuracy. Regarding the consensus sleep diary, as ob-

served in [111], participants tend to under- and overestimate these respective

parameters compared to activity tracker data.

In [94] authors suggest, especially for older adults, subjective measures of

sleep quality (i.e., the PSQI and CSD) survey different aspects of sleep quality,

when compared with objective measures (i.e., actigraphy). As a conclusion, an
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older adult’s perception of their sleep quality is quite different from objective

reality.

Richards-Campbell Sleep Questionnaire

RCSQ [112] is a brief five-item questionnaire, used to measure: perceived sleep

depth, sleep latency (time to fall asleep), number of awakenings, efficiency

(percentage of time awake), and sleep quality. Each RCSQ item is gathered on

a 100-mm visual-analogue scale, with higher scores representing better sleep

and the mean score of these 5 items, known as the total score, representing

the overall subjective perception of sleep.

In a psychometric evaluation of the RCSQ [113], researchers found an

internal consistency of .90 (Cronbach’s alpha) and demonstrated that scores

on the scale have a correlation of 0.58 (P < .001) as a correlation among the

PSG sleep characteristic, sleep efficiency index, and the total RCSQ score. As

a consequence of the difficult to interpret and implement polysomnography

on a large-scale basis, in [114], sleep is evaluated using the RCSQ instead of

PSG, showing a similar clinical validation reported in [113].

A recent work 2 investigates quality and quantity of patient sleep in the

Hospital, trying to compare RCSQ indices and actigraphy-based system. Au-

thors show no difference between patients’ perceived quality and quantity of

sleep, and wrist actigraphy. However, they notice that patients perceived

that they were awake more frequently than as measured by wrist actigraphy.

Furthermore, no statistical relationship are found between the subject patient

perception of sleep (RCSQ overall) and sleep efficiency, and between the sub-

ject patient perception of sleep quality (RCSQ item 5) and sleep quality as

measured by wrist actigraphy system.

Karolinska Sleep Diary

The KSQ [115] contains 12 items. Most of them asks a response graded from

5 to 1. In detail the diary is composed as follow:

• Bedtime (h.)

2https://digitalcommons.centracare.com/cgi/viewcontent.cgi?article=1074&

context=nursing_posters

https://digitalcommons.centracare.com/cgi/viewcontent.cgi?article=1074&context=nursing_posters
https://digitalcommons.centracare.com/cgi/viewcontent.cgi?article=1074&context=nursing_posters
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• Time of awakening (hr.)

• Subjective sleep length (hours and minutes)

• Subjective sleep efficiency (derived from sleep length/time in bed)

• Subjective sleep latency (hours and minutes)

• Sleep quality-phrased as ”how did you sleep?” [very well (5) - very poorly

(1)]

• Feeling refreshed after awakening [completely (5) - not at all (1)]

• Calm sleep [very calm (5) - very restless (1)]

• Slept throughout the time allotted [yes (5) - woke up much too early

(1)]

• Ease of waking up [very easy (5) - very difficult (1)]

• Ease of falling asleep [very easy (5) - very difficult (1)]

• Amount of dreaming [much (5) - none (1)]

• Number of awakenings

• Number of awakenings/hour of sleep (derived from previous item/sleep

length)

The diary has been used in several studies [115, 116, 117] in order to

address the encountered sleep disturbances of initiating and maintaining sleep

as well as a users’ appreciation of sleep. The diary contains also sleep quality

and feeling refreshed items that are used as global indicators of sleep. Instead,

other items cover specific aspects of sleep.

In [115], the authors derived that a sleep was rated very good if it contained

only 4% or less of waking, whereas very poor sleep corresponded to 24% or

more of waking. Very difficult response corresponds to more than 100 minute

of sleep latency. Calmness of sleep appears maximal at 0.1 awakenings per

hour or less and minimal at 0.5 awakenings per hour or more. According to
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the reported results, it seems that a subjectively good sleep evaluation has

mainly effected by calmness and efficiency of sleep indices.

In [117], the correlation between KSQ ratings and PSG sleep examined in

individuals without clinical sleep complaints. Their results show how subjec-

tive sleep quality and restoration from sleep reported are strictly correlated

with sleep stages rather than time spent awake or number of awakenings as

indicated by PSG. According to [118], TST and SE are associated with a

better sleep quality. Instead, latency seems to be correlated with worse sleep

quality (higher global PSQI scores).

In [119], the authors observed a low overall and mostly non-significant

correlation between actigraphy measured sleep and subjective sleep quality,

presenting a study of different week nights including weekends. During week

nights sleep percent was to correlate better than TST evaluated with subjec-

tively reported sleep quality. TST was to correlate more with subjective sleep

quality during weekend.

2.2.3 Sleep monitoring via actigraphy and unobstrusive

systems

The variation of findings across different studies and methodologies previ-

ously discussed can be partly explained by the different subjective sleep qual-

ity measuring systems used (diary and questionnaire ratings), several and

non-standard definitions of sleep quality, and the difference between a sleep

recording session performed at home or in laboratory. In fact, recording sev-

eral human sleep nights, considering an extended period, in a home setting

with no restrictions, presumably better reflects habitual sleep than a highly

controlled laboratory study conducted over a few consecutive nights.

This suggest that more efforts should be spent to find reliable sleep mon-

itoring system able to detect objective sleep quality characteristics strong

correlated with findings of invasive clinical methods, self-report diaries, and

actigraphy-based systems. It is worth noting that, especially in elderly and

AAL, self-report diary approaches may be difficult to be used.

Fortunately, technological advances have allowed the development of non-

invasive, long-life, battery powered, wearable devices equipped with tri-axial

accelerometers (i.e., actigraphy) able to monitor and collect data generated



44 2. Background and related work

by movements. Some devices exploit a piezo–electric mechanism to detect

movements, along two or three axes, and to digitally count the accumulated

movements across pre–designed epoch intervals (e.g. 1 min), storing them in

an internal memory.

In 1995, the Standards of Practice Committee of the American Sleep Dis-

orders Association (ASDA) commissioned a task force to evaluate the role of

actigraphy in sleep medicine. ASDA’s effort on actigraphy led to a review

paper on the topic [120] and a set of guidelines [121]. The acknowledge for

actigraphy as a valid tool by ASDA was an important landmark in its ac-

ceptance by sleep–related researchers and clinicians. The use of actigraphy

is continuously rising in sleep research and medicine, as demonstrated by the

increasing number of publications over the years [122].

Wearable devices for actigraphy, and in particular wrist-worn actigraphy

devices, measuring sleep parameters have been validated through the com-

parison with PSG [123, 124]. In [107], the authors recommend the usage of

actigraphy-based system concurrently with CSD methodologies, in order to

identify period during which users are attempting to sleep. This combination

of CSD and actigraphy is currently accepted as an alternative to the PSG

methodology [125]. Actigraphy devices may be used to gather objective sleep

quality measurements in a natural environment allowing a comparison with

the PSQI, using some recommendations. In fact, the PSQI has been compared

previously to actigraphy in a non-clinical scenario. In [126], the authors com-

pared PSQI scores during 7 days (and less than 7 days in some cases) of

actigraphy and concurrent sleep diary entries in 53 young and 59 old adults.

They showed global PSQI scores did not correlate significantly with actigraphy

in younger or older adults; but did correlate with sleep diary entries. These

findings suggest that subjective measures differ from actigraphic measures of

sleep quality. In [127], the authors recommend to improve actigraphy-based

system using 14 days recordings in order to take into account day-to-day and

week-to-week variability. In general, longer actigraphy-based monitoring may

correlate better with PSQI.

Strengths of actigraphy-based systems are the low impact on the user daily

life and their low cost. However, the major weakness of this method is the

limitation in distinguishing activity from motionless while users are awake or
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being asleep. This phenomenon lead to, for example, SOL delay or to an

overestimation of the number of night-time awakenings (which are seen as

the primary features of insomnia) [128, 129]. Despite the main strength of

actigraphy lies in the ability of monitoring sleep behaviour and inferring sleep

wake patterns over long periods of time at home, actigraphy also has several

weaknesses. In [130], the authors report that up to 28% of weekly recordings

of children and adolescents were insufficient for the sleep analysis. The main

reasons for data loss included patient non-compliance to the pre-defined proto-

col (inability to complete the diary or log and misplacement of the wearable

actigraph device), illness, and technical problems. Indeed, detailed patient

logs are essential for accurate scoring of records. Showers (with the actigraph

off), just before bedtime or after rise time, can be easily confused with sleep

activity. Conversely, activity of co–sleeping of bed partners or sleep during

car rides may be scored as waking.

For these reasons, the log should contain information about bedtimes, rise

times, time when the actigraph is not worn, and time of external motion or

unusual events. When the actigraph data are retrieved, patients should be

queried about moments when the log and the actigraph records are incoher-

ent. Moreover, children and adolescents are remarkably capable of bending

metal parts, dislodging event buttons and otherwise damaging the instru-

ments. Data loss may also occur when curious wearers of any age remove the

battery cover to “see what’s inside”. Finally, instruments may lose calibration

and fail in many other ways. Unlike laboratory studies, where technical prob-

lems and artefacts are recognised quickly and either resolved or thoroughly

documented, problems occurring over long periods of home recording often

lead to a complete loss of data.

In [131, 132], the use of wearable general purpose sensor technologies to

monitor the bed posture of patients is proposed. In [133], an unobtrusive

system able to infer the bed posture and the breathing signal is presented.

The system is based on an expensive technology which employs a sensor, called

Kinotex, that was developed by the Canadian Space Agency for tactile robotic

sensing. Finally, in [134], an inexpensive system based on placing above the

mattress a capacity textile sensing technology is described. However, the

authors noticed problems on the reproducibility of the experiments, due to
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the movement of the textile system, which necessitates a new calibration phase

each time.

Vice versa, the proposed system is able to merge the inexpensive feature

of [133] and the unobtrusive feature of [134], just placing, under the mattress,

several FSR, able to report the force pressure generated by the patient over

the mattress.



Chapter 3

Daytime monitoring -

Advancements in Indoor

localisation systems

Indoor localization systems during the last years have been the object of

significant research activity and of growing interest for their great expected

social impact and their impressive business potential. Application areas in-

clude tracking and navigation, activity monitoring, personalized advertising,

Active and Assisted Living (AAL), traceability, IoT networks, and Home-land

Security.

The present Chapter collects the contributions of this Ph.D. thesis to

daytime monitoring, and particularly to indoor localisation systems.

In particular, Section 3.1 describes the general lines of the EvAAL bench-

marking framework, which is aimed at fairly comparing indoor positioning

systems through a challenging competition under complex, realistic condi-

tions. In fact, in spite of the numerous research advances and the great

industrial interest, no canned solutions have been defined yet. The diversity

and heterogeneity of applications, scenarios, sensors and user requirements,

make it difficult to create uniform solutions. From that diversified reality, a

main problem is derived which consists in the lack of a consensus both in the

metrics and in the procedures used to measure the performance of the differ-
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ent indoor localization and navigation proposals. To evaluate the framework

capabilities, we show how it was used in the 2016 Indoor Positioning and In-

door Navigation (IPIN) Competition. The results reported in this Chapter,

regarding the EvAAL framework have been published in [14].

Section 3.2 describes the improvements obtained for single smartphone

based indoor localisation. As a consequence of the results of Section 3.1, this

section shows a common dataset useful to compare different indoor locali-

sation systems and, successively, describes a novel approach based on Deep

Convolutional Neural Networks to improve the robustness of the main source

of information used by these system, the pedometer. To evaluate these pro-

posal, real-world indoor scenarios are considered; the results of this Section

have been published in [16]. Finally, a proof-of-concept of a smartphone-based

framework for AAL is described. This proposal arises from the IPS context

but, considering its modular architecture may be extended as a general frame-

work for both daytime and night-time monitoring services for AAL. Partial

results of this work have been published in [17].

Finally, Section 3.3 describes the feasibility of using Wi-Fi probes to iden-

tify frequented regions by experimenting in three different indoor environ-

ments with sniffing devices produced by Cloud4Wi. Using our proposed ap-

proach, single and/or multiple devices may be detected and furthermore it

is possible to identify frequented regions in indoor environments. The same

process can be carried out using the Wi-Fi access points already installed in

the environment, allowing for operation free of installation, calibration and

maintenance. To evaluate our proposal we consider three different indoor

scenarios. The results described in this Section have been published in [14].

3.1 Comparing the performance of Indoor

localisation systems: improving the Evaal

Benchmarking Framework

In Chapter 2.1.1, we have already shown that no standard methods for eval-

uating indoor localization systems are generally accepted and used by re-

searchers and industry. As a consequence, the lack of common test beds is a

problem when evaluating the relative performance of different systems.
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In this thesis, we describe the EvAAL evaluation framework. It defines

tools and metrics usable for comparing both real-time systems and off-line

methods based on recorded data. In this section, the EvAAL framework

is discussed together with a discussion on the performance and technologies

used by the competing systems. As a result of the experience gained from

the authors as software chair and real-time smartphone-based track chair of

EvAAL competitions, a focus is dedicate to smartphone-based solutions.

3.1.1 Characteristics of the EvAAL benchmarking

framework

The EvAAL framework is characterized by several core (the distinguishing

features of the EvAAL framework) and extended (all adopted by the EvAAL

competitions) criteria. The core criteria are the following:

1. Natural movement of an actor – The agent testing a localization system

walks with a regular pace along a predefined path. The actor can rest

in a few points and walk again until the end of the path.

2. Realistic environment – The path the actor walks is defined in a realistic

setting.

3. Realistic measurement resolution – The minimum time and space error

considered are relative to people’s movement. The space resolution for a

person is defined by the diameter of the body projection on the ground,

which is set to 50 cm. The time resolution is defined by the time a

person takes to walk a distance equal to the space resolution. In an

indoor environment, considering a maximum speed of 1 m/s, the time

resolution is 0.5 s.

4. Third quartile of point Euclidean error – The accuracy score is based

on the third quartile of the error, which is defined as the 2-D Euclidean

distance between the measurement points and the estimated points. A

deeper discussion on this point can be found in [14].

The extended criteria additionally introduced are the following:
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5. Secret path – The final path is disclosed immediately before the test

starts, and only to the competitor whose system is under test. This

prevents competitors from designing systems exploiting specific features

of the path.

6. Independent actor – The actor is an agent not trained to use the local-

ization system.

7. Independent logging system –The competitor system estimates the posi-

tion (at a rate) of twice per second, and sends the estimates to a logging

application provided by the EvAAL committee. This prevents any ma-

licious actions from the competitors. The source code of the logging

system is publicly available1.

8. Identical path and timing: the actor walks along the same identical path

with the same identical timing for all competitors, with time and space

errors within the above defined resolutions.

As a result of the experience gained from the EvAAL competitions and

the feedback obtained from the organizers and competitors, the EvAAL com-

mittee has formalized this evaluation framework [14] to be applied to indoor

localization competitions in order to measure and compare the performance

obtained by the competing systems.

3.1.2 A test case: applying EvAAL criteria to the IPIN 2016

competition

During IPIN 2016, four competition tracks were run in parallel: Smartphone-

based (track 1), Pedestrian dead reckoning positioning (track 2), Off-site

Smartphone-based (track 3), Indoor mobile robot positioning (track 4).

The competitors of each track were evaluated according to the third quar-

tile of the positioning error. This error is measured based on (x, y) coordinates

(longitude and latitude). Also, a penalty P = 15 m is added for each floor

error. For example, if the (x, y) error is 4 m and the estimated floor is 2 while

it should be 0, the computed error for that estimate will be 4 + 2P = 34 m.

1http://evaal.aaloa.org/2017/software-for-on-site-tracks
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This reflects the real user point of view, because some movements in the

environment are restricted by physics and architectural elements [135].

As far as the core criteria of the EvAAL framework are concerned, the

IPIN competition 2016 follows them as close as possible for a given scenario.

• The two first core EvAAL criteria are followed closely: in Tracks 1-3 the

actor moves naturally in a realistic and complex environment spanning

several floors of one (for Tracks 1&2) or few (Track 3) big buildings;

in Track 4 the robot moves at the best of its capabilities in a complex

single-floor track.

• The same holds for the third core criterium: the space-time error reso-

lution for Tracks 1-3, where the agent is a person, are 0.5 m and 0.5 s,

while the space-time resolution for Track 4, where the agent is a robot,

are ≈1 mm and 0.1 s. In Track 4, only the adherence to the trajectory is

considered, given the overwhelming importance of space accuracy with

respect to time accuracy as far as robots are concerned.

• The last core criterium of the EvAAL framework is followed as well,

as the third quartile of the point error is used as the final score. The

reason behind using a point error, as opposed to comparing trajectories

using for example the Fréchet distance [136, 137], is that the latter is less

adequate to navigation purposes, for which the real-time identification

of the position is more important than the path followed.

As far as the extended criteria of the EvAAL framework are concerned,

the IPIN competition also similarly follows them.

• In tracks 1&2, the path is kept secret only until one hour before the

competition begins, because it would be impractical to keep it hidden

from the competitors after the first one in a public environment. How-

ever, competitors could not add this knowledge to their systems. In

Track 3, the competitors work with blind datasets (logfiles) so that the

path can be kept secret. In Track 4, a black cover is used to avoid any

visual reference of the path and other visual markers.
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• The agent is independent for all tracks apart from Track 2, where the

technical difficulties suggested that the actor was allowed to be one of

the members of the competing team.

• The logging system is independent only in Track 1. An exception was

added in Track 2 for the logging system, which was done by the competi-

tors themselves rather than by an independent application. In Track 3,

competitors submitted the results via email before a deadline. In Track

4, the competitors had to submit the results via email within a 2-minute

window after finishing the evaluation track.

• The path and timing was identical for all competitors in Track 3 and

Track 4. The paths are slightly different in Tracks 1 and 2, which

involved positioning people in real-time, because the path was so long

that it would have been impossible to force the actors to follow exactly

the same path with the same timing many times.

In order to see the potential power of the EvAAL framework for evaluating

different and diverse locating scenarios and systems, we now give some details

about the three different competition scenarios used in the past 2016 IPIN

competition.

Smartphone-based track: Positioning of people in real-time

This subsection details the rules for real-time Smartphone-based track of the

IPIN 2016 Competition. The competing systems had to be engineered or

prototyped so that an external actor could use them without impairing his

movements.

In Track 1, actors were not trained to use the competing systems. Gener-

ally actors are people from the conference audience or people from the orga-

nizing committee willing to support the competition. Competitors had to use

standard smartphones, with the possibility of using any sensor available on

the device: GPS, accelerometer, gyroscope, compass, Wi-Fi radio and barom-

eter. Competitors were allowed to only exploit the existing Wi-Fi access

points available on the competition area. Teams in Track 1 were allowed to

perform two runs each during the competition day, and consider only the best
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result. During each run, the actor tested one competing application by using

a measurement application developed by the organizers, called StepLogger.

The detailed competition rules are published at the IPIN web page [138,

139].

Surveying the area

Competitors of both tracks received detailed geo-referenced maps of the com-

peting area and were able to survey the area the days before the competition.

They used the survey time to check how their system performed in the area

and were able to perform the algorithm tune-up.

During the survey, competitors in Track 1 were mostly interested in tak-

ing Wi-Fi measurements, both fingerprints in various locations (a long and

tedious task) and checks on the position of access points in the area. Most

access points were in fact indicated on the maps, but some were not, and

up-to-date ids (MAC, SSID) were not provided to competitors. After the

competition, many competitors in Track 1 informally said their system would

have performed much better if they had spent more time in taking Wi-Fi

measurements during the survey, because the area was so big and the hours

they dedicated to the task were not enough. Most notably, the winning Track

1 team needed very little survey time. To the amazement of bystanders, in-

cluding some other competitors, after slightly more than half an hour spent

in a specific small area of the building they claimed that they had collected

all the data required by their system.

Evaluation path

A reference path is necessary to measure the accuracy of the competing sys-

tems, and was used as the ground truth. In practice, some dozen markers

(keypoints) were stuck on the floor and their coordinates were measured in

advance. The actor followed the markers sequentially stepping over them.

For Track 1, the synchronization between the real position of the actor and

the estimated position was guaranteed by the StepLogger app, running on

the same smartphone where the competing app was running. When the actor

steps over a mark on the floor, he pushes a button on the smartphone screen,

and the app records the time. Since the markers are walked in a predefined
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order, the time stamps are easily associated with the corresponding mark and

logged to persistent memory. The log produced is then compared with the

log of the continuously estimated positions provided by the competitor.

In Tracks 1, the organisers provided an application for producing the re-

sults from the time-stamp log and the log of the competitor estimates. The

applications read the space-time logs and computed the errors as (x, y) dis-

tance plus the floor penalty. The third quartile of error is then computed and

presented as the final score. A dedicated application, available on the EvAAL

web site, produces a graphical representation of the map including the ground

truth and the estimated path.

The path was defined with the goal of realistically reproducing the way

people move within wide indoor environments. In fact, the path complexity is

a distinguishing feature of the IPIN competition. To this purpose the following

rules were considered:

• stairs and a lift are used to move between floors;

• the path traverses 4 floors and includes the patio, for a total of 56 key

points marked on the floor, 6000 m2 indoor and 1000 m2 outdoor;

• actors stay still for few seconds in 6 locations and for about 1 minute in

3 locations; this cadence is intended to reproduce the natural behaviour

of humans while moving in an indoor environment;

• actors move at a natural pace, typically at a speed of around 1 m/s;

• total length and duration are 600 m, 15’±2’, which allows to stress the

competing apps in realistic conditions.

As mentioned before, the setting was the Polytechnic School of the Univer-

sity of Alcalá (EPS-UAH). EPS-UAH is hosted in a square building composed

of four floors connected with stairs and lifts. Floors have all a similar layout,

with a side of about 140 m. The central big and open round hall gives access

to four wings where medium sized rooms are located. The structure is mostly

made of concrete with many pillars in the central hall. Glass walls separate

the patio from the ground floor indoor areas. Wi-Fi is available inside and

immediately outside the building.
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Figure 3.1: The IPIN competition path for the on-site tracks.

The path is shown in Fig. 3.1. It is composed of 56 key points, 5 of which

placed in the patio. The path starts from the ground level, up to floors 1, 2

and 3 by means of stairs, then goes to a terrace about 50 m long and proceeds

to the ground level, goes to the patio and indoor again. When going to lower

floors, the lift is used for Track 1.

Key points were labelled with a tag [buildingID,floor,markerID]2.

They were placed on the floor following these criteria:

• the key points were placed in easily accessible places where people usu-

ally step over;

• the distance between key points ranged from about 3 to 35 m, with an

average of 8 m;

• each key point was visible from the previous one, to ease the movement

of the actor and reduce random paths between two consecutive key

points.

2Key point labels were written on the button displayed by the StepLogger app, to reduce

errors on the actor’s part which would require him to restart the path from the beginning.



56 3. Daytime monitoring - Advancements in Indoor localisation systems

Team NavIndoor
Team Samsung
Team WiMag
Team WMLoc
Team XMUH
Team XPosition

0 12.5 25 37.5 50

0.25

0.5

0.75

1

error

%

CDF of the error in positioning with penalties

Figure 3.2: Cumulative distributions of the localization error in metres for the first

competing tracks.

Track 1 Results

In the first track, 6 teams were admitted [140, 141, 142, 143, 144, 145]: NavIn-

door, Samsung, WiMag, WMLoc, XMUH and XPosition. Each competitor

had two chances to run the path, considering only its best performance.

NavIndoor and Samsung teams obtained the best results, respectively with

a third quartile score of 5.4 m and 8.2 m, while the remaining teams had scores

higher than 15 m, as shown in Figure 3.2. Note that the localization errors

are in the order of a few metres, which is acceptable for navigating an indoor

environment and it is consistent with the EvAAL criteria. Again, we stress

that we tested real working systems in a realistic environment with a realistic

usage pattern and rigorous criteria: no simulations, no small or controlled

environments, and no simplifying assumptions.
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Lessons learned from the IPIN Competition track

We observed that tests done on a realistic and long path stress the competing

applications, which are required to have a good degree of maturity to run

regularly for long time periods. The independent actor may behave in a way

different from what the competitors had anticipated. We think that these are

key features for assessing the performance in realistic conditions. As far as

performance is concerned, we noted that accuracy, speed and scope of site

surveying, especially for Wi-Fi measurements, was the key to success for all

competitors.

Different environments, different test areas, different sensor technology,

etc. have a significant impact on how location results are processed and

evaluated, which makes it difficult to directly compare performance. One

additional road to comparing algorithms in controlled conditions has been

to set up measurement databases, however differences in formats, recording

procedure and range of sensor used again makes this road not straightforward.

Our claim is that applying the EvAAL rigorous criteria makes it possi-

ble to directly compare the performance of heterogeneous systems in a more

significant way than with other existing methods.

3.2 Improvements in smartphone-based indoor

localisation

The market of mobile devices is moving toward a new era. As a matter of

fact, the last decade have been characterized by a vibrant proliferation of em-

bedded sensing technologies in mobile devices. Moreover, smartphones and in

general mobile devices are, by their own nature ubiquitous, and applications

able to leverage contextual information, such as location, become increasingly

powerful. This constitutes the main motivation of many works in literature

that address smartphone-based indoor localisation issues, as described in Sec-

tion 2.1.5.

Moreover, Section 3.1 contents led us to deal with other open questions:

how much would a IPS be advantaged by using a common dataset and by

sharing a common evaluation framework? Is it possible to build a viable

localization system that uses other mathematical approaches never applied in
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this context?

We think that investigating the above questions is in fact significant to fur-

ther the state-of-the-art in indoor localization for AAL systems, This Section

is meant to answer these questions.

Finally, this Section contains a proof-of-concept of a smartphone based

framework for AAL. In fact, as a consequence of a work specifically presented

for the IPS context, we believe that many services and applications for AAL

should be packaged together in order to integrate different solutions to support

healthy and independent living of old adults. At this regard, the AAL Call

20173, a part of the Active & Assisted Living Programme approved in May

2014 by the European Parliament and the Council of the European Union,

launched a new Challenge-led Call for Proposals: “AAL packages/Integrated

solutions”. Many solutions for AAL address only a specific need, have not

yet been integrated and incorporated into everyday life and have not been

evaluated sufficiently. Our proposal try to answer to this question, proposing a

modular architecture that can be exploited to easily develop further strategies

and to integrate many specific information as, for example, daytime and night-

time monitoring services.

3.2.1 A common and public dataset for indoor localisation

systems

The lack of a common dataset or framework to compare and evaluate solutions

represent a big barrier to be overcome in the field. The unavailability and un-

certainty of public datasets hinders the possibility to compare different indoor

localization algorithms. This constitutes the main motivation of the proposed

dataset described herein. We collected Wi-Fi and geo-magnetic field finger-

prints, together with inertial sensor data during two campaigns performed in

the same environment. Retrieving sincronized data from a smartwatch and

a smartphone, worn by users, for creating and presenting a public available

dataset is the goal of this contribution.

3http://www.aal-europe.eu/get-involvedcall-challenge-2017/

http://www.aal-europe.eu/get-involvedcall-challenge-2017/
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Data acquisition

The data acquisition process involved two campaigns performed at the first

floor of the Institute of Information Science and Technologies (ISTI), inside

the Italian National Research Council (CNR) building. The data acquisi-

tion campaign has been performed by wearing two devices simultaneously: a

smartphone and a smartwatch. The smartphone model is the Sony Xperia

M2, while the smartwatch is the LG W110G Watch R. Both devices were run-

ning the Android OS with dedicated apps developed to collect the data [146].

Data gathered during the study comprises both physical parameters and Wi-

Fi access points information. In details, the devices log data regarding:

• force applied to a device on all the three physical axes (x, y, z) expressed

in m/s2, including the gravity;

• ambient geo-magnetic field for all the three physical axes (x, y, z) ex-

pressed in µT ;

• orientation or degrees of rotation that a device makes around all the

three physical axes (x or pitch, y or roll, z or azimuth) expressed in

degrees ◦;

• device rate of rotation around each of the three physical axes (x, y, and

z), expressed in rad/s.

The axes orientation on every Android based device is shown in Figure 3.3.

During the acquisition, the smartphone was kept at the chest level with

the screen facing up. Every time the user was on a predefined location, the

device recorded the following additional data concerning the detected Wi-Fi

access points (APs):

• WiFi network name;

• AP MAC address;

• AP Received Signal Strength Indication (RSSI) expressed in dB.
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Figure 3.3: Axes orientation on Android based smartphones.

Table 3.1: Parameters collected for each device

Phone Watch

WiFi APs X -

Accelerometer X X

Geomagnetic X X

Gyroscope - X

Orientation X X

The reference time used by the smartwatch is synchronized with the smart-

phone before starting each data acquisition session. Every time sensors or Wi-

Fi data are recorded, an entry is written in a file together with the acquisition

timestamp. Sensor output is sampled with a frequency of 10 Hz.

Table 3.1 shows the data collected for each type of device used in the

experiments. The place in which the data collection was carried out is an

indoor office environment composed of two rooms, two corridors and one small

entrance hall. Both datasets collected cover a surface of 185.12 m2.The overall

map is shown in Figure 3.4.

Each dot in the map corresponds to a detection point and for each of

them, two samples of each parameter were collected. The points were equally

spaced by 60 cm in both directions in order to uniformly cover the interested

area.
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Figure 3.4: Map of the data collection environment.

Table 3.2: Main characteristics of proposed dataset: Number of Campaign (N),

Number of buildings (NB), Surface, Number of floors, Number of places, Number of

WLAN Samples, Number of WAPs, Number of Geomagnetic Samples, Number of

devices

N NBu NFl NSu NPl NWs NWa NGe NDe

1 1 1 185 m2 325 10850 127 7500 2

2 1 1 185 m2 325 10945 132 7500 2

Dataset description

The records of both datasets have been captured on 325 different places.

These places are shown as bullets in Figure 3.4. Local coordinates are given

considering the X-Y axis origin on the bottom-left corner. By this point, each

bullet is 0.6 meters far from its neighbours since each tile is 0.6m ∗ 0.6m.

Table 3.2 shows the main characteristics of the proposed datasets.

Each dataset contains the following elements:

• Place ID;
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Table 3.3: Mapping table - First campaign

Place ID X Axis Y Axis

25 20.4 4.8

• AccX, AccY, AccZ;

• MagneticFieldX, MagneticFieldY, MagneticFieldZ;

• Z-Axis Angle (Azimuth), X-Axis Angle (Pitch), Y-Axis Angle (Roll);

• GyroscopeX, GyroscopeY, GyroscopeZ;

• Timestamp.

Regarding the Wi-Fi dataset, it also contains:

• Place ID;

• RSSIs collected from the different SSIDs observed.

The database also collects the mapping between the coordinates of the

reference points used during the campaigns, identified by the relative Place

ID, and local Cartesian coordinates - according to Figure 3.4. As an example,

Table 3.3 shows the coordinates of the 25th Place ID.

The dataset proposed can be used for developing and testing novel ap-

proaches to the indoor localization problem. The multisource characteristic is

supported by the presence of two different devices collecting, simultaneously,

data from the surrounding environment: a smartphone and a smartwatch, re-

spectively. Each device collects multivariate data represented by their inertial

parameters (i.e. acceleration, orientation, and gyroscope), geo-magnetic field,

and received signal strengths from Wi-Fi access points. Finally, it can be

easily exploited by ILSs fusing different data. Several examples are available

in literature focusing on hybrid methods [147, 148] and information fusion

frameworks [149, 150]; these systems can now be tested on real world data,

publicly available to researchers.
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The presence of Wi-Fi RSSs and geo-magnetic field values, together with

the map of the monitored environment, opens various fingerprinting-based

possibilities for ILSs, helping researchers in the off-line collection phase.

On the other hand, the geo-magnetic field can be used to lower the effort

in rebuilding the off-line Wi-Fi RSSs map, since it does not differ between

different campaigns. Further technical details are available in [151].

3.2.2 A deep convolutional neural network approach

The development of smartphones has opened up many new application fields,

where traditionally the use of IMU has been too costly, or the sensors too

bulky. One important application is the pedometer, which counts the steps

that a person takes and it is usually employed in sport or health management

softwares.

A pedometer is also an indispensable module for smartphone-based PDR,

that is an important positioning strategy. PDR can reach a high accuracy, if

the IMU is mounted on the shoes, because the user moving distance can be

easily calculated through the double integral of acceleration. However, smart-

phones have little chances to be mounted on shoes. Therefore, researchers first

utilize pedometers to detect a step event and then estimate an average step

length as the moving distance.

Step detection techniques mainly belong to two classes: foot-mounted and

hand-held like method. Considering the foot-mounted case, it is relatively

easy to implement step detection. In fact, a step must contain a phase, also

known as zero velocity update (ZUPT), in which a foot touches the floor for

a few seconds. Then, researchers can use acceleration-variance, acceleration-

magnitude, or angular rate energy detectors to detect a step event.

For the hand-held like case, users tend to hold the phone in their swinging

hand, bag, or in a phone call posture. When users walk, phones at these

positions display no zero-velocity, so the detection method cannot be used as

foot-mounted case. In order to detect steps, researchers take the advantage

of the low frequency of steps. Step acceleration signal contains low-frequency

peaks for each period, and hence step detectors count these peaks as steps.

In order to reduce false alarm rates, step detectors further remove false step

peaks by comparing the similarity of several continuous step periods. This
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method reduces the false positive rate for true negative steps, however, the

initial multi-period comparison injects several seconds of lag for the pedometer

first response.

Apart for steps, many human movements are periodic and have a low fre-

quency, like shaking hands or legs. Therefore, the above-mentioned multi-

period comparison has little effect on these periodic movements. Tradi-

tional step detectors tend to be error-prone also in conjunction with periodic

negative-step movements. Definitely, for a PDR based positioning system,

these two drawbacks will make the system unfriendly to users. For example,

the initial lag problem makes the system seem stutter, especially when users

frequently stop. On the other hand, the drawback of being error-prone to

periodic movements is that the output of the systems in terms of position

floats when a static user shakes hands.

So, the main aim of this contribution is to improve the robustness of

pedometer measurements reducing false negative-step detection, especially

during periodic movements, and to decrease the initial response time.

Creating a robust pedometer is challenging, because the step-like features

change depending on the way a user holds the smartphone. Thus, it is neces-

sary to utilize many step features to improve the pedometer anti-interference

ability and decrease the dependency on periodicity. With this purpose, we

propose a deep convolutional neural network (CNN) approach. In fact, the

CNN is supposed to learn automatically more of these step features, rather

than designing a sophisticated artificial step detection logic.

Another challenge is how to design and to train a CNN for the pedometer

application. Based on the feature analysis of steps, we adopt the acceleration

strength as an input feature, and then design a five-layer pedometer CNN. In

order to train the network parameters, the learning process needs a consistent

amount of labelled training data. Therefore, we present a step-data automatic

extraction and labelling method for the network training.

The third challenge lies in the real-time step detection. The proposed pe-

dometer leverages a sliding window to extract real-time input features from

smartphone sensors. The proposed system leaves aside the traditional peak

detection method, and shows more flexibility. However, this operation, also

causes multiple positive step outputs when a true step event occurs, because
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Figure 3.5: Step detection system architecture. In the sensors module, Acc means a

triaxial accelerometer. L-Foot stands for the left foot. R-Foot stands for the right

foot. NN means neural networks. And CNN means convolution neural networks.

acceleration features around true step-events are similar. Therefore, we con-

sider a filtering method to improve the prediction.

System architecture

As Figure 3.5 shows, the smartphone-based pedometer system consists of

seven modules: step feature extraction, the feature normalization, the accel-

eration extraction and labelling, the network training, the sliding window,

the CNN step detection, and the resulting filtering module (used in the online

detecting phase). In addition, a sensor module provides basic acceleration

signals of the left foot, right foot, and the target position to upper modules.

During learning, users collect acceleration signals from the two feet and

target positions, thus training the pedometer CNN. A target position is where

the system should be able to detect steps, for example, a swinging hand, a

phone call posture, or putting the smartphone into a bag case. The training-

data collection system is shown in Figure 3.6, including the one target-sampling



66 3. Daytime monitoring - Advancements in Indoor localisation systems

Figure 3.6: Training data collection system. The figure enlarges a foot sampling

device to clarify its working process. In this figure, the target position is a texting

hand.

smartphone and two foot-sampling devices. The foot-sampling device consists

of one smartphone and a container. The smartphone is fixed into the con-

tainer, and then the container is tightly fastened to the bottom of the shoes,

since this place provides the most similar acceleration signal of the foot. When

data collection starts, the target position smartphone opens a Wi-Fi access

point connection, working as a master. Then the two foot-sampling devices

connect to the master, synchronizing with it, using the smallest round trip

time (RTT). Based on our experiments, the synchronization accuracy is under

2.5ms, less than the data collection period (5ms). After the data collection

phase, the system extracts true steps from the foot-sampling data, then it la-

bels acceleration data of the target position. Because the foot-sampling data

and the target-sampling data are synchronous, the acceleration signal seg-

ment of one-step in the target position can be confirmed by the step scope of

the foot data. Then, this signal segment is extracted and labelled, generating

a pattern for training. Successively, the network training module trains the
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pedometer neural network using these labelled data.

It is worth noticing that here it is assumed that a user performs only a

limited set of extra actions when heshe is running (e.g., swinging hand, phone

call posture, putting the phone in a bag case). Such an assumption is called

“closed world” in machine learning [152]. Actually, we expect the causes of

misclassification when the pedometer runs (i.e., an action performed by the

user and detected as a step) are few, so that such an assumption, even if it is

not always true, it is reasonable in real life cases.

In the online detecting phase, users only collect acceleration signals from

target positions. Unlike traditional step detecting methods that select can-

didate steps by the peak detection technique, the proposed system utilizes a

sliding window. The window length is equal to the length of training step

segments. The detecting frequency is 20 Hz. Then the CNN step detection

module detects the input features and output raw predictions.

Finally, a result-filtering module processes the raw predictions and gener-

ate the final output.

True Step Scope Extraction

As Figure 2 reveals, the acceleration of a walking foot consists of flat and

fluctuation areas, corresponding to the stance and moving phase in the gait

cycle. Take the left foot for example: when it contacts the ground at the

sample index one, the foot is in a static state, so the acceleration closes to

zero.

Figure 3.7: The variation of accelerations for the left and right foot of a pedestrian.
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When the following step two starts, left leg swings the left foot, therefore

the left foot acceleration changes violently in step two. Noticing that for a

pedestrian, his two feet can keep in stance phase simultaneously, but it is

impossible to keep both of them in swing phase.

The proposed system extracts true step scopes from the two foot-sampling

devices. Since a foot acceleration consists of flat and fluctuation areas and, to

detect the scope of a step, the system has to identify the end of flat acceleration

area as the step start index and the start of the next flat acceleration area

as the step stop index. Our proposal first calculates the moving standard

deviations of accelerations, detecting flat areas with small standard deviations,

and then it finds edges as possible steps. The method further removes too

short steps in case of outliers.

Convolutional Neural Network for the Pedometer

As Figure 3.8 shows, the proposed deep pedometer CNN has four stacked

layers: a convolution layer, a batch normalization (BNorm) layer, a rectified

linear unit (ReLu) layer, and a fully connected multi-layer perceptron (MLP).

Figure 3.8: Deep pedometer neural network. BNorm stands for batch normalization.

ReLu means rectified linear unit. MLP stands for multi-layer perceptron.

In detail, the convolution layer slides a convolution window along the input

acceleration features, generating a new feature map. In the proposed system,

this layer has 100 convolution windows, so that the layer generates 100 feature

maps in the feature maps 1.
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Then, the BNorm layer normalizes the activations of the previous layer at

each batch by applying a transformation that maintains the average activation

close to zero and its standard deviation close to one, in order to accelerate the

network convergence. The next module, the ReLu layer adds non-linearity to

the network. It helps in accelerating the network convergence and improves

the network performance. Finally, the fully connected MLP calculates pre-

diction values of all labels. The CNN scheme uses a softmax loss function at

the end of the stack, to evaluate the error of predictions.

The input feature to the CNN is an acceleration strength vector with 154

elements equal to the mean sample data count of one-step, with a sampling

frequency of 200Hz, and with the mean time of one-step of 770ms. The

convolution window has 20 randomly-initialized parameters. It slides along

the input features, computing convolution values within the window at a stride

interval of one. Therefore, the convolution layer outputs feature maps 1 with

feature-length of 135.

The training data consist of three labels: left step, right step, and negative

step. The training data for left and right steps are acquired through the above-

mentioned method, and then they are resampled according to the length of

the input features. For the negative-step case, we first ask a user to use

the smartphone without walking, collecting negative-step acceleration signals.

Then, the system utilizes a fixed-length sliding window to extract negative-

step training data. The window length is also the same as the input features.

The proposed pedometer CNN has more than 2,000 parameters. These

parameters are randomly initialized and the backpropagation algorithm is

used for training.

Online step detection and output filtering

In the online detecting phase, the proposed system utilizes the trained neural

network to predict steps through the retrieved real-time acceleration signals.

To this purpose, a sliding window is implemented to extract input features

from real-time signals. Therefore, as Figure 3.9 shows, the system generates

prediction results each time the window slides.

When a true step event occurs, the CNN produces a preliminary output

as a series of discontinuous positive step predictions. Being this preliminary
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Figure 3.9: The real-time prediction results. The true step event is defined as the

time that a foot contacts the ground from a swing phase. L-Step means left step

event. R-Step stands for right step event. N-Step means negative-step event. The

time between detection cycles is 50 ms.

Figure 3.10: Continuous negative-step cycle count statistics.

CNN predictions confusing to users, the system filters the predictions before

produce the final output. In fact, the system filters the original pedometer

CNN predictions based on the fact that the number of reliable negative-step

cycles is much larger than the unreliable near step events, as Figure 3.10

shows.

In our experiment, we use a threshold value equal to six to distinguish

the two type of cycles. On the other hand, since the features of the left step
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Figure 3.11: Experiment Smartphones

and the right step are similar, the system usually confuses the detection of

these steps. Therefore, the filtering system merges the two types of events

into a single one. The system outputs the step events as soon as the pedome-

ter outputs a positive step prediction. Then, the system keeps outputting

negative-step events until it passes a long enough continuous negative-step

period.

Experiments and Performances

In our experiments, we collect acceleration signals using five commercially

available smartphones. Specifications are shown in Table 3.11. We utilize the

One X and S4 to collect the left and right foot data, and the Mate-8 to collect

the target position data. The S5, P9, and Mate-8 have inherited the pe-

dometer software, so we compare our algorithm with them. The smartphones

send the collected data to a PC server to train the pedometer neural network.

Then, each smartphone runs the trained neural network to detect real-time

steps. Our system trains the network with MatConvNet Matlab software and

then runs online step detection on Android devices with Deeplearning4j, a

java open source software. The step count of the training data, and the test-

ing data at each target positions are all 200. Before the experiment, we had

trained the pedometer CNN with data from different target positions.

In order to examine the influence of user’s height and gait, the experiment

involves six users, who walk for 200 steps naturally, wearing the foot-sampling

device. Then the system counts the detected steps and calculates the correct

detection ratio using the number of true step divided by the absolute value of
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Figure 3.12: Correct Ratios of Different Users on Normal Speed

Figure 3.13: True Positive Ratios on New Users

the difference between the true step and the detected step counts. As Table

3.12 shows, the true step extraction method achieves high accuracies.

This part evaluates the performances of the proposed CNN pedometer

from various aspects, comparing it with the three algorithms available in

three different smartphones. Pedometers in the smartphones need to acquire

data from seven steps before they can count the initial step. The proposed

method has no such limitations.

True Positive-Step Evaluation of Different Users: users have differ-

ent walking speeds and gaits, so the experiment involves six users walking for

200 steps, to calculate the correct step ratio. As Table 3.13 shows, although

users are different in gender and height, the true step ratios are approximately

the same. Therefore, the height and the gender have little influence on the

system performance.

True Positive-Step Evaluation of Different Target Positions: this

experiment requires the user to put the phone in different target positions,

including a swinging hand, assuming the phone call posture, and in a bag.

Figure 3.14 shows that the proposed method performs well in the calling and

bag case, but weakly in the swinging hand scenario, comparing to the other

three algorithms. Since the step patterns of a swinging hand are more random

than the relatively static calling and bag case, and considering that we only

use 200 piece of training data to train the network for each case, more training
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data of swinging hands are needed to improve its performance.

Figure 3.14: True positive step ratios of different target positions.

False Negative-Step Evaluation: periodic motion is difficult to be in-

ferred for periodicity-based pedometers. This experiment simulates periodic

motion in four manners, horizontal shaking, vertical shaking, mild shaking,

and violent shaking. The tester sustains the periodic motions for three min-

utes, then counts the false positive steps. Figure 3.15 shows that the proposed

CNN pedometer performs rather better than the other methods. Its false

positive step count is 10% smaller with reference to the other pedometers,

revealing its strong ability to overcome the problem of negative-step periodic

motions.

Figure 3.15: False positive step counts of different negative-step movements.



74 3. Daytime monitoring - Advancements in Indoor localisation systems

3.2.3 A proof-of-concept of a smartphone-based framework

for AAL

In this contribution we present a proof-of-concept of a smartphone-based

framework for AAL scenario. The idea behind this application, proposed

as an advancement in this thesis, arose from IPS context. We believe that,

as a positive side effect, this smartphone application can be exploited in AAL

due to its modular architecture. The proposed software allows to extend its

functionalities to other services, by implementing new raw-data reader inter-

faces (e.g., creating connections to embedded and general purpose devices,

such us Raspberry, Arduino) and front-end interfaces in order to present the

processed data to an end-user. Performances and results of these applications

are presented only for indoor localisation purpose.

The proposed system is composed of two applications, namely PrettyIn-

door and FingerFood. The former is the position engine, which implements all

the algorithms and incorporates the data structures required. It comes with

a front-end interface, thought for researchers’ testing operations with many

possible strategies, already existing or coming in the near future. The latter

is an utility application that allows the user to capture Wi-Fi and magnetic

fingerprints, save them into a file, and make a textual fingerprint map that

can be used through other applications. Both PrettyIndoor and FingerFood

access the phone sensors through a library, which extends the Android native

methods for sensor access.

Using PrettyIndoor

The positioning application is composed by an Android service, implement-

ing the back-end, and an essential graphical user interface shown in Figure

3.17. These two main components provide all the utilities for testing in-

door navigation solutions. Currently, the user can choose among PDR-driven,

fingerprint-driven or mixed strategies, but many more techniques are planned

to be implemented.

PrettyIndoor requires a starting position, to be specified in the text box.

After that, the localization service can be started by pressing the Play button.

This action switches the front-end to the online mode: the bottom floating
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Figure 3.16: FingerFood activity

action buttons change and the toggle buttons, corresponding to sensors used

by the chosen strategy, are switched on. These buttons allow to enable and

disable any data source during run-time, which is a useful function for a deeper

testing. The indoor positioning service runs in the background, updating

its saved current position in real-time, using the user-selected method. The

current position can be saved into a log file, which is automatically created by

the application, by pressing the bottom-right button in the online-mode GUI.

The format of the position log is simple: timestamp,x, y, z, where timestamp

is the time when the button is pressed, x, y is the 2D position on a floor, while

z is an integer value representing the floor, where 0 is the ground floor. Lines

are newline-terminated, so the log is a standard CSV text file, where every

row contains a different time-position relation. To save the current position,

the flag button must be pressed, and the separation of the back-end logic into

an Android service allows to easily expose this function to a future extension

of the application and even to third-party applications.
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Figure 3.17: Left: the screen during positioning hasn’t started. Right: screen while

positioning is active.
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Figure 3.18: Adapter pattern workflow

The architecture of PrettyIndoor

Figure 3.20 shows the architectural concept of PrettyIndoor. The main goal

is to develop a three-tier architecture with a logical separation between the
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Figure 3.19: Data encapsulation layer.

native raw data, the data abstraction layer and the core logic layer. The

strength of this model is the easy implementation of further modules and

strategies into the core logic layer and, more specifically, inside the localiza-

tion strategy sub-layer. In fact, handlers which manage the native raw data,

coming from the built-in sensors the smartphone board, are offered using an

adapter. PrettyIndoor allows to implement new algorithms, or to enhance the

implemented one, without a priori knowledge on how the operating system

manages the sensor data. The final output is a local coordinate triple x, y, z

useful for rendering, navigation, and mapping.

As shown in Figure 3.21, the current version of the PrettyIndoor service

implements five different strategies for solving the indoor location problem.

These strategies have been chosen and implemented after a state-of-the-art

analysis of the papers presented to the real-time smartphone-based track of

the IPIN 2016 competition [140, 141, 142, 143, 144, 145].

The first strategy is based on PDR (Pedestrian Dead Reckoning) tech-

niques. This technique relies only on the accelerometer, the gyroscope and

the magnetometer, using sensors for determining orientation and step events.
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Figure 3.20: Architecture of PrettyIndoor application.
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Figure 3.21: Scheme of the implemented strategies.

The conceptual workflow is shown in Figure 3.22. This implementation con-

siders an average step length of 0.6 m and simply elaborates the variation on

the x, y coordinates and adds it to the previous saved position.

The strategy that uses a fingerprint map compares either the measured

Wi-Fi RSSI or the magnetic field with the values in the database. The position

is then found by operating on the results of the k-Nearest Neighbours (k-

NNs). A lot of solutions present in literature are not limited by the usage of a

single technique, instead they usually combine many of them. In order reach

this goal, one of the location strategies within the application uses a Kalman

filter. It always keeps the positions found by both PDR and fingerprint, whose
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Figure 3.22: Orientation algorithm workflow

difference is then corrected combining it with a predefined covariance. This

refined variation is then added to the position and the output is assumed as

the new coordinates.

Another strategy that uses a state estimation filter is based on a particle

filter. In contrast with the Kalman filter, this filter directly operates on the

position. In fact, during the initialization, a number of particles representing

the possible positions are generated on the starting point. When a step is

detected, the particles are moved by the variation detected by the PDR plus

a random error. This error comes from a model represented by a zero-mean

Gaussian distribution with σ set to 0.15 m. For each particle, the algorithm

then calculates a distance dparticle =
n∑

i=1

di
ri,particle

and constraints the particles

to lie inside the map. Picking a random number from 0 to an experimentally

tunable maximum, if it lies between zero and dparticle, the particle is removed.

Eventually, a number of particles is resampled in order to restore their original

number.

All these strategies take into account the map topology in order to assure

the correctness of the found positions.
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Portability through data encapsulation

Since portability is an ubiquitous requirement in recent software production,

even PrettyIndoor, FingerFood and their libraries accomplish this aim by

encapsulating data in a proper type for each kind of source.

Figure 3.18 represents how the listener and the adapter are organized and

work. For example, when an Android SensorEvent is sent to the listener,

the array containing its floating point values is made ready by the adapter

for making an Acceleration object, which is then sent to the classes that are

waiting for it.

The current data type hierarchy is represented in Figure 3.19. For this,

the Android service that implements the navigation creates a new data object

when an Android sensor event arrives through an adapter class.

Experimental Evaluation

Experiments were performed at the Italian National Research Council (CNR),

located in Pisa. The map of the experimental region is characterized by

two straight corridor with offices located on both sides, a small hall between

the two corridors and two offices of 10 m2, as shown in Figure 3.23. Dots

in the map are reference points. Using FingerFoood, Wi-Fi and magnetic

fingerprints were acquired by standing still for 5 s, in order to create two

fingerprint maps. The points are equally spaced by 60 cm in both directions

in order to uniformly cover the interested area.

Figures 3.23 and Figure 3.24 show the two different paths used in the

experimental campaign, represented as green lines. Paths are composed by

13 and 8 points, respectively. Points were placed on the floor, using circle

markers, used as ground truth. An actor, who held the smartphone in his

right hand, used the PrettyIndoor application as explained in Section 3.2.3.

We tested the application using two different smartphones: a Xiaomi Mi3w

with Android 4.3, and an Lg G3 with Android 6.4. For each path and for each

smartphone, different runs were performed using the different algorithms and

strategies currently implemented on PrettyIndoor.

In order to test the proposed framework, we evaluated the results of dif-

ferent paths calculating min error, max error, mean error, and third quartile
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Figure 3.23: Map of the experimental region (dots) and first evaluation path (green

line).

error, the latter according to the EvAAL competition metric. Table 3.4 shows

the results obtained using the Xiaomi Mi3w smartphone, while Table 3.5 is

obtained using the LG smartphone.

The overall localisation performance was measured on two paths for five

different strategies:

• PDR - only using the inertial sensors;

• Wi-Fi - only using the Wi-Fi fingerprint database;

• GeoMag - only using the magnetic database;

• P.F. - using the first three fused in a particle filter;

• K.F. - using the first three fused in a Kalman filter.
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Figure 3.24: Second evaluation path.

Table 3.4: Xiaomi Mi3w - Android 4.3

P.F. K.F. PDR Wi− Fi GeoMag

First Path

εmin 3.7 6.7 4.8 0.9 1.1

εmax 31.9 41.0 36.5 24.1 21.0

εmean 20.4 26.4 23.2 11.8 10.4

εthq 22.9 36.0 27.1 20.5 16.1

Second Path

εmin 0.4 16.6 0.6 1.4 5.3

εmax 7.3 34.3 9.8 7.9 13.9

εmean 5.0 21.7 6.9 4.0 7.8

εthq 6.6 23.6 9.4 5.0 9.0

The performance is generally better for the second path. By looking at the

results for the first three simple strategies, we can observe that a significant
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Table 3.5: LG G3 - Android 6.4

P.F. K.F. PDR Wi− Fi GeoMag

First Path

εmin 2.0 11.2 4.2 0.5 2.1

εmax 24.5 38.9 32.8 20.8 17.1

εmean 13.6 27.0 23.0 11.1 8.3

εthq 16.1 35.1 25.8 19.4 13.1

Second Path

εmin 0.6 17.4 0.9 1.6 6.2

εmax 6.3 31.1 8.7 7.7 11.9

εmean 6.0 19.4 8.0 4.3 7.5

εthq 4.6 20.1 8.2 4.5 8.7

part of path 1 has a bad Wi-Fi performance in a specific area, which proba-

bly means that the fingerprint database should be improved in that location.

Similar observations can be done for the magnetic fingerprint database. Ad-

ditionally, one can notice that the step detection implementation is far from

being perfect, and works reasonably well only if there are bends along the

path. Oppositely, steps are lost in long rectilinear paths. These problems

are all concentrated in the first path, which explains why particle filter per-

formance is much better for the second path. It is worth noticing that the

above analysis is simplified by the modular nature of the tools, which allows

to enable, disable and fuse modules together.

The results obtained in the second path suggest that the framework can

produce good results once the algorithms are optimised. Therefore, we could

say that its purpose, which was to create a flexible, extensible and modular

software architecture, is accomplished. Moreover, this implementation can

also be useful for researchers in AAL, thanks to the free software license used

for distribution.
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3.3 Localising crowds through Wi-Fi probes

Mobile devices, that we carry with us routinely, disseminate radio messages,

as it is the case with Wi-Fi scanning and Bluetooth beaconing. Is it possible

to examine these digital crumbs to obtain useful insight on the presence of

people in indoor locations? The literature lacks of answers to this question.

We demonstrate the feasibility of using Wi-Fi probes to identify frequented

areas by experimenting in three different indoor environments with sniffing

devices.

3.3.1 The probe sensing architecture

Devices with an enabled Wi-Fi network periodically emit Wi-Fi probe re-

quests. Their purpose is to actively scan the network searching for available

Wi-Fi access points or for a previously accessed access point. This discovery

phase usually prepares an association phase through which a device establishes

a connection to a specific network. Devices send probes with a frequency de-

pending on several factors, including the Wi-Fi device driver and decisions

made by the operating system. For example, some devices do not perform

any Wi-Fi scanning when they are connected to a wired network, while other

devices still emit Wi-Fi probes even if they are connected.

Probes are sensed by all APs in the area as a part of their normal activity,

as the IEEE 802.11 standard mandates. Using them for different purposes can

be done internally to the APs or externally by a server to which the APs send

the collected probes. For simplicity of the experimental set-up, we collect the

probes emitted by Wi-Fi-enabled devices by means of a network of sniffing

devices, namely FogSense devices distributed by Cloud4Wi. FogSenses are

plug-and-play Wi-Fi sensors provided with a USB port as well as a mini-

USB port for configuration (figure 3.25). The Wi-Fi module is a Broadcom

WICEDTM from USI, supporting IEEE 802.11 b/g/n Wi-Fi standards. A

FogSense logs Wi-Fi probes emitted by nearby Wi-Fi-enabled devices and

sends the logs to a server at intervals of 15 s.

The data stored by the server include information extracted from the

captured probes: (i) the reception time stamp, (ii) the MAC address of the

sending device, (iii) the ID of the receiving FogSense and (iv) the RSS (dBm)
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Figure 3.25: A FogSense Wi-Fi sensor used in the measurement campaign.

measured by the FogSense.

3.3.2 Experimental setting

We perform our experiments in three scenarios characterised by different lay-

outs, sizes and number of sniffers needed to cover the area. Analyses of probes

presented in this work are based on anonymised data. Maps of the three sce-

narios are shown in figure 3.26.

In a real deployment scenario probes are normally gathered by already

installed APs, and FogSenses are only deployed if the number and positions

of APs is not sufficient to obtain a good accuracy performance. In our exper-

iments, however, we only work with FogSenses, for simplicity.

The CNR area in Pisa (from now on CNR) covers about 350 m2 and it

is characterised by a straight corridor with offices located on both sides. The

sensing region includes 12 offices where we deployed 4 FogSenses, as shown in

figure 3.26a. The Cloud4Wi Italian office (from now on C4WIT) covers about

250 m2 and is located in an old historical building with 9 offices of irregular

shape, where we deployed 8 FogSenses (figure 3.26b). Finally, the Cloud4Wi

San Francisco headquarter (from now on C4WUS) is an open office covering

about 500 m2, with 3 small offices and a meeting area (on the right and on
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the top left side of figure 3.26c) where we deployed 5 FogSenses.

It is evident from the maps that the three scenarios are quite different.

C4WUS is an open space, with no obstructions. This is not very dissimilar

from CNR, where some of the walls are gasbeton and others are drywalls,

both of which are not a serious obstacle to Wi-Fi signals. On the other hand,

C4WIT is quite different: this is an ancient building with many brick and

stone walls up to 60 cm thick. We expect this scenario to produce more accu-

rate results, because different FogSenses generally receive well differentiated

signal strengths from devices.

We installed different number of FogSenses in the three areas, specifically

a higher number is needed in the C4WIT location, because the effect of the

walls is similar to significantly increasing the distances.

To evaluate the performance of the proposed methods, we considered the

position of some known stationary devices, e.g. workstations, laptops, smart-

phones and other Wi-Fi-equipped devices in each location.

The position of known devices is the ground truth of our experiment: the

accuracy is measured by comparing their real position with the one estimated

by different localisation methods. All devices are stationary: this is strictly

true for workstations and laptops, and almost always true for the smartphones.

Given the office working habits, we estimate that each smartphone, during

the whole experiment, is located into its known position for about 90% of the

time, being inside the measurement area.

Note that experimenting with stationary devices, as we did, implies no

generality loss with respect to experimenting with moving devices. The lo-

calisation procedure, in fact, relies on fixed sniffers to receive a packet sent

by the device, at moving speeds that have no influence on the radio propaga-

tion. Additionally, the goal of the methods described in this contribution is

to gather samples of people’s position, rather than tracking them, so that the

movement patterns of probe-emitting devices are largely irrelevant for this

scope.

Among the known devices we could not include those using MAC ran-

domisation techniques, for instance based on recent iOS operating systems,

because randomisation makes it impossible to identify which device is send-

ing the Wi-Fi probe. While this is a limitation, as far as our experiment is
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(a) Map of site CNR. Map width is 22 m.

(b) Map of site C4WIT. Map width is 25 m.

(c) Map of site C4WUS. Map width is 24 m.

Figure 3.26: Maps of the scenarios selected for the experiments. Blue dots show the

FogSense positions, red crosses indicate the reference devices.
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Table 3.6: Scenario characteristics

Scenario FogSenses Unique

MACs

Duration Known

devices

Probes Size

CNR 4 24000 70 days 16 2.2e6 350 m2

C4WIT 8 130000 60 days 18 2.3e6 250 m2

C4WUS 5 34000 30 days 12 1.6e6 500 m2

concerned, it does not impose any constraints for the intended usage of our

technique which, as already mentioned, does not involve tracking.

The data gathering campaigns have different duration, ranging from 30

days at C4WUS to 70 days at CNR, and different number of FogSenses in-

stalled in each scenario. The different numbers of unique MACs observed are

due to the proximity of offices to roads. Table 3.6 summarises the features of

the three scenarios.

Since this contribution is concerned with assessing whether Wi-Fi probes

can be used for the purpose of localisation, and since no other measurement

campaign of this kind is available, we try here to give an idea of the numbers

we are working with.

Figure 3.27 shows the number of the probes gathered by the most talkative

known devices. Note how the number of probes produced can vary consider-

ably between devices, as already discussed. We account for this difference in

number of collected probes when measuring performance, in order to avoid

weighting one device more than others.

Figure 3.28 illustrates the RSS distribution for the known devices. The

three distribution have different width, as highlighted by their standard devi-

ation (shown in the figure). This is consistent with our previous observations

on the difference of the three scenarios and it represents a confirmation that

C4WIT is the scenario where the FogSenses gather most of the information.

Future work will investigate the usage of this information to assist the

deployment in different environments, especially for deciding whether the

already-installed APs are sufficient as sniffing devices to gather probe re-

quests. In principle, adding FogSenses in the area to improve the localisation

accuracy could make sense unless this addition makes the standard deviation
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Figure 3.27: Top 10 known devices by number of probes.
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Figure 3.28: Probability distribution of RSS values of known devices.

too narrow.

Finally, Figure 3.29 shows the number of probes received in 25-minute

intervals as time series covering one week. It is evident that, in CNR and
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Figure 3.29: Time series of captured probes in a week’s time, 25-minute intervals.

C4WIT, the number of captured probes increases during the working hours

and it drops down during off-work hours and weekends. In fact, being the

known devices laptops and smartphones owned by the employees at the three

locations, the probes they emit well reproduce their working rhythms. At

C4WUS such pattern is less clear for two reasons. First, most of the known

devices are static and always connected to a local stable Wi-Fi network, which

reduces the number of probes sent. Second, they are not owned by the em-

ployees, and are therefore working also during off-hours and weekends.

3.3.3 Performance of localisation algorithms with Wi-Fi

probes

We experimented with some localisation algorithms, in order to find the best

one in terms of accuracy and robustness to changing environmental conditions.

Our purpose was that of investigating whether we can find an algorithm with

sufficient performance to be used as a basis for the crowd localisation problem.

Generally speaking, RSS-based localisation techniques can be divided into

range-based and range-free methods. Range-based techniques estimate the
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user position by considering the received signal strength of that user device

and exploiting a Wi-Fi signal propagation model. They are prone to errors due

to reflection of waves over the walls, floor and ceiling, especially in presence of

obstacles obstructing line of sight between the transmitter and the receiver.

On the other hand, range-free techniques do not rely on the radio propagation

properties of the environment. We only considered range-free algorithms.

Each algorithm we used has several parameters to be tuned. Choosing an

algorithm and a set of parameters gives rise to a different localisation method.

All algorithms are based on k-NN classification, so each algorithm gives rise

to different methods based on the value of k which, in our experiments, varies

from 1 to 3. Given the target application, we expected that each device is

seen by a low number of FogSenses, so we have not experimented with high

values of k. The final estimate is the k − th centroid.

The simplest algorithm, which we call strongest, predicts that the observed

device is in the same location of the FogSense which has observed the strongest

RSS (Received Signal Strength). When k is greater than 1, we considered the

k-th strongest RSSes instead of only one. Since we used k from 1 to 3, the

strongest algorithm gives rise to 3 methods.

All the other algorithms are based on fingerprinting. Fingerprinting is a

technique commonly used for indoor localisation, which is composed of an

installation off-line phase, followed by a run-time on-line phase. During the

off-line phase, one takes measurements of the RSS of Wi-Fi packets received

from the APs (Wi-Fi Access Points), as observed at a number of reference

points. These reference observations are collected into a fingerprint database.

During the on-line phase, an agent makes a new observation, by measuring

the RSS received from the visible APs at the location. This new observation

is compared with those in the fingerprint database. The entry in the database

that is closest to the new observation is selected, and the agent’s estimated

position is set to that of the closest entry in the database, or to the centroid of

the k closest entries, when k-NN is used. Fingerprint methods have been first

proposed many years ago [153] and are still being actively investigated [154],

since they are at the base of most indoor localisation systems. For example,

all competitors in the EvAAL-ETRI off-site competition at IPIN 2015 used

some form of fingerprinting [155].
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Fingerprints observed during the on-line phase are variable in length, be-

cause the number of FogSenses receiving a given probe from a device is vari-

able: in fact probes are lost for a variety of reasons, including collisions, inter-

ference and insufficient transmitting power. Generally speaking, the higher

the number of FogSenses receiving a probe, the higher the localisation accu-

racy, but the lower the number of probes we can consider as valid samples.

The trade-off between accuracy and number of usable probes depends on the

FogSense positioning, the number of devices expected in the area, the pres-

ence of other Wi-Fi networks and, the expected accuracy of the results, and

should be decided for each scenario, on a case-by-case basis.

In this work, we use a threshold of 3 for all scenarios; in other words, we

only consider probes which have been received by at least 3 FogSenses.

Interpolating the fingerprint database

Usually, building a fingerprint database starts with selecting several calibra-

tion points. The purpose is to measure, at each point, what is the RSS

observed from each of a number of APs in the area. In our case, we need the

converse provedure: we should measure the RSS observed by the FogSense

when a probe is sent by a device located at the calibration points. From a

conceptual and practical point of view, this change of perspective is unim-

portant, and all the procedures commonly used for fingerprinting remain the

same.

The RSS values associated with each access point are collected at the

calibration points over a certain period of time and then stored in fingerprint

database together with the location coordinates. During the on-line phase, the

person or object of interest is localised by comparing the observed fingerprint

to those stored in the database, looking for the most similar ones. Building a

fingerprint database is a time-consuming task, especially for large areas that

may contain thousands of calibration samples.

In order to be commercially viable, the proposed method should require

very little or no installation and maintenance measurements. To this aim,

we take advantage of the probes sent by the FogSenses themselves, which

are connected to a server via Wi-Fi, and occasionally send probe requests

collected by the other FogSenses. This is enough to build a self-updating
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database composed of fingerprints relative to the positions of the FogSenses.

When using APs instead of FogSenses, we can profit from the probes sent by

APs during the routine neighbourhood scanning.

A database obtained with this unsupervised procedure, however, is too

sparse for assuring a satisfying accuracy, because the typical density of FogSenses

in the environment should be low. In order to get a denser database, we re-

sort to apply interpolation on a square grid, an idea already proposed in the

indoor localisation literature [156, 157]. In particular, we further refine the

solution proposed in [23] by exploiting several 2-D interpolation strategies.

Off-line phase: building the fingerprint database

The fingerprint database is automatically built without human intervention

thanks to interpolation, which in real deployment scenarios guarantees an

installation-free systems when the number and position of APs allows it, and

for automatic fingerprint update when additional FogSenses are needed to

improve the positioning accuracy.

The first interpolation strategy we used is based on the linear interpola-

tion over Delaunay triangulation [158] whose vertices are the known points,

that is the FogSense positions. Note that this strategy does not provide ex-

trapolation, which means that it provides no estimates for unknown points

that lie outside of the convex hull of the known points.

The second interpolation strategy was inverse distance [159]. At each

unknown point, the estimate is the average of the values at the known points,

each weighted by the inverse of their distance from the unknown. The third

interpolation strategy was based on Kriging [157]. Kriging is an interpolation

strategy originally adopted in the mining industry. Suppose that one can

draw scalar samples from an unknown function of points belonging to a given

domain. In our case, the samples are RSS measurements and the points in the

domain are the locations in the area where we take measurements. Kriging

interpolation is based on the assumption that the variance of the difference

of the samples taken at two different points is only dependent on the distance

of the two points. The function that relates the variance to the distance is

called variogram. In simple Kriging, the mean of the samples is a known

constant. Ordinary Kriging can work with unknown constant means. If we
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Figure 3.30: Examples of fingerprint maps generated with inverse distance

interpolation.

need to drop the constraint that the mean is constant, we resort to universal

Kriging, where one can impose a trend on the mean of samples as a function

of distance.

This is our case, because the RSS expressed in dB can be modelled, at

a first approximation, as a linearly decreasing function of the distance. In

our experiments, we used the same parameters adopted by [156]: spherical

model with a range of 6 m, sill set to 31 dBm2 and nugget set to 9 dBm2 and

linear trend. Our experiments have shown that these choices are in fact good

enough in our scenarios.

By interpolating the measured cross-FogSense fingerprints over a regular

grid, we obtain an interpolated set of fingerprints, that is, our final fingerprint

database. Figure 3.30 shows some interpolated RSS radio maps. For illustra-

tion purposes, the maps are computed on a very small grid width of 10 cm.

Each map is seen from the point of view of one FogSense, whose position on

the map is the point where the RSS value is the highest (the red point).

On-line phase: using the fingerprint database

During the on-line localisation phase, the fingerprint of the probe request

sent by a mobile phone is compared with the RSS fingerprints stored in the

database, an operation which requires a measure of distance to be defined.

Fingerprints are N -D arrays, where N is the number of probes that are re-



3.3. Localising crowds through Wi-Fi probes 95

ceived. As stated above, we worked with N ≥ 3. We experimented with

several measures of distance: 1- and 2-norm distances, differential 1- and

2-norm distances, cosine distance and FreeLoc distance.

Given two fingerprints A and B of dimension N , the most usual distance

is the Euclidean distance:

‖x‖2 = (
n∑

i=1

x2i )
1
2 . (3.1)

Generalising the Euclidean distance brings us to the p-norm distance:

||x||p = (
n∑

i=1

xpi )
1
p . (3.2)

Setting p = 2 produces the Euclidean distance, while p = 1 produces the

Manhattan distance. A variation on the p-dist is the differential p-dist, where

only the differences between the measured values of each vector are considered.

Specifically, the ND vector A is converted into an(N − 1)D vector Ad:

A = x1, x2, · · · , xN , Ad = x2 − x1, x3 − x2, · · · , xN − xN−1 (3.3)

We call the differential p-norm distance of vectors A and B the p-norm

distance of vectors Ad and Bd. The purpose of differential p-norm distances

is to remove the bias given by different devices possibly sending probes with

different transmitting power.

The cosine similarity between two vectors A and B is a value in the

interval [−1, 1] defined as:

A ·B
||A|| × ||B||

. (3.4)

Since we need a measure of dissimilarity, we (improperly) define the cosine

distance as the complement to 1 of the cosine similarity.

The FreeLoc distance is inspired by [160]. The idea is that one should

not rely on exact RSS values when comparing two fingerprints, but the only

significant information comes from deciding whether the signal received by

one FogSense is significantly higher, significantly lower or about the same as
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Figure 3.31: Generation of localisation algorithms.

the signal received by another FogSense. This information is ternary, and

coded by -1, 0 and +1 values. A threshold p is used to decide whether two

signals are nearly equal (|x− y| < p), giving rise to a 0. In our computations,

we used for p one of the three values 3 dB, 5 dB, 8 dB (the latter being the

value used in [160]).

Each fingerprinting vector A of length N is thus converted into a new Af

ternary vector of length N × (N − 1)/2, which is the number of pairs of the

N dimensions. Comparing the ternary vectors is just a matter of obtaining

their scalar product. Similarly to the previous case, the similarity is obtained

using the complement to 1:

1− (Af ·Bf )/
N × (N − 1)

2
(3.5)

3.3.4 Creating ensemble estimators

Using the above-described building blocks, we defined some parametric algo-

rithms for localisation, and for all of them we evaluated the performances.

Then, we turned our attention to the performance in terms of robustness
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across varying scenarios. We start with the definitions, we proceed by illus-

trating accuracy performance, and then we consider trading some accuracy

for robustness.

An algorithm is either the strongest algorithm or a fingeprinting algorithm.

Fingerprinting algorithms are defined by the choice of an interpolator and a

measure of distance. The choice of the interpolator, used in the off-line phase,

affects the creation of the fingerprint database, while the distance is used in

the on-line phase to identify the k fingerprints in the database which are

closest to the measured fingerprint. Each algorithm is associated with several

parameters to produce a set of methods.

For each algorithm, the parameters we consider are the interpolation grid

size (not significant for strongest, which is not based on interpolation) and

the k value. By varying the parameters, as shown in Figure 3.31, we produce

a spectrum of alternative methods. In summary, we have used 3 different

interpolators and 8 different distances, which give rise to 144 methods based

on fingerprinting, to be added to 3 more methods based on the strongest

algorithm.

In order to compare the 147 methods, we choose the error median as an

accuracy performance measure. We obtain an error median for each method

applied to each of the three scenarios. Given a method and a scenario, the

error median is computed by first obtaining the error distribution for each

device of that scenario, and then merging together those distributions. In

this way the results are not dependent on the number of samples per device,

which in fact are quite different, as shown in Figure 3.27.

Table 3.7 shows the performance of the 25 best methods for each scenario.

Some methods that are used in the following discussion are marked with a

letter id, whose meaning is listed in Table 3.9.

We do not want to choose the best method for each scenario. Rather, we

want to find a way to select methods that have good performance overall. To

this end, we resort to the concept of ensemble estimator, which is employed in

[161] for a similar case. Ensemble estimators (ensembles for short) are useful

when dealing with optimisation on many discrete parameters. For example,

in our case, varying the parameters creates a total of 147 methods. Just

choosing the method having the best performance would lead to overfitting.
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Overfitting, which means tuning the parameters to the specific case that is

being analysed, can produce brittle methods, that is, methods that perform

well only in a specific situation. In order to increase the robustness of the

choice, and possibly the performance too, we select a set (an ensemble) of

methods. Once the set is chosen, the position estimated by the ensemble esti-

mator is defined as the centroid of the positions estimated by each method in

the ensemble. To define an ensemble estimator, a criterion is needed to select

the methods composing the ensemble. For example, a simple criterion would

be to just choose the N best accuracy performers among all the considered

methods and use those as elements of the ensemble. More complex criteria

are possible to select the methods that are part of an ensemble, see [162, 161]

for more in-depth discussion.

The criterion we choose in the following is quite simple: we select the

methods that appear among the best performers in all three scenarios, that

is, a set of methods which is the intersection of the three sets whose accuracy

performance is listed in Table 3.7. The selected methods compose the inter-

section ensemble; they are marked with upper-case letters, defined in Table

3.9.

In order to better evaluate the performance of the intersection ensemble,

we compare it against three additional reference ensembles, each tuned on a

different scenario. We create the CNR ensemble using the 4 methods having

the best accuracy performance in the CNR scenario, and similarly for C4WIT

and C4WUS. The methods composing these 3 scenarios are marked with

lower-case letters in Table 3.7. Note that the top performer methods are

different in each scenario. For example method a is the best for the CNR

scenario and the second best for the C4WIT, but it is not even among the top

25 methods for C4WUS. Similar considerations apply for method b, which is

the best in the CNR scenario, but not in the top 25 methods for C4WIT and

C4WUS.

3.3.5 Experimental results

Table 3.8 shows the accuracy performance of the three reference ensemble

methods, each specialised for a different scenario; on the diagonal we show the

median localisation error of ensemble CNR, ensemble C4WIT and ensemble
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C4WUS applied respectively to CNR, C4WIT and C4WUS scenarios. As

expected, the results shown on the diagonal are not worse than the top method

for each scenario that are listed in Table 3.7. This confirms the effectiveness

of the ensemble approach measured by the accuracy. For example, the error of

ensemble the CNR ensemble applied to the ad-hoc scenario is 4.3 m, while the

best method in the CNR scenario has error 5.1 m, and similarly for C4WIT

and C4WUS.

However, when we apply the reference ensembles to scenarios in which

they are not specialised, performance drops significantly. Taking the CNR

scenario as an example, the error grows from 4.3 m when using the specialised

ensemble, to 5.3 m and 5.6 m when using the other reference ensembles, as

shown in Table 3.8. We take this as indication that the reference ensembles

are not robust across scenarios.

We finally analyse the performance of the ensemble of choice, the intersec-

tion ensemble, which is built with the purpose of being robust across scenarios.

The intersection ensemble is the intersection of the three sets of the 25 best-

performing methods in each scenario. Its member methods are marked with

upper-case letters A–D in Table 3.7. The last row of Table 3.8 shows the

performance of the intersection ensemble applied to the three scenarios CNR,

C4WIT and C4WUS. We observe that, as expected, while the results of the

ensemble interpolation (in bold) are worse than those of each reference en-

semble for its own specialised scenario (underlined), they are generally good.

Moreover, and most importantly, the performance of the intersection en-

semble can be considered satisfactory for the intended purpose of this work,

meaning that it is indeed feasible to use the experimented strategy for crowd

localisation. In fact, median errors ranging from 3.7 m to 5.5 m are acceptable

for crowded areas such as a shop inside a mall, the space in front of a shop

window, a waiting room, a bathroom area, a reception desk.

A more detailed overview of the numeric results in Table 3.8 is given in

Figure 3.32, where the cumulative density distribution of the error is depicted

for all ensembles applied to all scenarios.

Results are consistent with the characteristics of the three scenarios: as

expected, accuracy is higher for C4WIT. This can be explained by looking

at Figure 3.30: RSS varies a lot between different areas in the C4WIT map,
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Table 3.7: Median errors of the best 25 methods for each scenario [m]

Best CNR Id Best C4WIT Id Best C4WUS Id

5.1 a 2.9 e 4.8 C

5.1 b 3.0 a 4.9 B

5.1 c 3.2 f 5.0 h

5.2 d 3.2 g 5.0 i

5.3 3.3 5.1

5.3 3.4 B 5.2

5.3 3.5 5.2

5.4 3.5 5.2

5.4 3.5 5.3

5.4 3.6 A 5.4 D

5.4 e 3.6 5.4

5.5 f 3.6 5.4

5.5 3.7 5.5

5.5 A 3.7 5.6

5.5 h 3.7 C 5.6

5.6 3.7 5.6

5.6 3.7 5.6

5.6 3.8 5.7

5.6 3.8 c 5.7

5.6 C 3.8 5.7

5.6 B 3.9 5.7

5.6 3.9 5.7

5.6 3.9 5.7 A

5.8 D 3.9 D 5.7

5.8 3.9 5.8

while the picture of RSS in the other two scenarios is more homogeneous. In

other words, we have more information to exploit in C4WIT than in the other

scenarios, and this is reflected in a higher accuracy for C4WIT.

Another interesting observation is that the accuracy performance we ob-

serve is not so far from the state-of-the-art in Wi-Fi indoor localisation. While
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Table 3.8: Median errors for the 4 ensembles in the 3 scenarios

Scenario CNR Scenario C4WIT Scenario C4WUS

Ensemble CNR 4.3 3.7 5.6

Ensemble C4WIT 5.3 2.9 7.2

Ensemble C4WUS 5.6 3.9 4.2

Ensemble Intersect 5.5 3.7 4.7

Table 3.9: Legend for the Id letters used in Table 3.7

Id Interpolator Distance k Grid width

Ensemble CNR

a invdist cosine 2 2 m

b strongest 1 1 m

c linear pnorm,1 1 2 m

d invdist freeloc,8 1 2 m

Ensemble C4WIT

e invdist cosine 3 2 m

a invdist cosine 2 2 m

f invdist cosine 2 3 m

g invdist cosine 1 2 m

Ensemble C4WUS

C linear cosine 3 2 m

h linear cosine 2 2 m

B linear freeloc,5 1 2 m

i linear cosine 2 3 m

Ensemble Intersect

A linear cosine 1 2 m

B linear cosine 2 2 m

C linear cosine 3 2 m

D linear pnorm,2 3 2 m

a direct comparison is not possible, because we work with the data provided by

devices occasionally sending probes in small environments with a low number

of FogSenses, it is interesting to note that during the EvAAL-ETRI compe-
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Figure 3.32: Cumulative density distribution of errors for the four ensembles and

the three scenarios.

tition at IPIN 2015 [155], one of the tracks was dedicated to off-line indoor

localisation done exclusively with Wi-Fi information. The results obtained by

competitors vary from a median of 4.6 m (the winner) to a median of 7 m.

We derive some key takeaways as well as some considerations from this

experimental campaign. First, the architecture we proposed is dynamic, in the

sense that in case the already-deployed APs are not enough to get satisfying

positioning accuracy, it is possible to deploy additional sniffers, without any

system reconfiguration. Second, our approach is unsupervised, since it does
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not require the usual configuration work needed for Wi-Fi indoor localisation

systems, that is to survey the environment, to select the points where to gather

the RSS values and finally to collect data with one or more sensing devices. We

avoid all these steps by exploiting the probes sent by the APs and the possible

additional sniffers themselves. Finally, the results obtained with the described

ensemble estimator are, in our opinion, remarkable. In fact, the median errors

of the intersection ensemble are directly comparable with the results of some

of the best localisation algorithms based on Wi-Fi fingerprint, such as those

that were presented and, most importantly, independently tested, during the

EvAAL-ETRI 2015 competition

We take this as a hint that the methods proposed in this contribution are

indeed promising, since the figures measured during the IPIN competitions are

taken in controlled and scientifically accurate conditions, rather than by the

system authors themselves in their own laboratories. We claim that exploiting

Wi-Fi probes promises to be a viable and cheap strategy for indoor localisation

of devices. The method we describe can be the main building block of systems

that sample the presence of people in a given area, a task that we call crowd

localisation.





Chapter 4

An unobstrusive system for

night-time monitoring

As described in Section 2.2, long term sleep quality assessment is essential

to diagnose sleep disorders and to continuously monitor the health status.

However, traditional polysomnography techniques are not suitable for long–

term monitoring, whereas, methods able to continuously observe the sleep

pattern in an unobtrusive way are needed.

In this chapter, following the recommendations offered by the analysis of

the state-of-the-art provided in Chapter 2, it is presented a general purpose

sleep monitoring system that can be used for to monitor bed exits, to observe

the influence of medication on the sleep behaviour, and for the pressure ul-

cer risk assessment (bedsores). This condition, namely bedsores [131], may

be early identified and addressed from nursing care and caregivers through

an efficient and continuous monitoring, preventing worsening of these symp-

toms. Benefits of a correct posture detection method is two-fold. On one

hand, self–movements can be inferred and consequently prognostications can

be made. On the other hand, caregivers can adopt right care programs de-

signed to meet accurately elderly needs and avoiding bedsores.

Moreover, we compare several supervised learning algorithms in order to

determine the most suitable in this context. Experimental results obtained by

comparing the selected algorithms show that we can accurately infer sleep du-

ration, sleep positions, and routines with a completely unobtrusive approach.
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4.1 The proposed Sleep Monitoring System

In this section, we describe the developed platform in terms of necessary

hardware and software tools. The proposed system has been designed in

order to provide an effective solution both from a cost and deployment point

of view. It allows to unobtrusively provide data to an application layer and

to be easily integrated in different pervasive computing scenarios, exploiting

the presence of an open source middleware infrastructure.

4.1.1 Hardware components

The proposed hardware system is based on the widespread Raspberry Pi (Fig-

ure 4.1.a) single–board computer, equipped with a 700 Mhz ARMv6 processor,

512MB of RAM and several I/O peripherals. The board is running Raspbian

OS, a platform–optimized Linux distribution. On the top of the board, ad-

ditional shields can be mounted through the 26–pin expansion header. The

sensors used to collect the bed pressure distribution are called Force Sensing

Resistors (FSRs) and consist of a conductive polymer which changes its re-

sistance proportionally with the force applied on the sensor surface. These

sensors have a very low profile (less than 0.5mm), low cost and a good shock

resistance. In order to acquire and manipulate the weight pressure values, it

is necessary to convert the analog resistance, seen as a voltage drop between

the pressure sensor and a partition resistor, to a digital format. For this rea-

son, we used several ADC shields (Figure 4.1.b), mounted on the top of the

Raspberry Pi, to convert the raw voltage value coming from the sensors. Each

of the ADC shield mounts a pair of Microchip MCP3424 Analog–to–Digital

converters. The MCP3424 device features 18–bit, four channels delta–sigma

ADC with differential inputs, self calibration of the internal offset and gain

on each conversion. It also mounts an on–board programmable gain amplifier

(1x, 2x, 4x and 8x), to amplify the signal before its conversion. Each shield is

therefore able to sample 8 channels (sensors). The I2C bus is used to commu-

nicate with the ADCs and their address is set by placing proper jumpers on

the shields. A maximum of 4 shields can be stacked on the same Raspberry

Pi board, limiting to 32 the maximum number of deployable pressure sensors.
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Figure 4.1: The Raspberry Pi board (a) and the used ADC shield with a Force

Sensing Resistor (b).

4.1.2 Software architecture

The proposed hardware and software architecture, composing the data sensing

and processing system, aims at providing high flexibility and scalability. From

the software point of view, a middleware layer able to dispatch data among

generic entities, called services, has been used. This interoperability layer

allows the components, which are realized either as hardware devices and

software modules, to interoperate seamlessly with each other by using a shared

representation and communication model [163].

The concrete middleware architecture (Figure 4.2) consists of two layers:

a core middleware API layer and a communication layer, that includes a pub-

lish/subscribe connector. A generic service built upon the middleware can

discover both the sensors present in the environment and the other services,
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Figure 4.2: The middleware architecture.

together with their functionalities, using methods from the middleware API

layer. The underlying layer fulfils these requests exploiting the available con-

nectors. In the communication layer, an MQTT connector is present. By

means of these connectors, the middleware realizes, transparently to the ser-

vices, a publish/subscribe pattern and a method description and invocation

mechanism. Two buses form the heart of the proposed middleware: a context

bus and a service bus. All communications between applications can happen

in a round–about way via one of them, even if physically the applications

are located on the same hardware node. Each of the buses handles a specific

type of message/request and is realized by different kinds of topics. The aim

of the middleware is to provide a publish/subscribe mechanism for accessing

the context information about the physical environment. This information

will be exposed as different topics: topics for device discovery and description

and services that form the service bus; topics for publishing and retrieving

data from devices and services that form the context bus. The middleware

is in charge of presenting the available sensors and services in the system,

implementing the announce mechanism on the service bus.

4.2 The Proposed Algorithms

The goal of this work is to provide a sleep monitoring system able to recognize

the sleeping stages and to infer the patient’s position in the bed. The proposed
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Figure 4.3: Experimental setup: A grid of Force Sensing Resistor (FSR) sensor

nodes placed on the slats.

solution is based on an unobtrusive system, completely transparent to the

user. Indeed, we suppose that the patient does not wear any wireless device

able to monitor and to communicate data with a medical server.

From a technological point of view, the proposed system is composed by

a grid of forty–eight Force Sensing Resistor (FSR) sensor nodes placed on the

slats of the bed as shown in Figure 4.3. This virtual grid does not cover the

entire area of the bed but, instead, it is placed at the level of the patient’s

chest, back, and knees.

From an algorithmic point of view, the proposed solution is based on

the observation that, when a movement occurs, the pressure values change in

amplitude, whereas, when the patient maintains the same position, the values

of the FSRs are almost constant. The algorithm consists in two different tasks:

first, the different sleep stages (begin, end, movement, limited muscle activity)

are detected; then, the sleep position (supine, prone, right lateral, left lateral),

corresponding to each stage, is recognized.
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Figure 4.4: An example of six FSR time series.

4.2.1 Sleep stage detection

In order to better explain how we defined the stage detection algorithm, Fig-

ure 4.4 shows a typical behaviour of six different FSR time series, together

with the ground–truth of the sleep stages, that have been collected by a video

camera inside the room. When the user get in the bed, the status of the

pressed sensors drastically changes and it stabilizes at a new high pressure

value, whereas, when the user changes his/her position in the bed, after a

period of time, the pressure value stabilize at the original value. Summing all

the pressure values, of every FSR sensor, can lead to false positives and false

negatives, as shown in Figure 4.5.

In order to overcome this issue, a stage detection algorithm must take

into account only the variation of the most stressed FSR sensors. Based

on Figure 4.5, only if the red zone changes, the algorithm must detect a

movement. Moreover, the algorithm can consider as movements also external

events (for example someone who makes the bed), therefore the presence of a

detection filter is needed to avoid possible misclassifications.

Relying on these considerations we propose the stage detection algorithm

described in the following:

1. For each FSR pressure value pj , where j ∈ N (being N the set of the

installed FSRs), if
∑N

j=1 pj > γ, where γ is the average pressure, the
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Figure 4.5: An example of a false positive considering a subset of sixteen FSRs.

presence of the patient is ascertained.

2. Only when the patient is detected, for each FSR sensor j, the mean over

a W window PW
j = 1

W

∑W
w=1 pj is evaluated.

3. The difference between two consecutive pressure values Vj = abs(PW
j −

PW−1
j ) is calculated to find significant variations.

4. The variation values are sorted and filtered with a linear weighted fil-

ter. The obtained output is a set of sorted and weighted values Vj of

significant variations in terms of pressure amplitude.

5. If
∑N

j=1 Vj ≤ α (where α is defined as the minimum value for which the

pressure variation can be considered as a real movement), the patient

is not moving. The α parameter could be defined by leveraging the

pressure trace of the day before or by an ad–hoc calibration procedure

during the installation of the proposed system.

6. When
∑N

j=1 Vj > α, the movement is detected and the algorithm goes

back to step 2.

In particular, γ has been chosen as twice the pressure value of the empty bed,

while α was fixed to the 30% of
∑N

j=1 Vj (i.e. a significant variation).
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4.2.2 Sleep position detection

A classification task consists in assigning a class (within a set) to a given

object. In the general case, an object is defined by many characteristics (fea-

tures), providing information about the object class. The information associ-

ated to a single characteristic is usually not sufficient to solve the classification

problem, so that the correct class can be only inferred by combining all the

features. In our case, the objects to be classified are the patient positions, the

feature are the FSR signals, and four classes are considered, namely, supine,

prone, right lateral, and left lateral.

Machine learning provides several techniques to solve complex classifica-

tion problems [164]. In this case, a classifier model is trained on a set of

examples, called the training set. After training, the classifier is able to com-

bine the characteristics and to generalize the learned behaviour, by correctly

assigning a class to unseen objects. The performance of the classifier can be

evaluated by applying the trained model on a test set.

In this paper, in order to validate our system, seven different machine

learning models have been applied and compared on the task of classifying

FSR signals. The goal is to verify that an automatic classification of the

patient bed positions is possible and to carry out a preliminary study in order

to chose the best algorithm.

The considered models include statistical learning systems (Naive Bayes,

Logistic Regression, IbK), ensemble methods (Bagging, HyperPipes) and rule–

based learning systems (Decision trees, Decision tables). Table 4.1 shows the

algorithms used in this work, along with a raw and short summary of their

strengths and weaknesses. Some basic characteristics are investigated for each

method: problem type — the method is able to face classification and/or

regression tasks — training speed, prediction speed, automatically feature

learning property, and if the classifier is parametric or not.

The automatic feature learning property is based on the assumption that

not all the features are equal. Some features can be irrelevant and, for exam-

ple, lead the algorithm to misclassification. On the other hand, some features

should be much important than others. A learner can be able to perform

automatically the feature selection task, using a scoring method to rank and

select the features and, also, to find correlations between them.
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Considering parametric models, we can identify a finite number of parame-

ters. For example, linear models such as linear regressors have a finite number

of weight coefficients. Vice versa, in non–parametric models, the complexity

of the model grows with the number of training data, because the model has

not a fixed structure.

In the following, the used classification algorithms are shortly introduced.

In our experiments, machine learning methods used are obtained from the

WEKA [165] package.

Table 4.1: Comparison between the used classification methods.

Algorithm Problem Type Training speed Prediction speed Auto

feature

learning

Parametric

Decision Table Classification Slow Fast No No

G. Naive Bayes Classification Fast Fast No Yes

Simple Logistic Classification Fast Fast No Yes

IBk Lazy Class. and Regr. Fast Depends on n No No

Hyper Pipes Classification Slow Fast No No

Bagging Class. and Regr. Slow Fast Yes No

Random Forest Class. and Regr. Slow Moderate Yes No

Decision tables

Decision tables are one of the simplest machine learning techniques [166]. Ba-

sically, a decision table consists of a hierarchical table in which each entry in

the higher level table gets broken down by the values of a pair of additional

features to form another table. Creating a decision table might involve select-

ing some of the features. The problem is, of course, to decide which features

to leave out without affecting the final decision. In our case, we have no a

priori information about which FSR must be considered or not. In fact, each

sensor, and consequently each feature, can be useful in order to identify a

particular user position. Thus, a Decision table approach uses the simplest

method of attribute selection: Best First. It searches the space of attributes

by greedy hillclimbing, augmented with a backtracking facility.

Naive Bayes
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Naive Bayes classifiers are a family of simple probabilistic tools based on

applying the Bayes’ theorem. Naive Bayes classifiers employ the class pos-

terior probabilities given a feature vector [167] as the discriminant function.

Therefore, approximations are commonly used, such as using the simplifying

assumption that features are independent given the class. This assumption

of independence is certainly simplistic. However, it is largely adopted in real

scenarios and it works very well in many cases, particularly when datasets are

filtered with an a priori data selection, in order to avoid redundant records.

The Naive Bayes method might not be the best for our scenario because it does

not work when an attribute may not occur in the training set in conjunction

with every class value.

Logistic regression

Logistic regression is a well–known technique based on linear regression. The

idea of logistic regression is to make linear regression produce probabilities

[168]. When using linear regression for binary classification, we calculate a

linear function employing regression and then we apply a threshold to decide

whether it is a 0 or a 1 response. Similarly, if we want to generalize to more

than two classes, we can use a separate regression for each class. We set the

output to 1 for the instances that belong to that class, and 0 for the instances

belonging to all the others, thus obtaining a different regression line for each

class. Given an unknown test example, the class with the largest output must

be chosen. That would give us n regressions for a problem where there are n

different classes.

Coming back to the binary classification case, it is absolutely tempting to

imagine that we can interpret the values produced by the linear regressor as

probabilities, but this is actually incorrect. Such values are not probabilities,

since the values are sometimes negative or greater than one. In order to get

better probability estimates, a slightly more sophisticated technique is used.

In linear regression, a linear sum is calculated. Instead, in logistic regression,

we have the same linear sum, but we embed it in an exponential formula:

Pr[1|a1, a2, . . . , ak] = 1/(1 + exp(−w0 − w1a1 − . . .− wkak)),

where a1, . . . , ak are real input features, and w0, . . . , wk are the model param-

eters. This is called a “logit” transform. Considering the one–dimensional
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problem, Pr[1|a] is an S–shaped curve with respect to a, that applies a

softer function, i.e. a soft version of a step function that never gets below 0,

never gets above 1, and has a smooth transition in between. The parameters

w0, . . . , wk are defined by minimizing an ad–hoc error function on the training

set. Working with a logit transform, instead of minimizing the squared error,

it is better to choose weights to maximize a probabilistic function, called the

log–likelihood function:

L =
n∑

i=1

(1− x(i)) log(1− Pr[1|a(i)1 , a
(i)
2 , . . . , a

(i)
k ])+

x(i) log(Pr[1|a(i)1 , a
(i)
2 , . . . , a

(i)
k ]) ,

where x(i) and a
(i)
1 , . . . , a

(i)
k are the actual class and the features of the i–th

pattern of the training set, respectively. We can extend this idea also to

multiple classes, but in this case, a multi–response regression does not work

well, because we need the probabilities to sum to 1 over the various different

classes. Such a constraint introduces more computational complexity and

needs to be tackled as a joint optimization problem. The result is logistic

regression [169], a popular and powerful machine learning method that uses

the logit transform to directly predict probabilities.

Lazy learners

Exploring different supervised approaches, it is enticing to apply a completely

different point of view, using Lazy learners, also known as prototype methods.

The peculiarity of this class of methods is that they are memory–based and

no model is required to be fit [170]. Specifically, we consider the k–nearest

neighbours (k–NN) algorithm, a classical non–parametric approach where the

function is only locally approximated, whereas all the computations are de-

ferred until classification. The principle behind k–NN is to discover the k (we

consider k = 1) closest training examples in the feature space with respect to

the new sample. The training phase of the k–NN algorithm consists in storing

the features and the class label of the training objects. In the classification

phase, an unlabelled object is classified by assigning the most frequent label

among those of the k training samples nearest to it. During test, new objects

are classified based on a voting criteria: the k nearest objects from the training
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set are considered, and the new object is assigned to the class most common

amongst its k nearest neighbours. Variants of this method can be obtained by

the choice of the distance function, used to identify the nearest neighbours.

Various distance metrics can be used, the Euclidean distance being the most

common. In this work, considering that data were uniformly gathered, we

used the most basic settings for the algorithm: Euclidean distance and k set

to 1. This means that the class label chosen was the same as the one of the

closest training object.

Using k–NN, the target function is approximated locally for each query

to the system. These learning systems can simultaneously solve multiple

problems, which constitutes, at the same time, their strength and weakness

since, for a large input space, they are computationally expensive. These

methods usually allow good results when there is not a regular separation of

the decision boundaries. Our case seems to fit perfectly with this definition.

HyperPipe

A HyperPipe is a fast classifier that is based on simple counts. During the

training phase, an n–dimensional (parallel–)pipe is constructed for each class

[171]. The pipe will contain all the feature values associated with its class.

Test instances are classified according to the category that ”most contains the

instance”. In this way, for each class, a pipe works as a boundary hyper–solid

for each numeric feature. At prediction time, the predicted class is the one for

which the greatest number of attribute values of the test instance fall within

the corresponding bounds.

Bagging

Bagging is a meta–algorithm, that allows to combine and improve the results

obtained by other methods. Actually, having a dataset composed by few

classes and many samples for each class, classification algorithms may be

affected by classical over–fitting problems. The bagging method is known

for its capability of avoiding this problem [172]. Basically, the idea is that

of creating a set of different training sets, by sampling them from the whole

dataset, and combining the different outputs by averaging them or, in our case,

voting. As a meta–algorithm, the Bagging method is based on a classification

model for the classification phase. In our case, we chose a fast decision tree
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learner, namely REPTree. This base learner builds a decision and/ or a

regression tree using information gain or variance and prunes it using reduced–

error pruning (with backfitting).

Considering our data, even taking into account a high number of decision

trees, this approach can lead us to a bad overall accuracy. This is due to

an intrinsic property of the algorithm that choose, in order to make decision

trees, which variable to split in order to minimize the error. In this way,

decision trees have a high correlation and a low bias in their own predictions.

Random forest

A natural step over the bagging approach is represented by the random forest

(RF) algorithm. It is also based on decision trees and it is considered as

an improvement of the bagging model. Moreover, it allows a decorrelation

between trees and, consequently, between their predictions [173]. The idea

behind the decision tree methods is quite simple: to make a tree in which

each internal node is labelled with an input feature. The arcs from a node

representing a particular feature are labelled with each of the possible values

of that feature. Each leaf of the tree is labelled with a class or a probability

distribution over the classes.

In practice, random forest seems to fit well in our case. In fact, the random

forest model is a non–parametric model and, consequently, it does not need

any a priori assumption; it is able to face complex input–output relations; it

is robust to errors in labels and outliers. This last property is very useful in

our case since data are labelled even considering some transition phases from

a position to another, in order to make a realistic training set, in comparison

with a data acquisition campaign performed throughout the whole night.

4.3 Results

In order to evaluate the performance of the proposed unobtrusive sleep moni-

toring system, two preliminary experiments have been carried out. The former

aims at validating the stage detection method, whereas the latter is designed

to asses the sleep position classification algorithm.
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Figure 4.6: The ground–truth: video recorder with a night vision synchronized with

the proposed system.

4.3.1 Experimental Setup

For the experiments on stage detection, we collected data by the proposed

system using a single bed and a 1.80 m height and 70 kg weight male. In

order to have a ground–truth, we installed a video recorder with a night

vision in the bedroom (Figure 4.6) and we synchronized it with the system.

We monitored the user for three nights.

The sampling frequency has to be set considering the computing con-

straints and the networking overhead, which are both directly responsible

for power consumption within the sensors. In this work, we have chosen a

sampling rate of 10 Hz.

For the experiments on sleep position classification, a larger benchmark

dataset has been constructed. A small dataset may lead to an ill posed–

problem to be approached with machine learning techniques. For this reason,

we prepared an ad hoc test site located in our office, with a single bed.

In particular, we carried out two hours of sleep simulation for three differ-

ent users, with three different mattress thickness, in six different days. Every

two days, we changed the mattress and we repeated the experiment. It is

worth mentioning that the test users, inside a five minute window, permuted
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their postures in order to retrieve, for each class, data with small differences.

More precisely, the experiment consisted in the repetition of five minute sim-

ulated sleeping, for each different class (supine, prone, left, right).

At the end of the data collection campaign, the dataset was composed by

72000 pressure samples for each user, each one labelled with the correspond-

ing sleep position class. This approach allowed us to obtain a well–balanced

benchmark. Furthermore, the three users, different by weight and height, al-

lowed us to gather heterogeneous data in order to test the system adaptability

to different users in terms of vital and physiological parameters.

4.3.2 Experimental Results

Figure 4.7 shows the stage detection algorithm output during an entire night.

The presence of the above–described mattress filter is particularly useful to

prevent a movement detection when the user was not laid down on the mat-

tress. The figure shows that the movements are correctly detected: the pink

square dots represent the time instances when the time series (sum of FSR

pressures gathered) is strongly variable. Figure 4.7 further illustrates the mat-

tress filter relevance. In fact, the proposed algorithm detects, approximately

between 8:00 AM and 8:30 AM, that the user got out of the bed, coming back

after few minutes. Moreover, at the beginning of the experiment, the user was

asked to put under stress the algorithm, with frequent getting in and out of

the bed. Nevertheless, all the movements were correctly detected, assessing

the strong robustness of the algorithm over the three different test nights.

In order to support bedsore risk assessment, the false positive analysis is

essential. In fact, if the system recognizes the immobility of the user while

the user has moved, the number of the needed caregiver interventions will

be overestimated. On the contrary, if the system recognizes a motion of the

patient while he/she was motionless, the number of the caregiver interventions

will be underestimated. The proposed algorithm shows no false positives,

which is a useful result for a successive real deployment.

The performance of the sleep position classification algorithms are assessed

by the correctly classified instances using confusion matrices. A confusion

matrix is a compact representation describing the results of a classifier: each

row of the matrix corresponds to a class and counts the patterns assigned to
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Figure 4.7: The stage detection algorithm output during an entire night. No

movements are detected when the bold yellow line, which represents the presence of

a person on the bed, is zero. Otherwise, movements are precisely detected

(represented with pink square dots).

such class by the classifier (predicted class), while each column represents the

number of pattern actually belonging to the corresponding class. A perfect

classification method correctly classifies all the patterns, so that in the con-

fusion matrix only the diagonal elements are not null. In general, the larger

the diagonal elements, the better the classifier. The experimentation has

also been designed to asses whether the classifier can be constructed offline,

without adapting its parameters to the user under test.

In order to guarantee an unbiased estimate, the training and the test set

should ideally be kept separated during the model construction procedure.

Successively, the test set can be used to evaluate the obtained model. In

our case, the whole dataset was split into three sub–datasets, each of which

is related to a single user acquisition for two hours. Then, two experiments

were carried out: in the former experiment, a single user dataset is exploited

for training and another single user dataset for testing; in the latter, a single

user dataset is adopted for training and the other two (merged together) for

the test phase.
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Table 4.2: Performance evaluation of Decision Table method.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 3172 371 6 0

44.3

12100 0 1 0

41.6

15272 371 7 0

42.2
prone 2635 858 0 0 7430 354 2826 219 10065 1212 2826 219

right 1599 0 1955 0 5738 348 5631 0 7337 348 7586 0

left 1759 726 785 281 9189 942 470 1265 10948 1668 1255 1546

Table 4.3: Performance evaluation of Naive Bayes method.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 2964 0 2 583

92.0

12070 0 18 13

82.2

15034 0 20 596

84.5
prone 0 2945 540 8 0 6867 1127 2835 0 9812 1667 2843

right 0 0 3554 0 6 1834 9285 592 6 1834 12839 592

left 0 0 0 3551 0 1203 630 10033 0 1203 630 13584

Tables 4.2,4.3,4.4,4.5,4.6,4.7,and 4.8 show the overall average percentage

score for each algorithm, considering the two above mentioned configurations

during both training and test.

As expected, different methods led us to different performances in terms of

global accuracy. All the three statistical learning (SL) methods perform well

on the tree different scenarios. Tables 4.3,4.4, and 4.5 show the performance

obtained by the algorithms in the SL group with accuracies between 82.2%

(worst case) and 95.9% (best case),a nd with classes, in some cases, which are

perfectly predicted. The results are promising and suggest that such methods

are able to correctly classify the user’s postures.

Slightly worse results are obtained when considering methods of the en-

semble group. In fact, as shown in Tables 4.6 and 4.7, accuracies are between

68.4% and 83.7%. The worst performance was achieved using the Decision

Table method, whose accuracy ranges between 41.6 and 44.3 (see Table 4.2 ).

Table 4.4: Performance evaluation of Logistic Regression method.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 2955 277 317 0

95.8

10889 0 1212 0

88.4

13844 277 1529 0

90.2
prone 0 3493 0 0 1719 9110 0 0 1719 12603 0 0

right 0 0 3554 0 4 8 11113 592 4 8 14667 592

left 0 0 0 3551 592 602 644 10028 592 602 644 13579
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Table 4.5: Performance evaluation of IbK method.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 2966 396 0 187

95.9

12101 0 0 0

93.3

15067 396 0 187

93.4
prone 0 3493 0 0 1109 9624 3 93 1109 13117 3 93

right 0 0 3554 0 2 654 10469 592 2 650 14027 592

left 0 0 1 3550 8 0 634 11224 8 0 635 14774

Table 4.6: Performance evaluation of HyperPipes method.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 2487 1062 0 0

83.7

10187 481 1433 0

77.3

12674 1543 1433 0

78.8
prone 0 3493 0 0 1 6755 4060 13 1 10248 4060 13

right 4 0 3550 0 0 4 11120 593 4 4 14670 593

left 642 265 330 2314 2849 0 1102 7915 3491 265 1432 10229

Actually, such a result is expected, since the main advantage of approaches

based on decision tables lies in their simplicity and low computational cost,

whereas the classification performance is usually lower with respect to other

machine learning methods.

The Random Forest (RF) method, instead, can be considered the best

method in our application as shown in Table 4.8. In terms of global perfor-

mance, it shows an accuracy between 89.6% and 95.7%.

In order to justify such a result, we need to recall some notions about

random forests. The Random forest approach belongs to the class of ensemble

methods, based on a combination of tree predictors. Each tree is composed

using a sub–sampling of the training set. Combining outputs from each tree,

the algorithm is able to improve the generalization performance and avoid the

over–fitting problem. Eventually, when the number of trees goes to infinity,

the Strong Law of Large Numbers always guarantees that the RF accuracy

Table 4.7: Performance evaluation of Bagging method.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 2604 571 71 303

72.5

10691 783 18 609

68.4

13295 1354 89 912

69.3
prone 0 3493 0 0 3 7616 666 2544 3 11109 666 2544

right 604 1186 1764 0 5 1919 9201 592 609 3105 10965 592

left 369 792 0 2390 5619 1329 620 4298 5988 2121 620 6688
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Table 4.8: Performance evaluation of RF method using 100 trees and

no–replacement.

User1 – User2 User1 – User3 User1 – User2–3

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L % S P R L % S P R L %

supine 2963 579 0 0

95.7

11960 0 141 0

89.6

14924 579 147 0

91.0
prone 0 3493 0 0 610 10218 1 0 610 13711 1 0

right 0 0 3554 0 2 8 11115 592 2 8 14669 592

left 0 0 23 3528 2844 9 635 8378 2844 9 658 11906

Table 4.9: Performance evaluation of Random Forest according to different number

of trees.

User1 – User2–3 – 200 Trees User1 – User2–3 – 500 Trees User1 – User2–3 800 Trees

Position predicted
Acc.

Position predicted
Acc.

Position predicted
Acc.

GT position S P R L S P R L S P R L

supine 14696 583 371 0

95.4

14875 583 192 0

95.7

14742 583 325 0

95.4
prone 0 14322 0 0 0 14322 0 0 0 14322 0 0

right 0 11 14668 592 0 11 14668 592 0 11 14668 592

left 0 14 1222 14181 0 1 1226 14190 39 0 1230 14148

converge to that of the optimal predictor.

Table 4.9 shows the global accuracy values, obtained by Random Forest,

running the algorithm with different number of trees, and seeds fixed to 1.

Table 4.10: Classification performance of Random Forest with 500 trees, after

downsampling with no–replacement.

Sample Size % User1–User2 User1–User3 User1–User2–3

20% 95.8 94.9 95.1%

10% 95.8 91.2 92.3%

5% 91.9 89.5 90.1%

The Random Forest algorithm reaches an accuracy of 95.4% for User1–

User2–User3 case, better than all the other methods previously shown. Ta-

ble 4.10 shows how a different percentage of the original dataset, with no–

replacement and fixed number of trees equal to 500, impacts in terms of ac-

curacies. Random Forest, considering the number of features involved in our

scenario, needs approximately 100 seconds for the learning phase. Instead,

a real–time prediction can be performed. A downsampling strategy can be

useful in the case in which the model construction is performed on–board at

the microcontroller–level or on some other resource–constrained device. In-
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deed, the overall complexity of RF, in terms of computational speed, depends

on several factors, such as the number of trees, features, and instances. RF,

trying to find an optimal predictor scanning several levels of possibilities, can

require a good deal of computing power and memory available.



Chapter 5

Conclusions

The development of services and applications enabling the paradigm of Ambi-

ent Assisted Living is expected to increase in the next years. Although huge

steps have been made in providing reliable solutions able to address very

specific needs in AAL, the complexity of monitoring human indoor activities

requires more effort to efficiently enable the AAL paradigm.

In fact, in this scenario, these issues are mainly related to the pillar of

context-aware applications in daytime settings (i.e., indoor localisation), and

to the need of overcoming state-of-the-art systems for night-time monitoring,

in order to offer reliable solutions for elderly people in their own house. The

main goal of this thesis was to deal with the monitoring of indoor human

activities, considering both daytime and night-time settings.

This thesis addressed these challenges by proposing: a suite of advance-

ments for the indoor localisation issue, and an unobstrusive system able to

perform night-time sleep monitoring. The achieved results provide improve-

ments to support people in their own indoor scenarios, especially fragile people

who live alone.

Daytime monitoring

This thesis focused on the activity recognition problem for AAL environments

in terms of providing reliable and efficient IPS solutions. To this purpose,

supported by the background EvAAL competition scenario, we presented four
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different contributions.

In Section 3.1, we introduced and discussed the EvAAL benchmarking

framework, with a focus on real-time smartphone-based systems. This pro-

vided a solution to the research community, by overcoming the problem of

comparing different IPSs in an efficient, shared and reliable way. This ques-

tion was, in fact, answered by the EvAAL framework, which we claim has the

potential to become a standard way to compare systems in different applica-

tion areas and different use cases: person vs. robot, smartphone vs. custom

hardware, single vs. multi-storey building, single vs. multi-building environ-

ments, on-line vs. off-line processing. We think that our proposal makes it

possible to directly compare the performance of heterogeneous systems in a

more reliable way with respect to any other existing method.

Through the experience as software and online smartphone-based track

chair of the 2016 and 2017 EvAAL competition, in Section 3.2, three different

smartphone-based indoor localisation solutions are shown. In particular, we

overcame the lack of a common and public dataset for testing different IPSs

by presenting a multisource and multivariate dataset. These features can be

easily exploited by ILSs, by combining different data. Furthermore, we in-

troduced a novel smartphone-based approach, based on deep convolutional

neural networks. This proposal allows improvements for one of the main sen-

sors used in this field, the pedometer, using a deep learning based algorithm.

Finally, we presented a flexible, extensible and modular indoor localisation

suite for Android that is accessible to researchers, thanks to the free software

license used for its distribution. We believe that such a modular architecture

will allow the extension of its functionalities to other services, including both

daytime and night-time monitoring services in an all-in-one application.

In Section 3.3, we extended the indoor positioning concept of a single-

device localisation to many devices, using cheap and reliable solutions based

on well-known Wi-Fi probes. We presented a dynamic architecture designed

to collect the Wi-Fi probes periodically emitted by Wi-Fi-enabled devices

(e.g., embedded devices, smartphones). Our approach is unsupervised, a par-

ticularly useful feature in an AAL scenario. The results obtained with the

described ensemble estimator are, in our opinion, remarkable. Therefore, we

claim that exploiting Wi-Fi probes promises to be a viable and cheap strategy
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for indoor localisation of devices.

Night-time monitoring

While working on this thesis project, we had the research opportunity of

investigating and developing innovative and personalised systems to support

healthy ageing.

In particular, in Chapter 4, we proposed an unobtrusive monitoring sys-

tem able to infer sleep stages, sleep patterns and to detect postures in bed. It

has the ambitious purpose to infer more human sleep parameters and, subse-

quently, to overcome traditional invasive methods and/ or self-report diaries.

Instead, our work is based on a cheap technology and does not require active

interactions between the users and the system.

Regarding the aim of our contributions, that is the sleep monitoring at

night-time, our proposal is suitable for long term monitoring and exploits a

sensing technique based on pressure sensors. The high versatility of the pro-

posed system allows its use in several application scenarios, such as assessing

the risk of pressure ulcer, monitoring bed exits or observing the influence of

medication on the sleep behaviour. To sum up, this system is particularly

useful in AAL due to its unobstrusive characteristics and to the fact that a

user-machine interaction is not necessary.

5.1 Future works

Based on the results provided by this Ph.D. thesis, some future research is

proposed in what follows.

In our daytime monitoring context, the use of deep convolutional neural

networks for smartphone-based solutions requires additional investigation to

different evaluation paths involving different users. Furthermore, future work

on the crowd localisation method based on Wi-Fi probes will be carried out

by experimenting such systems in real-life environments. Finally, front-end

and back-end developments are required in order to consolidate the proof-of-

concept smartphone-based framework for AAL. We think that the modular

architecture of the proposed middleware is the key feature for addressing this
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challenge, but several efforts have to be made in order to integrate different

services and to assure the user acceptance.

In our night-time monitoring context, we plan to perform an experimental

campaign in real-life environments. More specifically, future work will focus on

the consolidation process of the system. In this regard, real-world testbeds will

be provided by the ongoing EU H2020 NESTORE project1. This will allow

not only to maintain the already available solution, but also to implement new

features arising from the new requirements of the particular use cases related

to the project. It is worth noticing that our results do not completely address

the problem concerning the lack of a standard definition of the sleep quality.

However, our contribution proposes an innovative method for monitoring sleep

activities which will lead to precisely measure important parameters of the

sleep quality in AAL scenarios.

1http://cordis.europa.eu/project/rcn/211703_en.html

http://cordis.europa.eu/project/rcn/211703_en.html
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