UNIVERSITA' CA’ FOSCARI DI VENEZIA
Dipartimento di Matematica Appl. ed Informatica

Technical Report Series on Computer Science

Verification, Model Checking, ;

Corso di Laurea in Informatica
Via Torino 155 ~ 30173 Mestre-Venezia

Proceedings

2nd International Workshop on Verification,
Model Checking and Abstract Interpretation

A. Bossi, A. Cortesi, and F. Levi (editors)
September 19, 1998 - Pisa, Italy

Foreword

The 2nd Workshop on Verification, Model Checking and Abstract Interpretation
follows the successful ILPS post-conference workshop held in Port Jefferson, NY,
USA, October 1897,

Program verification aims at proving that programs meet their specifica-
tions, i.e., that the actual program behaviour coincides with the desired one.
Model checking is a specific approach to the verification of temporal properties
of reactive and concurrent systems, which has proven successful in the area of
finite-state programs. Abstract interpretation is & method for designing and
comparing semantics of programs, expressing various types of programs prop-
erties. In particular, it has been successfully used t¢ infer run-time program
properties that can be valuable to optimize programs. Clearly, among these
three methods, there are similarities concerning their goals and their domains
of applications. Furthermore, while much research has been performed in the
area of abstract interpretation of logic programs, connections between model
checking and logic programming have hardly been investigated as yet; at the
same time it seems that there may be interesting directions in this area. Besides
model checking of (concurrent) logic programs, one may also think of the use of
specialized constraint (logic) solvers to tackle the model checking problem. The
main goal of the workshop is that of enhancing cross-fertilization among these
areas and in this way to clarify their relationships.

The program committee members were Krzysztof R. Apt (CWI Amster-
dam}, Annalisa Bossi {University Ca’ Foscari di Venezia, Coordinator), Agostino
Cortesi {University Ca’ Foscari di Venezia), Yves Deville (Universite Catholique
de Louvain), Gilberto File’ (University of Padova), Gopal Gupta (New Mexico
State University), Francesca Levi {University of Pisa), Jan Maluszynski (Linkop-
ing University}, Jens Palsberg {(Purdue University}, 1.V. Ramakrishnan (SUNY
Stony Brook), and David Schimidt (Kansas State University).

In response to the call for papers, 17 papers (extended abstracts) were sub-
mitted. All papers were rewiewed by at least three program committee members,
and at the end 8 papers were selected for presentation.

We would tke to thank all the program committee members and local orga-
nizers of the University of Pisa.

The Workshop is in conjunction with the Annual Meeting of the Compunet
area: Language Design, Semantics and Verification, and it is sposored by the
Italian MURST project 9701248444-044 Tecniche formali per la specifica, I'anal-
isi, la verifica, la sintesi e la trasformazione di sistemi software.

Annalisa Bossi, Agostino Cortesi, and Francesca Levi

Table of Contents

1. R. Mateescu:
Local model checking of an alternation-free value-based modal mu-caleuius

2. C.R. Ramakrishnan and R. Sekar:
Model-based vulnerabiiity analysis of computer systems

3. F. Levi:
Abstract model checking by constraini abstraction
4. P.Stevens:

Abstract interpretation of games

5. Lunjin Lu:
Computing the reduced product of program analyses

6. P. Argon, G. Delzanno, S. Mukhophadhyay and A. Podelski:

Verifying communicating finite-state machines
7. P. Asirelli and S. Gnesi:

Specification and verification of reactive systems using a deductive database
8. G. Levi and P. Volpe:

Abstract diagnosis of call errors

9. A. Bossi and §. Rossi:
Verifying partital correctness of logic programs delay declarations

ystems in ¢lp, Te
ruecken, July 199

eling of the Opera-
3):289-318, 1939

cal report, Lahor
ice Hall, November*

olka, T. Swift, and
Gruzmberg, editor, ;
ication (CAV 97},

‘on: One chain of
bruary 1978.

M Journal of Res.

ACM Symposium s

y © 1. We want
Sp(I) = S5(I).
{q defined over
ron) such that

This implies
’"{bi q, C) = @, it
s [FLMP89], &
other direction

Specification and Verification of Reactive Systems Using
a Deductive Database *

Patrizia Asirelli and Stefania Gnesi
[EI - C.N.R., Pisa, [taly
{asirelli,gnesi}@iei.pi.cnr.it

August 28, 1998

Abstract

We present an approach to the specification and verification of concurrent systems,
by means of a deductive database management system. The approach is based on the
synthesis of logie formulas: starting from a temporal logic formula {ACTL logic for-
mula), that represents the requirements of a system, a general mode! for such formula,
is derived. From this model, all the concurrent systems satisfying the formula can be
generated. Moreover, we show that this model can be used to verify when a given sys-
tem, obtained elsewhere, satisfies its requirements expressed by logical specifications.

1 Introduction

The specificatior phase plays a fundamental role in the development of concurrent systems.
This is the phase where the properties of systems are expressed and where the use of formal
languages and formal methods is strongly recommended. Among formal languages, logic
plays an important role, because it provides an abstract specification of concurrent systems.
Indeed, different types of logics have been proposed for this purpose. In particular, modal
and temporal logics, due to their ability to deal with notions such as necessity, possibil-
ity and eventuality have been recognized as a suitable formalism for specifying properties
of concurrent systems [8]. Among them, we recall the action based version of CTL [B],
ACTL[5]. The ACTL logic, being an action_based one, is more suitable than state_based
logics such as CTL, to express properties of concurrent systems that are usually defined by
the occurrence of actions over time. The models of ACTL formulas are Labelled Transition
Systems (LTSs) which in their turn are suitable to formally specify concurrent systems (91
The purpose of our work is the definition of an interpretation mode} (metamodel) for ACTL
formulas that sits in between the ACTL logic itself and its usual interpretation domain, i.e.
the labelled transition systems.

The meta model will then be used for generating mere detailed LTSs that represent differ-
ent implementations of the system under specification or for analyzing already developed
implementation of the given system as LTSs, against its formal specification. Both these
functions will be performed in the realm of Logic Programming, in particular with the help
of a the deductive database system Gedblog.

In particular, starting from a formal specification of a reactive system, given by means
of an ACTL formula, we have defined and implemented in Gedblog a synthesis algorithm
to derive a finite meta_model M which represents the minimal LTS satisfying the formula.
Then two relations have been defined and implemented again in Gedblog: i) the satisfiability
relation, from the ACTL logic to the meta_model, since it becomes an interpretation domain

“Acknowledgments: This work is partially founded by Progetto Integrato CNR-Comitato 2 and Progetto
Coordinato CNR-Comitate 12 : "Frogrammazione Logica (Logic Progarming)”

for the ACTL formulas; ii) the deriyability relation from the meta_mode! into a labelled
transition system, since the former is an abstraction of the latter.

In [2] we first started our work by taking into account a subset of ACTL which dealt
only with “finite formulas® that is, formulas without until operators. Afterwards, we have
completed the work by extending it to hande the totality of the ACTL logic but “negation”.
The implementation of this extended version is under development on a new version of the
Gedblog system.

2 Background

1n the following we briefly introduce the technical details on the ACTL logic and the Gedblog
system.

2.1 ACTL

ACTL [5] is a branching time temporal logic that is suitable for describing the behavior of
systems that perform actions during their working time. In fact, ACTL embeds the idea
of “evolution in time by actions” and is suitable for representing the temporal sequernces
of actions that characterize a system. The syntax and the informal semantics of some of
the ACTL operators is shown in Table 1; the grammoer in this table has the state formula
symbol p as initial production. In the table, o is a single observable action belonging to
Act, which is the set of actions that a given systern is assumed to be able to perform. An
execution (path) is a (finite or not) sequence of actions. A state represents a time in which
a single action has been completed and a new next action may be performed. It is possible
that there is more than one action that the system can perform, when its execution reaches
a state. Each of these actions represents the beginning of an alternative continuation of the
execution. A state formula gives a characterization about the possible ways an execution
could continue after a state has been reached, while a path formula states some properties
of a single execution.

The formal semantic of ACTL formulae is given over LTSs, which describe the behavior of
a system in terms of states and iabelled transitions relating states,

2.2 The Gedblog System

Gedblog (3, 1] is a Deductive database managerment system together with some graphical
features.

Our aim is to use Gedblog to build an environment whers a formal specification can be
graphically represented, giving the basis on which an animation of the formal specification
can be started.

Gedblog supports fast prototyping of applications that can take benefit from a declarative
specification style. It is based on a logic language extended with the capabilities of:

¢ handling separate theories, i.e. separate pieces of knowledge;
¢ defining and executing transactions, i.e. compound updates to the theory in objects;
= defining and verifying integrity constraints.

More precisely,Gedblog is a deductive {logic) database, that can deal with basic knowl-
edge management functionalities {storing, retrieving, querying), and besides i$ is enriched
with several additional features:

» Integrity Constraints and Checks, to define the data model entities must fis in;

» Transactions, to enter the operational framework.

1eta_model into 5

describing the bek
i, ACTL embed
1g the temporal’
rmal semantics o
able has the state f3
rvable action belt
to be able to perf
represents a tim
e performed. It
when its execut]
-native continua
ossible ways an
ula states some p

h describe the -

5.

ther with som

srmal specifical
>f the formal

to the theory

an deal with
ind besides

antities rnust fi

Action formulas

Q = true “any observable action”
false “no observable action”
o “the observable actiom c”
- “any observable action different from 2"
Qo . “either & or '
Q u= Q

State formulas

o= frue “arty behavicr is possible.”
false “no behavior is possible.”
~u “ u is impossible”
i & “u and '
Eg “there exists a possible execution in which 47
Ag “for each of the possible executions §”

’
pgou= op

Path formulas

8 == Gu “at any time u”
Fu “there is a time in which u”
{{QIU{Iu'T “at any time § is performed and also u,
until ' is performed and then u'”

X{rip “an unchservable action is immediately
performed and, after that, u”
X{Q}u “0 is immediately performed and, after that, u”

Table 1: Some of the ACTL operators

Gedblog can manage logical theories that consist of different kinds of clauses:
Facts, Rules, Integrity Constraints, Checks and Transactions.
By means of the system-defined predicate theory, it is possible to perform inclusion among
theories. In this way, given a starting theory Th, the associated Gedblog theory can be
defined as the set-theoretic union of all the theories in the inclusion tree rooted in Th.
Gedblog was implemented in IC-Prolog and included a graphic specification language,
ie. an Input/Output graphic model (declarative, based on prototypes), to define graph-
ics and interactions with graphic object.This version of the system was chtained by in-
tegrating the features of Motif and X11 in the Gedblog theories. GEDBLOG kas been
ported into Sicstus Prolog. More information on GEDBLOG, a demo version of the sys-
tem Jedblog, (GEDBLOG with a Java interface) and a demo example can be found at:
htip://repl.iei.pi.cnr.it/projects/GEDB/.

3 A logical approach to reactive systems specification
and verification

When the specification of 2 concurrent system is given by means of a set of ACTL formulas,
we assaciate to the conjunction of the set of formulas a finite meta.model M. A meta_model
is an extension of the notion of an LTS in the sense that it subsumes all possible LTSs that
are models of an ACTL formula. More precisely:

Def.1: A Meta_medel M is a structure (MS,MD,5,V;,T), where MS is a set of states,
MD € MS x MS is a set of transitions, Sg € MS is the initial state, I is a set of constraints
on states, represented as first order logic formulas and T C MS x{ is a finite set of pairs
that associate to states of MS the “flag t”, denoting the absence of further constraints over
them.

States and iransitions of the meta_model are called meta_states and
meta.transitions.

The above definition of meta_rrodel was introduced in [2] o derive a finite representation
for each formula of “finite” ACTL. We here give an extension of such notion to deal with
the full ACTL.

Def.2: A Meta.model OR M is a structure {MS,MS",MD,MD’,50,V,,T), where MS is
a set of meta.states, MS’ is a set of meta_states_.OR, MD C MS x MS, MD’ C MS’ x MS
U MS’ x MS’, SO € MS U M5’ is the initial state, V5 is 2 set of constraints on meta_states
and mete.states.OR, T C MS x{¢}.

The above definitions of meta.model and meta_model O R can be translated within Ged-
bolg by means of its logical theories handling capability as a set of states, labelled transitions
and states constraints. In the following, we simply refer to meie.medels indicating both
structures defined above.

The satisfiability relation of ACTL formulas over meta_models has been defined and im-
plemented. The meta.model associated to an ACTL formula 4 is then derived incrementally
from an initial state using a defined derivability relation. At each step a new meta.model
is obtained by expanding the previcus one according to the representation defined for the
subformula u; of 4 that is being analyzed. Moreover, during the generation of 2 meta.modal
some constraints, Vi, are inserted. They provide the properties that every LTS has to satisfy
to be a model of the concurrent system under specification. The meta.model can then be
used to obtain more reficed models, all satisfying the initial specification, hence giving an
animation of the possible implementations of the concurrent systems.

The approach can be divided into three steps:

i) Synthesis Phase: Giver an ACTL formula, its meta_mode! is generated by Gedblog.
More precisely, given the specification of a concurrent systems, in terms of ACTL
formulas the associated meta_mode! is built using the Gedblog transaction mechanism.

ii) Animation Phase: The obtained meta-model becomes a new input for Gedblog to
generate more detalled LTSs, each one satisfying the initial ACTL formula, That is,
starting from the meta_model we build one or more LTSs, among the admissible ones,
each one representing a correct implementation of the system.

The LTS are built according to the following steps:

1. From Sy only one state, go, can be derived that represents the initial state of the
LTS under construction.

2. Each state of the LTS is derived from a meta_state S; of the given meta.model,
this means that each meta_state can be splitted into a set of states, sach one
sharing its constraints.

3. Transitions can be traced between a pair of states of the LTS under construction
according to the constraints associated to the related mete_model.

iii) Deductive Model Checking: The previous phases mechanism allows also the anal-
ysis of an LTS to be supported. This means that we shall exploit all the deductive
capabilities of Gedblog, by defining a logic program where the definition of "correct-
ness” for an LTS is given. This correctness definition can then be used, to verify the
admissibility of other LTS models (generated by means of other tools) with respect

—

R,

ere MS is a go4
3 Vs aset of o
X% is a finite set
of further constraj

Ilstralﬂ
of

nt;

ive a finite Tepresent
such notion tg dea] 54

SOV T, where
< MS, MD’ g Ms:

nstraints on meq

‘e translated wishi;
-ates, labelled transitisg
-models indicating

1as beer defineq an
=n derived incremen
step a new metq_s,
entation defined £ h
eration of a meta_mods
every LTS has to sa

i generated by Gedb
ms, in terms of AC
iransaction mechani

4 input for Gedblo
STL formuia. That
ng the admissible

the initial state of

he given rmete_model;
et of states, each o

1 allows also the ana
loit all the deducti
lefinition of ”cotrectz
¢ used, to verify th
r tools) with respec

te an ACTL formula. The meta_model associated to the formulais used to analyze if
the siructure of the LTS agrees with the constraints of the meta_model. In this case
we can say that the LTS is a model of such formula.

To realize this phase we use rules and constraints, besides transactions.

For example let us consider the following ACTL formula:
¢ = EXo (AX. v stt & EXytt) or EX,(AGAX, « s EXutt)

Applying the procedure described in the above phases we will generate for ¢ the asso-
ciated meta.model and a couple of L'TSs that are both models for ¢, as depicted in Figure
1.

4 Conclusions and related work

In this paper we have presented an environment to suppert the formeal specification and
verification of concurrent systems. The environment has been realized implementing a
synthesis algorithm that allows the construction of a finite meta.model for each formula of a
subset of the ACTL logic. The implementation is nnder development within the deductive
database management system, Gedblog.

Qur main purpose was to use a deductive database, that a deductive repository where
constraints, modularization and guidance from the user are easy to handle.

To the author knowiedge there are at least three other approaches to be mentioned
related to the issues of specification and verification of concurrent system in the logic pro-
gramming framework. [11, 10, 7]

In {11] 2 model checker has heen defined by means of an extension of the classical
tableau-based model checking procedures using deductive methods. There, starting with
2 general skeleton of the product graph between the system’s reachable-state graph and
the temporal tableau for the negation of the formula to be checked, the proof is carried on
reflning the graph until or a2 counterexample has been found or the impossibility of such a
counterexample is shown.

'The second [10] work uses the XSB tabled logic programming system for implementing
efficient local modei checking. In that paper they present an approach to a model checker
for CCS-like value passing languages and the alternatiou-free fragment of the modal mu-
calculus,

Finally the third [7] develops a general framework for the specification and verification
of real-time system using Constraint Logic Programming (CLP) and the notion of timed
attomata.

References

[1] P. Asirelli, 1. Di. Grande, P. Inverardi and F. Nicodemi: Graphics by a logi-
cal Database Management System” Journal of Visual Languages and Computing
{(1994),5,365.388.

[2] P. Asirelli, §. Gnesi, M.C. Rossi: A Deductive Database Support to the Specifi-
cation of Concurrent Systems SOFSEMS6 , Lecture Notes in Computer Science,
n. 1175, Springer-Verlag, (1996).

[3] F. Asirelli, P. Inverardi, D. Aquiline, D. Apuzzo, 3. Bottone, M.C. Rossi: Gedblog
Reference Manual. Revised Version: Nota interna B4-158; Aprile 1995

[4] R. De Nicola, A. Fantechi, 8. Gnesi, G. Ristori: An action-based framework for
verifying logical and behavioural properties of concurrent system Computer
Networks and ISDN Systems, 25, (7), pp. 761-778, (1993).

Derived

meta_models

LTS

derivation derivation

118

Q

Figure 1 From Logical Specification to Implementations

LTS

derivation

5]

(8]

(9]
(10]

(11}

(12)

(13]

De Nicola, R. and Vaandrager, F. W. Action versus State based Logics {for Transi-
tion Systems. Proceedings Ecole de Printemps on Semantics of Concurrency.
Lecture Notes in Computer Science, 469, Springer-Verlag, 407-419, (1990).

Emerson, E. A. and Halpern, J. Y. "Sometimes” and "Not Never” Revisited:
on Branching Time versus Linear Time Temporal Logic. Journal of ACM, 33
(1), 151-178, (1986).

G. Gupta and E. Pontelli A Constraint Based Approach for Specification and
Verification of Real-time Systems, IEEE Real Time Systems Symposium, IEEE
Computer Society, (E997).

Manna, Z. and Pnueli, A. The Anchored Version of the Temporal Framework,
in Linear Time, Branching Time and Partial Order in Logiecs and Models
for Concurrency, Lecture Notes in Computer Science,354, Springer-Verlag, 201-284,
(1989).

R. Milner: Communication and Concurrency, Prentice Hall, (1989).

Y.S. Ramakrishna et al. Efficient Model Checking using Tabled Resolution,
Lecture Notes in Computer Science, n. 1254, Springer-Verlag, 145-154,(1987).

H.B. Simpa, T. E. Uribe, Z. Manna, Deductive Model Checking, Lecture Notes in
Computer Science, n. 1102, Springer- Verlag, 208-218, (1995).

M. C. Rossi: Sistema logico detuttivo per il supporto allo svilutto di sistemied
all’analisi di dati telemetriei Tesi di Laurea, Scienze dell’informazione, Universita
di Pisa, Febbraio 1996.

A. Fantechi, S. Gresi, G. Ristori, M. Carenini, M. Vanocchi, P. Moreschini: Assist-~
ing Reguirement Formalization by Means of Natural Language Transla-
tionFoermal Methods in System Design, {, 243-268 (1994)

