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Abstract—Software in modern vehicles is becoming increas-
ingly complex and subject to vulnerabilities that an intruder can
exploit to alter the functionality of vehicles. To this purpose, we
introduce CAHOOT, a novel context-aware Intrusion Detection
System (IDS) capable of detecting potential intrusions in both
human and autonomous driving modes. In CAHOOT, context
information consists of data collected at run-time by vehicle’s
sensors and engine. Such information is used to determine
drivers’ habits and information related to the environment, like
traffic conditions. In this paper, we create and use a dataset by
using a customised version of the MetaDrive simulator capable
of collecting both human and AI driving data. Then we simulate
several types of intrusions while driving: denial of service,
spoofing and replay attacks. As a final step, we use the generated
dataset to evaluate the CAHOOT algorithm by using several
machine learning methods. The results show that CAHOOT is
extremely reliable in detecting intrusions.

Index Terms—Automotive, Intrusion Detection System,
Context-aware, Machine learning.

I. INTRODUCTION

Over the years, vehicles functionalities are managed by

increasingly complex software. For instance, vehicles made by

Volkswagen nowadays contain one hundred millions lines of

code [1]. Level 5 autonomous vehicles will contain up to one

billion lines of code [1] because all vehicles’ functionalities

will be electronically managed. Moreover, during the driving

experience, a vehicle is able to collect a lot of information

from its sensors, the Electrical Control Units (ECUs), and also

from the environment. The driver can exploit the connectivity

of the vehicle to read this information through OBD-II and a

mobile connection, while the multimedia functionalities can

be accessed via USB, disc, SD-card, Bluetooth and WiFi.

The European Union Agency for Network and Information

Security (ENISA) defines today’s vehicles as smart car, i.e.,

vehicles that offer enhanced users experience and safety, and

provide connectivity and added-value features [2].

Thus, as for Personal Computer years ago, nowadays,

guaranteeing the security of vehicles is becoming a strong

requirement. In the last decade, there are several papers in

literature that present work on vehicle’s attacks. The most

famous one has been presented at the Black Hat USA 2015 by

Miller and Valasek [3]. In particular, the two researchers were

able to remotely control the wheels of a Jeep Cherokee by

exploiting the Park Assist System (PAS) [4]. Vulnerabilities

not only damage the reputation of car manufacturers but

also their profits (the attack to the Jeep Cherokee forced the

manufacturer Fiat-Chrysler to recall 1,4 million cars in the

USA [5]).

To mitigate the occurrences of such kind of attacks, both

the standard ISO/IEC 27039:2015 [6] and the United Nations

delivered the regulation number 155 [7], UNECE R155, deliv-

ered in 2021, prescribe the introduction of Intrusion Detection

and Prevention Systems (IDPS) as security mechanisms to

monitor the target vehicle for intrusions. In particular, an

Intrusion Detection System (IDS) is able only to alert when

intrusions are detected, while an Intrusion Prevention System

(IPS) tries also to prevent the detected intrusions.

This paper proposes a Context-Aware veHicular intrusiOn

detectiOn sysTem (CAHOOT) paradigm that uses vehicle

sensors to detect and mitigate intrusions in cars. CAHOOT

uses contextual information taking into account the semantics

of in-vehicle messages. For example, if a driver accelerates in

front of an obstacle detected by a sensor, CAHOOT detects

this strange behaviour as a possible intrusion. The sensors’

values are a digital representation of the environment context.

The paper is structured as follows: the next section dis-

cusses about related work. Section III presents the vehicle’s

anatomy and the attack’s model we refer to. Section IV

describes the CAHOOT algorithm and Section V shows the

results of our experiments. Section VI draws the conclusion

of the paper and highlights possible future work.

II. RELATED WORK

In either [8] and [9] the authors developed an IDS that

establishes valid messages based on the road-context for

autonomous vehicles. In particular, they combines CAN mes-

sages with images recorded from the camera to establish the

validity of messages, i.e., to ecognize spoofing attacks on the

steering wheel through two convolutional neural networks.

Public available datasets are used for the evaluation.

Wasicek et al. [10] uses a Bottleneck Neural Network to

read sensors’ values and to determine a vehicle’s anomalous
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behaviour. The evaluation is made on a car with installed

a chip tuning into the Engine Control Module (ECM) that

changes its behaviour. Casillo et al. [11] present a Bayesian

Network to detect malicious CAN messages. The dataset

used for the training is generated by the autonomous driving

CARLA simulator [12] whose AI periodically receives attacks.

The methods for detection of sequence context anomalies

comprise different approaches such as process mining that is

used in the work of Rieke et al. [13], hidden Markov models

which are used in the work of Levi et al. [14] and Narayanan et

al. [15], OCSVM is used in the work of Theissler et al. [16],

neural networks are used by Kang et al. [17], detection of

anomalous patterns in a transition matrix are used by Marchetti

et al. [18], and, frequency of appearance of a sequence of

CAN messages is used by Taylor et al. [19] and Kalutarage et

al. [20]. Grimm et al. [21] provide a comprehensive survey on

context-aware security approaches in the vehicular and related

domains, while Al-Jarrah et al. [22] extensively survey the

current state of the art on IDS systems for in-vehicle networks.

Al-Jarrah et al. conclude that currently the area of context-

aware systems is still under-investigated.

CAHOOT extends the existing literature because it is the

first IDS based also on context information able to detect

replay and DoS attack in addition to the spoofing attack.

Moreover, the simulation environment and activity we present

is the only one that take into account simultaneously brakes,

steering and throttle parameters.

III. THE ATTACK MODEL

A lot of information circulate inside and outside vehicles

by using ICT systems that are installed on it. An autonomous

car contains various sensors to keep track of the environment

and the vehicle status [23]. Inside the vehicle, there are also

several ECUs that provide functionalities to the car. Such

ECUs are connected one another through multiple buses, e.g.,

CAN, CAN-FD, FlexRay and Automotive Ethernet. Different

partitions of these busses are connected each other through

gateways. Thus, vehicles are computers on wheels and as

normal computer can be subject to remote attacks. An intruder

may exploit local or remote vulnerabilities of a vehicle to gain

some digital access to it, either locally or remotely.

We consider an intruder able to run the following attacks:

• DoS attack: the intruder is able to deny the driver’s input

through the generation of CAN frames where payloads

values are set to zero for steering, throttle and brakes.

• Spoofing attack: the intruder is able to generate a valid

CAN frame. For example, the forged frame may generate

a valid signal to active an ECU functionality.

• Replay attack: the intruder is able to re-use valid CAN

frames with a malicious or fraudulent aim.

IV. CAHOOT ALGORITHM

The CAHOOT algorithm aims to detect an intruder that

performs both single or multiple attacks among the ones we

listed in the previous section while a car is moving. It is also

able to detect a possible intrusion also when both the intruder

and the driver generated a CAN message with the same values.

CAHOOT uses machine learning (ML) techniques to gen-

erate a model capable to detect intrusions from the value of

the vehicle sensors.

A. Intruder’s Behaviour

To create a model that is as accurate as possible, we assume

that the intruder is able to frequently change the attacks among

the three attacks described in Section III. The duration of each

attack is randomly chosen with an arbitrary minimum and

maximum of steps duration. In addition, the type of attack

is randomly chosen. This allows us to identify both single and

multiple attacks within a target driving session. Listing 1 and

Listing 2 describe intruder’s behaviour model we consider.

Listing 1: Prepare Attack

1 function prepare attack (steering, throttle brake, current attack,
steering history, throttle brake history, index history,
prev steering, prev throttle brake, stop attack time,
min duration, max duration, slot time)

2 should attack change ← stop attack time <= Current timestamp
3 if should attack change
4 {num slots ← Select an integer number between min duration and

max duration
5 stop attack time ← Current timestamp + num slots * slot time
6 current attack = None}
7 (steeringhacked, throttle brakehacked, current attack, index history

, prev steering, prev throttle brake) =
launch attack(current attack, steering history,
throttle brake history, index history, prev steering,
prev throttle brake)

8 steering history ← Append steering to steering history
9 throttle brake history ← Append throttle brake to

throttle brake history
10 return (steeringhacked, throttle brakehacked, current attack,

stop attack time, steering history, throttle brake history,
index history, prev steering, prev throttle brake)

Listing 1 shows the algorithm prepare attack that plans the

duration of each vehicle intrusion. In detail, it checks if the

attack in progress should continue or should be changed, i.e.,

the algorithm compares the current time with the time on

which the attack must be suspended (line 2). In case the attack

should end and be changed with a new type, the algorithm

defines the duration of the new attack as slots of time. The

algorithm randomly choose the number of slots between the

minimum and maximum (line 4). Hence, the attack will stop

at the sum between the actual time and the product between

the number of slots and the length of each slot (lines 5). The

attacks are periodically stopped and substituted with new ones

to simulate multiple attacks in a single driving session.

Regardless of the attack should change or not, the func-

tion launch attack is called (line 7) and returns the new

forged messages alongside with the current type of attack,

the index of the next messages that the replay attack must

repeat, i.e., index history, and the last forged messages

that the spoofing attack must repeat, i.e., prev steering
and prev throttle brake. Next, the inputs steering and

the throttle brake of human/AI are registered in the arrays

steering history and throttle brake history (lines 8 and

9). These arrays may be used later on for the replay attack.

The attack inputs are never appended in the arrays because
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the replay attack goal is to mimic the human/AI inputs so the

attack should replay only human/AI inputs.
The algorithm returns the values of steering and throt-

tle brake generated by the intruder, the type of attack ac-

tually in progress, the time on which the attack will be

suspended, the history values of steering and throttle brake,

the index history, prev steering and prev throttle brake
(line 10).

Listing 2: Launch Attack

1 function launch attack (current attack, steering history,
throttle brake history, index history, prev steering,
prev throttle brake)

2 bootstrap ← False
3 if current attack = None
4 {bootstrap ← True
5 current attack ← Randomly select one from ”DoS”, ”Spoofing” and ”Replay”}
6 if current attack = ”DoS”
7 {(steering, throttle brake) ← dos attack()}
8 if current attack = ”Spoofing”
9 {(steering, throttle brake) ← spoofing attack(bootstrap, prev steering,

prev throttle brake)
10 prev steering ← steering
11 prev throttle brake ← throttle brake}
12 if current attack = ”Replay”
13 {(steering, throttle brake, index history) ← replay attack(bootstrap,

steering history, throttle brake history, index history)}
14 return (steering, throttle brake, current attack, index history,

prev steering, prev throttle brake)

Listing 2 depicts the algorithm launch attack. It is in charge

of maintaining active and in progress attack or decide which

attack should be run. The Spoofing and Replay attack need the

variable bootstrap that represents if the attack is in progress or

not, i.e., the variable tracks if a new attack must be launched or

a previous attack must continue. The variable is False in case

the attack is in progress (line 2) and True when the attack is not

running (line 4). In case an attack is not in progress, the type of

attack is randomly chosen between DoS, Spoofing and Replay

(line 5). Once the bootstrap variable is established, based on

the current attack value, an attack is launched (lines 6 to 13).

Keep note that in case of spoofing attack, the prev steering
and prev throttle brake variables are updated with the most

recent hacked messages generated (lines 10 and 11).
Finally, the launch attack returns the steering and throt-

tle brake values chosen by the attack, the current type of

attack, the index history selected by the Replay attack function

last time it is launched and the previous pair of steering and

throttle brake used by the Spoofing attack (line 14).

B. Instances Extraction Paradigm
To train the model to detect intrusion, CAHOOT re-

quires a dataset that contains both legit and forged

messages for each functionalities we aim to consider,

i.e., steeringlegit, steeringhacked, throttle brakelegit and

throttle brakehacked, with also the sensors’ values (Table I).
The instances of the dataset are extracted to generate the

final dataset on which the messages are organized in pairs

and, each pair is labelled as T when it is composed by

steeringlegit and throttle brakelegit or as F in all the other

cases (Table II). The organization in pairs allows CAHOOT to

detect possible intrusion that may happen when the intruder

is going to send the same message sent by the driver. In

fact, let us suppose that the driver wants to go straight, i.e.,

steeringlegit is equal to 0, and the intruder starts a DoS

attack, i.e., steeringhacked is equal to 0 (Table I, row 3). The

steering message sent by the intruder is considered as legit

because it is equal to the driver’s one. However, the algorithm

raises an alert based on the values of throttle brakelegit and

throttle brakehacked that should be different (Table II, rows

9 and 10). On the other hand, if both the messages in the pair

are equal (Table I, row 4), for instance because the intruder is

trying to perform a DoS attack, then CAHOOT only inserts

into the dataset one instance labelled with T (Table II, row

11). In this way, it prevents the DoS by discarding the flow

of not legit messages.

Hence, on the initial dataset we run the

instances extraction function (Listing 3) whose output is

the dataset insextracted that contains the final created dataset.

As first step, the algorithm reads each instance of the

initial dataset ins (line 3) to organize the messages in two

arrays. The first array contains tuples composed by steering

message alongside with a boolean value representing mes-

sage’s legitimacy. The second array contains tuples composed

by throttle brake message alongside with a boolean value

representing message’s legitimacy.

The two arrays are used to organize all the instances

in the initial dataset in such a way that legit and hacked

messages are clearly distinguishable: the legit messages are

inserted in the arrays (lines 10 and 11), while the hacked

messages are inserted only if they are other than the respective

legit ones (lines from 12 to 15). From instance the mes-

sages steeringlegit, steeringhacked, throttle brakelegit and

throttle brakehacked are removed (line 16). Thus, instance
now contains the engine runtime and the sensors’ values.

The algorithm creates several instances based on instance,

one instance per each combination of the steering and throt-

tle brake messages present respectively in steering array
and throttle brake array (lines 19 and 20). Then, each

generated instance is labeled “T” in case it contains only

messages from the driver or “F” in case it contains at least one

message from the intruder (lines from 21 to 24). Next, each

labeled instance is added to the insextracted dataset (line 25).

After all the instances present in ins are read, the algorithms

return the dataset insextracted (line 26).

Listing 3: Instances Extraction Paradigm

1 function instances extraction (ins)
2 insextracted ← empty array
3 for each instance in ins
4 {steeringlegit ← instance[”steeringlegit”]
5 steeringhacked ← instance[”steeringhacked”]
6 throttle brakelegit ← instance[”throttle brakelegit”]
7 throttle brakehacked ← instance[”throttle brakehacked”]
8 steering array ← empty array
9 throttle brake array ← empty array

10 steering array ← steering array
⋃

(steeringlegit, True)
11 throttle brake array ← throttle brake array

⋃

(throttle brakelegit, True)
12 if steeringlegit != steeringhacked

13 {steering array ← steering array
⋃

(steeringhacked, False)}
14 if throttle brakelegit != throttle brakehacked

15 {throttle brake array ← throttle brake array
⋃

(throttle brakehacked, False)}
16 remove from instance the columns ”steeringlegit”, ”steeringhacked”,

”throttle brakelegit”, ”throttle brakehacked”
17 for each (steering, is steering legit) in steering array
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TABLE I: Example of instances before run Instances Extraction Paradigm

timestamp steeringlegit steeringhacked throttle brakelegit throttle brakehacked ...

01/01/2022 12:00:00.000 0,695 0,403 0,020 -0,001 ...
01/01/2022 12:00:00.100 0,045 0,494 -0,042 -0,533 ...
01/01/2022 12:00:00.200 0,0 0,0 -0,042 0,0 ...
01/01/2022 12:00:00.300 0,0 0,0 0,0 0,0 ...

TABLE II: Example of instances after run Instances Extraction

Paradigm

timestamp steering throttle brake ... label

01/01/2022 12:00:00.000 0,695 0,020 ... T
01/01/2022 12:00:00.000 0,695 -0,001 ... F
01/01/2022 12:00:00.000 0,403 0,020 ... F
01/01/2022 12:00:00.000 0,403 -0,001 ... F
01/01/2022 12:00:00.100 0,045 -0,042 ... T
01/01/2022 12:00:00.100 0,045 -0,533 ... F
01/01/2022 12:00:00.100 0,494 -0,042 ... F
01/01/2022 12:00:00.100 0,494 -0,533 ... F
01/01/2022 12:00:00.200 0,0 -0,042 ... T
01/01/2022 12:00:00.200 0,0 0.0 ... F
01/01/2022 12:00:00.300 0,0 0.0 ... T

18 {for each (throttle brake, is throttle brake legit) in
throttle brake array

19 {instance[”steering”] ← steering
20 instance[”throttle brake”] ← throttle brake
21 if is steering legit == True and is throttle brake legit == True
22 {instance[”label”] ← ”T”}
23 else
24 {instance[”label”] ← ”F”}
25 insextracted ← insextracted

⋃
instance}}}

26 return insextracted

C. Model generation

The Model Generation paradigm uses the Instances Extrac-

tion paradigm to generate the training and the test datasets

(Listing 4). Going more into detail, once the dataset is ran-

domly split in a training set and a test set (line 2), the instances

are extracted for the training and test (lines 3 and 4). We run

the extraction paradigm separately on the training set and the

test set to make sure that all combinations of steering and

throttle brake messages from the same original instance are

not distributed between the training set and the test set, but

remain in the same set. The appearance of extracted instances

of the same original in both training and test sets causes a

data leakage [24]. Data leakage happens when information

present in the training set is unexpectedly present also in the

test set. Next, the best features are selected using a Feature

Selection (FS) paradigm that ranks all features applying the

Gain Ratio [25] (GR) approach (line 5). Those features with

rank equal to zero are discarded (line 6), the other are passed

to the ML algorithm which returns a trained model (line 7).

Listing 4: Model Generation

1 function generate model(inslabelled)
2 (instrain, instest) ← split randomly the instances as training and testing sets

from inslabelled

3 ins extractedtrain ← generate dataset(instrain)
4 ins extractedtest ← generate dataset(instest)
5 ranking ← GR(instances)
6 features>0 ← discard features with rank = 0 from ranking
7 model ← MLAlgorithm(ins extractedtrain with features features>0,

ins extractedtest with features features>0)
8 return model

V. CAHOOT EVALUATION

To evaluate CAHOOT, we exploited the driving simulator

MetaDrive [26]. It is a driving simulator written in Python

to train a neural network for autonomous driving through

Reinforcement Learning [27]. MetaDrive is able to generate

infinite driving scenarios with procedural generation of maps

and different traffic flows. Inside the simulator is present a

pre-trained Artificial Intelligence (AI).

We modify the MetaDrive simulation workflow with the

introduction of an intruder. The in vehicle communication is

simulated by a set of messages made of two different Python

lists: the first one contains the steering messages while the

second list contains the throttle/brake messages sent. Both lists

represent messages sent by the intruder and the driver. The

intrusion workflow for each step of the simulation works as

follows: 1) While the driver sends the inputs, an intruder forges

fake messages of steering wheel and throttle/brake; 2) The

steering wheel and the throttle/brake messages of the intruder

and the driver are sent to the set of messages; 3) CAHOOT

reads from the set the messages and establishes which ones are

the legit messages and which ones are the hacked messages;

4) Steering wheel and throttle/brake messages from the set

are transmitted to the wheels and the vehicle component

responsible for applying the throttle/brake; 5) The set of

messages is emptied and ready to be filled with messages from

the next step.

Keep note that even if in the intrusion workflow are present

both the messages forged by the intruder and the messages

legit, CAHOOT do not need both legit and forged messages

for the detection phase. In case the intruder stops forging

messages, CAHOOT would receive only the legit messages

and establishes their legitimacy.

The dataset generated using the MetaDrive simulator con-

tains the features in Table III.

A. Machine Learning algorithms

The CAHOOT paradigm is implemented by using several

Python libraries to implement different ML algorithms. We test

Random Forest and Neural Network Multi-Layer Perceptron

(MLP). Random Forest do not require any settings of parame-

ters. Even with the default ones, the performance obtained by

these methods could be satisfactory. However, MLP requires

that some parameters must be set and fine-tuned to obtain the

best results, e.g., the architecture of the layers, the number of

batches and so on.

We normalize training and test set to speed up the model

training process using the z-score normalization [28] proce-

dure. To improve the neural network performance, we use

the embeddings for categorical values as explained in [29].
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TABLE III: Features description

Feature Description Example Unit

Speed Speed of the vehicle 55 km/h
Throttle brake Amount of throttle or braking 0,55 N/A

Steering Rotation of the steering wheel -0.25 N/A
Last position x/y Position of the vehicle at coordinate x/y 125 N/A

Dist to left/right side Distance from the left/right lane 0,423 m
Fuel consumption Fuel consumption since the start of the driving session 33,12 N/A

Engine runtime minute/second/millisecond Minutes/second/millisecond elapsed from engine start 39 minutes/s/ms
Yaw rate Angular acceleration on vertical axis 0.089661 N/A

Project distance/velocity to vehicle n x/y Vehicle’s projection distance/velocity to the n-th nearest vehicle on coordinate x/y 0.187 N/A

Categorical values are the engine runtime milliseconds, engine

runtime seconds and the engine runtime minutes. The remain-

ing features are continuous. We then create data loaders for

training set and test set with batches of size equal to 2048.

The architecture of the MLP contains 4 layers and the sizes

of the hidden layers are respectively 2048, 1024 and 512. We

then search the best learning rate using the algorithm LRFinder

present in FastAI [30]. Finally, we use this learning rate in the

model training. We trained the model for 480 epochs.

B. Experiments setup

The experiments run on a Virtual Machine with an Intel(R)

Xeon(R) using 16 threads, 157 GB of RAM and CentOS

Linux 7 as OS. To evaluate CAHOOT, in the experiments we

use several metrics: Accuracy, Precision and Recall. Accuracy
represents how often the model is making a correct prediction.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

TP (True Positive) is the number of instances where at least

one sensor’s value is hacked that are correctly predicted. TN

(True Negative) is the number of instances where all the

sensors’ values are legit that are correctly predicted. FP (False

Positive) is the number of instances where all the sensors’

values are legit but incorrectly predicted. FN (False Negative)

is the number of instances where at least one sensor’s value

is hacked but incorrectly predicted.

Precision measures the ability of the classifier not to predict

as hacked an instance that is legit. It is calculated as follows:

Precision =
TP

TP + FP
(2)

Recall measures the ability of the classifier to find all hacked

instances. It is calculated as follows:

Recall =
TP

TP + FN
(3)

We randomly split the dataset in a training set of 85% of

instances and a test set of the remaining 15%. We have fed

each ML method with the same training set and tested with

the same test set. The dataset contains drivings made by an

AI and 5 human drivers using a Thrustmaster TMX [31]. In

the dataset are present 107 driving sessions made by humans.

To demonstrate the validity of CAHOOT, we also simulated

further human drivings using data augmentation techniques.

Data augmentation are methods to generate synthetic patterns

starting from a dataset [32].

TABLE IV: Features selected by CAHOOT (percentage of

each rank w.r.t. the sum of the ranks of the features)

Features Rank percentage

Train
Human and AI

Train
Human

steering 46,7% 43,0%
throttle brake 32,4% 37,3%
speed 7,4% 7,3%
yaw rate 6,6% 5,6%
fuel consumption 2,3% 2,0%
last position y 1,3% 1,2%
last position x 0,9% 0,9%
engine runtime minute 0,5% 0,2%
engine runtime second 0,5% 0,5%
dist to left side 0,4% 1,1%
project distance to vehicle 1 y 0,3% -
dist to right side 0,2% 0,5%
project velocity to vehicle 0 y 0,2% 0,3%

While the driver is driving the simulated vehicle, the

intruder sends steering and throttle brake messages. We

decided to simulate attacks with several success rates, i.e.,

0%, 20% and 40%. Also, to simulate multiple attacks on each

driving session, we set the maximum and duration of an attack

respectively to 2 and 1 slots.

We aim to detect the instances that contain at least one sen-

sor’s value hacked from the steering and the throttle brake.

C. Evaluation without data augmentation

In the following, we first evaluate CAHOOT training it by

using the human and AI driving sessions. Then, the training is

done by using only human driving sessions. Table IV contains

the list of features selected by CAHOOT. To better distinguish

features rankings, each feature rank is shown as a percentage

of the sum of all the ranks.

The training CAHOOT using human and AI drivings lever-

ages the steering and throttle brake messages. The worse

features are the distance from the right lane and the projection

of velocity of the nearest vehicle in the y axis. The engine

runtimes minutes and seconds are at the half of the table while

the engine runtime milliseconds was discarded.

The MLP is trained with a learning rate of 0,00023.

In Table V, we make a comparison among Random Forest

and MLP. When CAHOOT is trained using human and AI

drivings, the table shows that Random Forest (Table V (a))

obtained the best accuracy while MLP (Table V (b)) is the

most balanced model, obtaining similar Precision and Recall.

To better understand on which circumstances Random For-

est best performs, we calculated the accuracy grouped by

1215

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:39:45 UTC from IEEE Xplore.  Restrictions apply. 



entity, i.e., human or the AI is driving the car, and by type of

attack, i.e., DoS, spoofing and replay. Table V (a) shows that

the model has difficulty in the identification of the instances

where the AI drives the car. On the other hand, the model

has an excellent accuracy on instances where the human is

driving. AI makes continuous and sudden driving adjustments,

whereas humans tend to make gradual changes. Graduality

makes human drivings predictions more accurate. The most

difficult type of attack to identify is the replay attack while

the spoofing is the most easiest to identify.

Because on human drivings the algorithm obtains high

accuracy, we tried to improve the results by training and testing

using only drivings made by humans.

Table IV contains the list of features selected by CAHOOT.

As before, the first six highest ranked features are steering,

throttle brake, speed, yaw rate, fuel consumption and

last position y. However, engine runtimes seconds and min-

utes are no longer at the half of the table and ranking fourth to

last and last respectively. Also, the projection with the nearest

vehicles obtained a rank equal to zero, except for the projection

of velocity to the nearest vehicle in the y axis.

The MLP is trained with a learning rate of 0,00016 obtained

using the LRFinder algorithm. Table V shows that Random

Forest obtained the best accuracy. Testing only the human

drivings, the model trained with both human and AI drivings

obtains slightly better accuracy w.r.t. the model trained using

only human drivings. The AI reacts almost instantly to intru-

sions making it the ideal driver. Thus, the model trained with

also AI drivings is better at detecting legitimate messages.

Moreover, Table V (a) shows that replay attack is the most

difficult to recognize, while spoofing attack is the simplest to

recognise with a Recall nearly perfect, i.e., 99,78%.

D. Evaluation with data augmentation

There are several data augmentation techniques on litera-

ture [32]. However, some techniques may produce dataset not

realistic. For example, jittering, i.e. the application of noise to

the dataset, may produce driving sessions in which the driver

never comes to a complete stop at stop signs. To synthesize

additional human driving sessions, we use data augmentation

techniques which guarantee that at each driving session the

fuel consumed by a vehicle since the start of the driving ses-

sion can not decrease over time, i.e., at the i-th instance of the

session fuel consumption[i] ≥ fuel consumption[i − 1].
Hence, we simulate additional human driving sessions using

two data augmentation techniques: time warping uses a cubic

spline that stretches or contracts the temporal dimension of

the driving session [33], window warping stretches by 2 or

contracts by 1
2 a random window of the time series [34].

Hereafter, the procedure to generate the augmented test set.

1) Preparation of the dataset for Data Augmentation:
because we want to augment human drivings to generate new

synthetic human drivings, every AI drivings from the entire

dataset are discarded. Either the training set and the test set

contain hacked messages of steering and throttle brake.

We do not need to augment the hacked messages because

we can simply randomly generate new hacked messages.

Hence, the hacked messages are discarded and the resulting

dataset saved in dataset legit. New hacked messages of the

augmented data will subsequently be randomly generated.

The data augmentation methods that will be used contract

and/or stretches the time. Hence, even the features which

represent the engine runtime will be consequently altered. The

stretching and contracting is made by the data augmentation

to generate new driving sessions that represent respectively

a longer and smaller driving route in a time frame equal to

the time before the data augmentation occurs. The engine

runtime stretched and contracted will report to the machine

learning method these time changes defeating the purpose of

the data augmentation in the first place. To address this issue,

the original engine runtime features are stored in a separate

array and subsequently be used for the augmented datasets.

Finally, the function returns the dataset legit, the array of

engine runtimes and the index of the driving sessions.

2) Augmentation of the dataset: the data augmentation

method augmented function will be applied to the original

dataset, i.e., either training and test set. The augmented train-

ing set will be used to simulate the replay attacks, but will not

be used to train the model. First, an array with the augmented

datasets is created. To increase further the dataset, each data

augmentation method can be performed multiple times. At

each repetition, an array dataset augmented that will contain

the dataset augmented is created. Then, at each driving ses-

sion is applied the augmented function and the augmented

driving session is appended to dataset augmented. Next, the

augmented engine runtimes are substituted with the original

engine runtimes. The augmented dataset is added to the

array of augmented datasets. Once the augmented function

is repeated repeat times, the array of augmented datasets is

returned.

3) Insert of hacked messages: the augmented instances that

are part of the test set need hacked messages. Hence, we

will create a test set from each augmented dataset on which

the instances have attached new hacked messages. First, the

array that will contains the augmented test set is created.

To populate this array, the procedure must pick from each

augmented dataset in datasets augmented the corresponding

augmented instance of each test set instance. Note that the

procedure use instances from the test set of human drivings

only. Then, the index of the augmented instance is obtained

and passed to the function generate intrusion responsible

for the generation of new hacked messages for the aug-

mented instance. The function is explained later on. Then,

an instance augmented attacked is defined and contain the

augmented values alongside with the hacked messages. Hence,

instance augmented attacked can be now appended to the

augmented test set. Once all the augmented test set instances

are appended, the original test set is appended to the aug-

mented test set.

The last function to explain is generate intrusion. The func-

tion randomly generates hacked messages for the augmented

test set instance. First, an attack between DoS, replay and

1216

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:39:45 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V: Accuracy, precision and recall comparison of CAHOOT using different ML methods

Random Forest
Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

95,50% 95,98% 97,87% 97,03% 97,30% 98,60%

Test only human drivers

97,25% 97,57% 98,64% N/A

Test only AI drivers

82,70% 85,54% 92,46% N/A

Test only Replay attack

93,36% 95,34% 95,46% 95,49% 96,69% 97,05%

Test only DoS attack

96,26% 95,83% 98,90% 97,15% 97,15% 98,74%

Test only Spoofing attack

96,73% 96,62% 99,11% 98,24% 97,91% 99,78%

(a) Results on Random Forest

MLP
Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

93,81% 95,74% 95,70% 95,30% 96,84% 96,63%

Test only human drivers

95,73% 97,23% 96,83% N/A

Test only AI drivers

79,86% 85,60% 87,80% N/A

Test only Replay attack

90,32% 94,59% 91,83% 92,14% 95,55% 93,42%

Test only DoS attack

94,70% 95,57% 96,85% 95,58% 96,68% 96,87%

Test only Spoofing attack

96,12% 96,79% 98,07% 97,77% 97,97% 99,08%

(b) Results on MLP

spoofing attacks is randomly chosen. Then, the chosen attack

is launched. In particular in the spoofing attack, the attack

is launched obtaining a random steering and a random throt-

tle brake values. In case the attack is Replay attack, the arrays

with driver’s history of previous steering and throttle brake

values must be built. The procedure determines the index

start of the current driving session based on the variable

index, i.e., the index of the augmented test instance. The

previous augmented instances for the current driving session

are the instances starting from the instance with the index

start index and ending with the instance that has index

index minus 1. Then, the procedure collects the previous

steering and throttle brake values of the augmented instances

for the current driving session. Next, the procedure execute the

function “replay attack” and returns the result. The function

choose randomly an instance index from the current driving

session.

We evaluate CAHOOT using a test set augmented by 3x,

5x, 7x and 9x, i.e., the test set is made by the original test set

and the augmented test sets using the window and time warp

methods repeated respectively 1 time, 2 times, 3 times and 4

times. The number of human driving session presents in the

test sets augmented by 3x, 5x, 7x and 9x are respectively 321,

535, 749 and 963 human driving sessions. We use Random

Forest as ML algorithm because it obtained the best accuracy

in all the previous tests.

Fig. 1: Comparison of Attack Identification test bed with test

set augmented.

In the first experiment, CAHOOT is trained using the human

drivings and the AI drivings (Figure 1). The bar plot shows that

the test set without data augmentation, i.e., 1x, loose 9,49%

of accuracy with the respect to the test set augmented 3x. The

use of data augmentation amplify noises present on the dataset

which leads to a deterioration in identification. On the other

hand, the accuracies, the precisions and recalls of the 5x, 7x

and 9x are similar. Hence, CAHOOT’s accuracy degradation

is less affected by noise as the dataset grows. The attack

type that obtained the lowest accuracy is replay attack with

a minimum accuracy of 75,08% and a maximum of 79,92%.

The attack type with the highest accuracy is spoofing attack

with an accuracy that ranges between 86,72% and 89,39%.

In the last experiment, CAHOOT is trained and tested using

only the human drivings (Figure 2).

Fig. 2: Comparison of Attack Identification test bed trained

using only human drivings with test set augmented.

The bar plot shows that the test set without data augmen-

tation, i.e., 1x, loose 10,82% of accuracy with the respect to

the test set augmented 3x. Accuracy, the precision, and recall

measures of the 5x, 7x and 9x are similar as previously seen

in the previous experiments. The attack type that obtained the

lowest accuracy is replay attack with a minimum accuracy of

74,87% and a maximum of 80,26%. On the other hand, the

attack with the highest accuracy is once again the spoofing

attack in a range between 86,76% and 89,86%.

VI. CONCLUSION

In this paper, we presented CAHOOT, a context-aware

IDS able to detect intrusions into a sequence of in-vehicle
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messages related to a driver’s driving style. We evaluated the

performance of CAHOOT using several metrics. CAHOOT

obtained high scores in all the configuration, especially using

Random Forest. Compared respectively to the lowest and

the highest score of the main context-aware IDSs, CAHOOT

performed on spoofing attack the best and second best score

proving its reliability. Moreover, we adopted data augmenta-

tion techniques to increase the number of human drivings to

demonstrate that CAHOOT performs well with larger datasets.

As future work, we will improve CAHOOT to work on

more complex scenarios and to identify how many data should

be collected from the human and AI drivers. In addition, we

will consider new driving scenarios, e.g., the drivers will be

instructed to drive fast like being late for an appointment.

Furthermore, we aim to refine the algorithm to detect which

sensor of the car is being attacked.
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