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Abstract: Nowadays, some of the most well-deployed infrastructures are Virtual Private Networks
(VPNs) and Overlay Networks (ONs). They consist of hardware and software components designed
to build private/secure channels, typically over the Internet. They are currently among the most
reliable technologies for achieving this objective. VPNs are well-established and can be patched to
address security vulnerabilities, while overlay networks represent the next-generation solution for
secure communication. In this paper, for both VPNs and ONs, we analyze some important network
performance components (RTT and bandwidth) while varying the type of overlay networks utilized
for interconnecting traffic between two or more hosts (in the same data center, in different data
centers in the same building, or over the Internet). These networks establish connections between
KVM (Kernel-based Virtual Machine) instances rather than the typical Docker/LXC/Podman con-
tainers. The first analysis aims to assess network performance as it is, without any overlay channels.
Meanwhile, the second establishes various channels without encryption and the final analysis encap-
sulates overlay traffic via IPsec (Transport mode), where encrypted channels like VTI are not already
available for use. A deep set of traffic simulation campaigns shows the obtained performance.

Keywords: IPsec; Linux; OpenWrt; Overlay; LibreSwan; IKE; TLS; Cybersecurity

1. Introduction

Last-generation IT systems can span vast geographical regions, necessitating secure
and dependable infrastructures that ensure cost-effectiveness regarding space and time.
Virtual Private Networks (VPNs) and Overlay Networks (ONs) emerge as highly depend-
able technologies catering to these requirements, seamlessly traversing both traditional
Public Switched Telephone Networks (PSTN) and cutting-edge 4G/5G architectures [1–3].
Just for the sake of clarity, we recall that a VPN is based on a technology that establishes an
encrypted secure connection over a public network (typically the Internet), enabling users
to transmit data securely. VPNs are often utilized to maintain privacy and security during
internet browsing, particularly on public Wi-Fi networks, and to circumvent geographic
restrictions by hiding the user’s IP address and location. An ON, on the other hand, is
essentially a virtual network constructed atop an already established physical network
infrastructure. Typically, it entails establishing extra logical connections, protocols, or
network segments to facilitate particular functions or services, all without necessitating
alterations to the foundational network structure. These overlay networks find widespread
application in implementing functionalities like Content Delivery Networks (CDNs) and
Peer-to-Peer (P2P) networks. They offer adaptability and scalability, enabling the smooth
deployment of new services or enhancing existing ones while leaving the underlying
network undisturbed. It is important to emphasize that the main differences between an
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overlay network and a VPN concern their approach to security, architecture, and managing
data flow over a public network. In particular:

• Approach to Security: ONs implement security through end-to-end encryption of
data. Each node encrypts the data before transmitting them over the public network.
This ensures that the data remain secure even when transmitted over an untrusted
network. VPNs, on the other hand, use tunneling to ensure data security. Data are
encapsulated in encrypted packets as they traverse the public network. This creates a
secure tunnel between devices communicating through the VPN.

• Architecture: ONs are built on top of existing networks, adding an abstraction layer.
Nodes in the ON can be implemented on different hardware and software, allowing
for greater flexibility. VPNs are typically implemented on existing Internet Protocol
(IP) networks, both on the Internet and as part of private networks. They use specific
protocols to establish secure connections between participating devices.

• Data Flow Management: ONs manage data flow in a distributed manner. Each node
in the network is responsible for transmitting and receiving data, which may follow
different paths based on the overlay network topology. VPNs manage data flow in a
centralized way. Data are sent through the VPN tunnel between a client and a central
VPN server, which handles routing and data security.

• Scalability: ONs can be more scalable than VPNs in some situations, as they can better
adapt to changes in network topology and support a larger number of nodes without
impacting performance. VPNs may have scalability limitations due to their need
to manage centralized VPN tunnels and their dependence on a device’s capacity to
handle encrypted traffic.

From the sentences above, it is clear that both ONs and VPNs offer solutions for
creating private and secure networks over public network infrastructures. Still, their
approaches to security, architecture, and data flow management differ. The choice between
the two depends on the specific requirements of the network environment and applications.

This work’s main aim is to offer a deep performance comparison (from different points
of view) between VPNs and ONs. The scenario in which we operate relates to the analysis
of a network’s performance (RTT and bandwidth), since the type of overlay network used
for interconnecting traffic between two VMware Virtual Machines varies (in the future,
hardware-constrained devices such as Raspberry Pi 4/5 will be used). The networks
connect KVM (Kernel-based Virtual Machine) machines instead of Docker/LXC/Podman
containers. We only use two network namespaces directly in the MACsec case. The former
resides on the first physical endpoint, while the latter resides on the other. The first
guest (virtual machine) resides on the first physical host, and naturally, the second guest
resides on the same physical host. The host machine has the following specifications:
12th Gen Intel(R) Core(TM) i7-1280P 2.00 GHz processor family, RAM 32GB LPDDR5-
SDRAM, 4800 MHz, and 1 TB SSD (ASUSTeK Computer Inc. Taipei, Taiwan). One of
the main results we want to achieve with this work is to group the tunnels according to
the Achievable RTT, therefore having a wide variety of choices that respect a certain RTT
distribution. We will also demonstrate the behavior of UDP compared to TCP, due to
channel saturation. In this work, different ON tunnels are considered: GRE, GREtap, FOU,
and GUE, IPIP, GENEVE, VXLAN, and MACVLAN. Also, different IPsec approaches are
considered: IKEv1/IKEv2 Tunnel Mode, IKEv1/IKEv2 Transport Mode, IKEv2 VTI ROUTE
BASED, and IKEv2 XFRMi ROUTE BASED. We also consider different TLS/NOISE-based
VPNs: OpenVPN, OpenConnecs Ocserv, Wireguard, and Tinc VPN. Finally, as a pure overlay
with native encryption tunnels, we consider Nebula Overlay and MACsec. For the sake of
completeness, it is reported that these networks can also be configured to create Site to
Site, ROAD WARRIORS, MESH, and HUB & SPOKE topologies. Of course, not all of them
have all these features, but they are designed for specific purposes. This paper is organized
as follows: Section 2 is dedicated to related works on VPN realizations and evaluates the
existing literature. Section 3 gives a deep overview of a VPN’s architecture. Section 4
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describes the scenarios used for our testbeds, while Section 5 presents the experimental
results. Finally, Section 6 summarizes the paper.

2. Related Works

Numerous studies in the literature make suggestions regarding security systems across
various protocol stack layers and network typologies, including cryptography performance
analysis; this section provides an overview of key contributions related to VPNs and ONs.

In [4], a novel experimental WAN solution as Software-Defined Wide Area Network
(SD-WAN based on ONOSOpenDaylight https://opennetworking.org/onos/ (accessed
on 23 June 2024) and OpenvSwitch 2.12.0 https://www.openvswitch.org/ (accessed on
23 June 2024) latest version as SDN controller) is proposed, entirely based on secure tunnels,
implemented by the Generic Routing Encapsulation (GRE) tunneling protocol [5]. The
proposal’s effectiveness is validated through two SD-WAN testbeds, covering a very long
distance (from northeast to south Italy). The authors demonstrate that the SD-WAN can
ensure a rapid recovery from and resilience to network failures by leveraging an innovative
Berkeley Packet Filtering (BPF)-based monitoring technique. The authors also demonstrate
that SD-WAN has several advantages in terms of recovery time and high performance
compared to other solutions (e.g., Multi-Protocol Label Switching—MPLS).

The study in [6] evaluates network layer-based VPNs, which enable secure commu-
nications between remote LANs using IP tunnels over a shared medium (e.g., Internet).
The authors’ primary focus lies in demonstrating the efficiency of various VPNs, backed
by several studies on contemporary practices, followed by an analysis of the Wireguard
protocol. The authors of [7] provide a comprehensive analysis of MACVLAN and IPvlan
modes, focusing on their architecture characteristics and utility in enabling container com-
munication across diverse network segments within complex application scenarios. The
proposed work details the setup of container overlay networks in single-machine and
multi-machine environments, offering insights into the intricacies of these modes. By
evaluating key network indicators such as round-trip time (RTT), bandwidth, and jitter
using tools like Ping and Iperf, the research assesses the end-to-end communication perfor-
mance of containers. The experimental results indicate that the IPvlan mode demonstrates
superior network performance compared to MACVLAN, presenting a more extensive and
adaptable application scenario for container overlay networks. This finding highlights the
significance of selecting the appropriate network mode based on specific performance and
scalability requirements within containerized environments. The detailed contribution
given in [8] presents a comprehensive approach to studying VPNs in general. It empha-
sizes that understanding VPN technology necessitates consideration of the values and
motivations of individuals within organizations. A significant discovery highlights the
divergent perceptions and interpretations of the terms VPN, security, and privacy among
corporate employees. In [9] the attention id focuses on the widespread utilization of Secure
Socket Layer (SSL)-VPN to ensure both authentication and data confidentiality between the
client (typically a web browser) and the server (SSL Server). VPN technology is extensively
examined in [10,11]. Specifically, these works delve into the vulnerabilities and suboptimal
performance experienced under heavy loads by web browser-based SSL VPNs, which are
limited to support only Windows operating systems. The authors of [12] justify the selection
of the IPsec-IKEv2 suite over other potential implementations, such as SSL/TLS VPN or
SSH Tunnel, by emphasizing the security of the IP communication layer. This choice is mo-
tivated by the desire for transparency of the layers above the IP within IPsec-IKEv2, as well
as the ability to promptly update encryption in case of a compromise in the data channel.
The research in [13] examines the use of IPsec for establishing VPNs tailored to e-business
requirements. It utilizes a Linksys router as an access point and a VPN concentrator, with
OpenSWAN as the system daemon. The setup employs IKEv1-L2TP for authentication
and traffic management and IPsec for encryption. The article [14] proposes an approach
to deploy VPN technologies for securely encrypting traffic in untrusted networks. This
includes environments like bars, lounges, conferences, free hotspots, airport Wi-Fi, and,

https://opennetworking.org/onos/
https://www.openvswitch.org/
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more broadly, during any travel scenario. The IPsec stack generally consists of three main
parts: Encapsulating Security Payload (ESP), Authentication Header (AH), and the Inter-
net Key Exchange protocol (IKE). The previously mentioned work [13] discusses the AH
protocol with an emphasis on VPN security and Quality of Service (QoS) aspects. The IKE
protocol can generate session keys for secure communications between VPN endpoints
through a proper message exchange, with two existing versions: IKEv1 and IKEv2 [9,15,16].
IKEv1 offers extensive configuration options but suffers from architectural complexity,
making it difficult to deploy in modern networks. In contrast, IKEv2 improves upon IKEv1
by addressing its limitations and providing more efficient encryption, with native sup-
port on platforms like OS X 10.11+, iOS 9.1+, Linux 3.x+, and Windows 8+. Additionally,
IKEv2 is well-supported on mobile devices and compatible with IKEv2-aware clients and
third-party iOS, Android, Blackberry, and Windows applications. In [17], a comparative
analysis of VPN technologies such as L2TP, PPTP, OpenVPN, Ethernet over IP (EoIP), and
MPLS evaluates their suitability for specific business needs based on performance metrics
and packet transit characteristics. In [11], the focus is on the authentication parameters
required for VPN server access. While some implementations may only necessitate the
traditional username/password combination, other deployments like IKEv1-XAUTH may
require additional parameters. Microsoft’s Secure Socket Tunneling Protocol (SSTP) [18,19]
is proposed to channel PPP device traffic through an encrypted VPN tunnel via HTTP
using SSL/TLS transport, handling key negotiation, channel encryption, and traffic in-
tegrity. Quick UDP Internet Connections (QUIC) is highlighted as suitable for IoT devices
with limited resources [20] with implementation guidance in general TrAnsPort services
(TAPS) [10], as discussed in [12]. VPNaaS simplifies network security by integrating config-
urations into a single product to meet various corporate security needs and enable access to
virtualized networks on the cloud. The implementation of VPNaaS using WireGuard with a
5G WAN backbone is proposed in [21]. In [22], an experimental analysis on a Debian Linux
environment implements the IPsec tunneling protocol with various encryption algorithms,
concluding that IPsec AES-sha1 performs comparably to IPsec 3DES-sha1. However, UDP
VPN encryption/decryption can degrade performance due to high memory/CPU usage.

3. Components of VPN/Overlay Architecture

This section covers the two most popular VPN protocols (IPsec and SSL/TLS-based
VPN) and Linux virtual interfaces, specifically examining the following tunnels:

• IPIP: The IPIP tunnel is a method of tunneling that allows IP packets to be transmitted
within another IP packet. This type of tunnel is primarily used to connect two LANs
via the Internet. Due to its minimal overhead, it is optimal for this application,
although it only supports IPv4 unicast traffic and not multicast.

• VTI: The Virtual Tunnel Interface (VTI) on Linux facilitates IP encapsulations and is
compatible with XFRMi. It establishes secure tunnels and enables kernel routing atop.
VTI tunnels function similarly to IPIP or SIT tunnels, with the addition of fwmark
(https://www.linux.org/docs/man8/tc-fw.html accessed on 23 June 2024) and IPsec
encapsulation/decapsulation capabilities.

• GRE and GREtap: Generic Routing Encapsulation (GRE), RFC 2784, involves inserting
a GRE header between the inner and outer IP headers. Unlike IPIP, which is limited
to encapsulating IP, GRE theoretically supports encapsulating any Layer 3 protocol
with a valid Ethernet type. GRE tunnels can transport multicast traffic and IPv6.
While GRE operates at OSI Layer 3, GREtap works at Layer 2 (with an encapsulated
Ethernet header).

• FOU: Tunneling operates across different layers of the networking stack, with IPIP
or GRE working at the IP level and FOU (Foo Over UDP) functioning at the UDP
level. The leverage of UDP tunneling offers several advantages, especially in exist-
ing hardware infrastructure, such as RSS in NICs, ECMP in switches, and check-
sum offload. Performance boosts have been evidenced for IPIP protocols through
developer patch sets. Currently, the FOU tunnel accommodates encapsulation pro-

https://www.linux.org/docs/man8/tc-fw.html
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tocols such as IPIP and GRE, with an example FOU header provided. Configur-
ing a FOU receive port for IPIP entails setting it to port 5555, while for GRE, set-
ting ipproto (https://www.ee.torontomu.ca/~courses/ee8205/Data-Sheets/Tornado-
VxWorks/vxworks/ref/ipProto.html accessed on 23 June 2024) 47 is required. An-
other command establishes a new IPIP virtual interface (FOU1) configured for FOU
encapsulation, with the destination port set to 5555 .

• GUE: Generic UDP Encapsulation (GUE) differs from FOU by including its encapsula-
tion header with the protocol information and additional data, thus supporting inner
IPIP and GRE encapsulation, and configuring a GUE receive port for IPIP on port 5555
involves setting up an IPIP tunnel for GUE encapsulation.

• GENEVE: Generic Network Virtualization Encapsulation (GENEVE) consolidates the
functionalities of VXLAN, NVGRE, and STT, aiming to address their perceived limi-
tations. Many researchers anticipate that GENEVE could ultimately supplant these
earlier formats entirely. The GENEVE tunnel header closely resembles VXLAN, with
the key distinction lying in its flexibility. The GENEVE header allows for easy integra-
tion of new features through extension with a new Type–Length–Value (TLV) field.

• VXLAN: VXLAN (Virtual eXtensible Local Area Network) is a tunneling protocol
that overcomes the limitations of VLAN IDs (4096) by introducing a 24-bit VXLAN
Network Identifier (VNI), enabling up to 224 16,777,216 virtual LANs as described in
IETF RFC 7348. This protocol is widely used in data centers to interconnect virtualized
hosts across multiple racks, encapsulating Layer 2 frames with a VXLAN header into
UDP-IP packets.

• IP/MACVLAN: MACVLAN enables multiple MAC and IP addresses on a single
physical interface through MACVLAN sub-interfaces. This is different from VLANs,
where sub-interfaces share the same MAC address. Each MACVLAN sub-interface has
a unique MAC and IP address directly integrated into the underlay network. Typically
employed in virtualization, MACVLAN interfaces allow Containers or VMs to obtain
DHCP addresses directly, easing integration into existing networks. MACVLAN
offers four types, with the MACVLAN bridge being the most common, enabling local
communication without external routing. External connectivity utilizes the underlay
network, as illustrated by two Containers communicating via the MACVLAN bridge.

• MACsec: MACsec operates at Layer 2, ensuring transparent protection (integrity
and/or encryption) within the network. Unlike IPsec, which can pose performance
challenges, MACsec is designed to run at line rate, typically in a hardware’s ASIC,
although it is not universally supported across hardware. The protected MACsec
frame utilizes an Ethertype of 0x88e5. IPVLAN is akin to MACVLAN but with a key
distinction: the endpoints share the same MAC address. Supporting both L2 and
L3 modes, IPvlan offers flexibility in networking configurations. In L2 mode, each
endpoint retains the same MAC address but receives a different IP address. Conversely,
L3 mode facilitates packet routing between endpoints, enhancing scalability. While the
Ethernet Header and SecTag are sent in plaintext, they are always integrity-protected
by ICV. The default cryptographic algorithm is AES-GCM-128. Additionally, MACsec
supports optional replay protection with a configurable replay window.

Figure 1 illustrates the generic concept of stacking and encapsulation, fundamental to
understanding the functioning of Overlay networks and VPNs.

These solutions, backed by commercial products like Mikrotik and open-source ones
like OpenWrt and Linux distributions, are both at the forefront of the field and serve as a
foundation for new research, encompassing VPN protocols, Linux operating systems, and
both proprietary and open-source hardware platforms, as referenced in [23].

https://www.ee.torontomu.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/ipProto.html
https://www.ee.torontomu.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/ipProto.html
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Figure 1. Generic VPN/Overlay stacking technology.

3.1. IPsec

IPsec, or Internet Protocol Security, manages encrypted Virtual Private Network (VPN)
tunnels at the OSI Layer 3 level. It forms part of a suite of protocols standardized by the
“Internet Engineering Task Force”, the organization responsible for advancing Internet
technologies. Originally developed for IPv6, IPsec has since been adapted for use with
IPv4. It offers three primary functional implementations, as described in [23]. IPsec utilizes
AH and ESP protocols to ensure the integrity and authenticity of transmitted data. The
AH protocol authenticates the data source and safeguards against packet modification
during transmission through the Packet Accelerator Extension. Additionally, it includes
a sequence number in the header to prevent packet replay attacks. Meanwhile, the ESP
protocol verifies data integrity and identity and encrypts the payload data. However,
ESP authentication excludes the outermost IP header, necessitating additional encapsu-
lation for correct delivery, particularly across networks employing Network Address
Translation (NAT), such as private xDSL networks. Our choice for this article was to
use Libreswan implementation on linux systems, as shown in Table 1. IPsec operates in
two modes: tunnel and transport. The IP packet header remains unchanged in transport
mode, with the transport protocol inserted between the header and the data area. This
mode provides security between the source and destination addresses and is suitable for
Host-to-Host or Host-to-Router connections. Conversely, tunnel mode adds a new complete
IP header to the data packets, concealing original addresses and data. This encapsu-
lated packet is forwarded between encrypted endpoints defined by the new outermost IP
header. Tunnel mode is commonly used for Site-to-Site, Host-to-Site, and Host-to-Host data
transmission scenarios.

3.2. TLS Based VPN

TLS VPN, also known as Secure Sockets Layer VPN [8,24,25], offers a standard VPN
solution that operates within the Transport Layer and can be accessed through a web
browser or specific client/server applications. Communication between the sender and
receiver takes place through socket connections. Two common SSL/TLS VPN deployments
are referenced in [23]. In traditional SSL/TLS communication, two keys are utilized for
data encryption: a public key shared among all users and a private key unique to each
endpoint. To enhance security, two-factor authentication or one-time passwords (OTP)
may be employed. Unlike IPsec VPNs, where authenticated clients have full access to the
private network, SSL/TLS VPNs offer more granular control over access. This allows for
creating specific tunnels for applications via sockets, rather than granting access to the
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entire network, and enables the implementation of specific access roles with distinct rights
for different users.

Table 1. LibreSwan features table.

Feature LibreSwan

Pre-shared key authentication Yes
Public-key authentication Yes

IKEv1 key exchange Yes
IKEv2 key exchange Yes

AH support Yes
NSS compatibility Yes
DnsSec/XAUTH Yes

Network Manager compatibility Yes
VIP (Virtual IP Pools) Yes

NAT Traversal Yes
MOBIKE Yes

Route-based VPN Yes
Policy-based VPN Yes

Native {Policy/Route}–based VPN Yes
HA (High Availability) Yes

Legacy cipher suites backwards compatibility No

3.3. The Noise Protocol Framework

The Noise Framework is a lightweight and flexible cryptographic library designed to
provide a wide range of cryptographic primitives for secure communication over unreliable
networks, such as the Internet. Used within Nebula Overlay, the Noise Framework offers a
robust infrastructure to ensure the security and privacy of communications between net-
work nodes. What follows is a technical overview of how the Noise Framework operates
within Nebula Overlay. Supported cryptographic primitives: The Noise Framework offers
a set of cryptographic primitives, including symmetric encryption, Diffie–Hellman key
exchange, key authentication, digital signatures, and cryptographic hashes. These primi-
tives can be flexibly combined to meet the communication’s specific security requirements.
Noise protocol patterns: The Noise Framework uses protocol patterns to define the phases
and operations involved in secure communication. Protocol patterns, such as the Noise IK
pattern, specify a sequence of cryptographic actions during message exchange between
parties. These protocol patterns provide a standardized framework for designing secure
and scalable cryptographic protocols. Selection of protocol pattern: In the context of Nebula
Overlay, the Noise Framework allows for the selection of the most suitable protocol pattern
based on the application’s specific requirements and network configuration. For example,
the Noise IKpsk2 pattern may be used for pre-shared key exchange with authentication,
while the Noise NN pattern may be suitable for anonymous communication. Configu-
ration of cryptographic parameters: The Noise Framework enables the configuration of
cryptographic parameters, such as the choice of encryption algorithm, the use of digital
signatures, and the setting of Diffie–Hellman parameters. This configurability allows for
adjusting the security level and communication performance based on the specific require-
ments of the application and network environment. Integration with Nebula Overlay: The
Noise Framework establishes secure and authenticated communication channels between
network nodes within Nebula Overlay. Noise-based communication protocols enable
nodes to exchange data securely, ensuring the transmitted information’s confidentiality,
integrity, and authenticity. In summary, the Noise Framework is a fundamental component
within Nebula Overlay for ensuring communication security over unreliable networks.
By using flexible protocol patterns and a wide range of cryptographic primitives, the
Noise Framework provides a scalable infrastructure for distributed communication over
the Internet.
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3.4. Operative Systems Hardware Platforms and Linux Daemons

Currently, numerous operating systems and HW/SW platforms are tailored for net-
working and secure communications. For example, LibreSwan [26] and StrongSwan [27]
allow Linux and BSD systems to implement the IPsec protocol. These are referenced
in [23]. Table 1 below provides a list of features for the LibreSwan suite. In this article, we
will compare the OpenWrt and Debian Native VMs to realize the testbeds.

OpenWRT

Initially designed for wireless routers, OpenWRT [28] is a distribution aimed at en-
hancing the functionality of devices beyond what is provided by manufacturer-supplied
firmware. This operating system ensures a filesystem with user-writable permissions, en-
abling users to install third-party software and extend the device’s capabilities. By utilizing
the latest routing software, OpenWRT offers enhanced security and fewer software bugs
compared to pre-installed manufacturer software, particularly on older devices that are no
longer supported. Additionally, OpenWRT can be installed on custom hardware, including
specific boards. For x86-64 platforms, it supports virtualization, allowing the creation of
small networks of containers for on-demand services and facilitating network access for all
LAN-connected devices.

4. Description of Possible Deployment for Overlay Topologies

To deploy a VPN, many HW and SW solutions are available (e.g., use Mikrotik Router-
Boards, Mikrotik, https://mikrotik.com/ accessed on 23 June 2024, or, for example, with a
Debian OS DEBIAN OS https://www.debian.org/index.it.html accessed on 23 June 2024).

Three macro application scenarios, shown in Figures 2–5, are described in [23] and
deployed both with VPNs and Overlay TLS.

These solutions guarantee secure transit through encryption algorithms such as AES
(128–512) and elliptic curve implementations like ecp192. They offer a range of authentica-
tion methods, from PSK + XAUTH to certificate-based and two-step solutions using OTP
or additional credential files like RADIUS + VPN IPsec/OpenVPN/OpenConnect, tailored
for diverse devices and networks.

Figure 2. Site-to-site Overlay network scenario.

Figure 3. Site-to-multi-site Overlay network scenario.

https://mikrotik.com/
https://www.debian.org/index.it.html
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Figure 4. Hub and spoke Overlay network scenario.

Figure 5. Mesh Overlay network scenario.

This work assesses the current landscape of communication infrastructures (WI-FI,
CABLE, 4G/5G) and the devices that can be connected with those infrastructures (NUC,
mini PC, Raspberry Pi, Smartphones). It aims to provide the broadest support for various
devices and technologies while ensuring optimal performance and security.

Table 2 summarizes the implemented testbeds, outlining the network infrastructure
and software used. Several of the proposed architectures remain in active use, including
OpenVPN and WireGuard, as part of the COGITO project, https://www.icar.cnr.it/progetti/
cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-di-apprendere-ed-adattarsi/
accessed on 23 June 2024, Themes to interconnect the cloud and local offices.

With the rapid expansion of technologies such as IoT [29] and the evolution of commu-
nication paradigms like Fog Computing and cloud-based solutions (e.g., AMAZON AWS),
or multi-site clusters (e.g., through Kubernetes), it is essential to manage the increasing
data volume while ensuring compliance with GDPR.

The OpenWRT operating system allows these technologies to be implemented on
compatible routers and devices. The wide range of supported bridges, particularly for
IoT networks, enables interfacing with third-party protocols (e.g., LoRa and ZigBee) and
traditional TCP/IP stack protocols. The x86-64 versions support virtualization, allowing
for the secure and cost-effective creation of Fog networks of microservices and IoT multi-
protocol networks. For instance, outdoor sensor networks can be installed in areas covered
by 4G/5G networks and configured locally using an Edge Computing approach.

https://www.icar.cnr.it/progetti/cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-di-apprendere-ed-adattarsi/
https://www.icar.cnr.it/progetti/cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-di-apprendere-ed-adattarsi/
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Table 2. A summary of the VPN-implemented testbeds.

VPN SOFTWARE MANAGED VPN DEPLOY VPN IMPLEMENTERS OPERATIVE SYSTEMS PLATFORMS

IPsec
LibreSwan 4.15 Site to Site IKEv2 PSK TUNNEL

IKEv2 PSK TRANSPORT

Linux DEBIAN 12
WINDOWS 10/11 (client)
DEBIAN 11/12 (client)
ANDROID 11 (client)
iOS 16 (client)
MAC OS X 14 (client)
RASPBERRY Pi 2/3/4
OpenWRT 23.x

armv7
x86
x86-64
ARM64
ARM
MIPSBE
MMIPS
SMIPS
PPC

IPsec
LibreSwan 4.15 Site to Site IKEv2 XFRMi/VTI ROUTE BASED Same as above Same as above

OpenVPN 2.6.3 Site to Site Same as above
armv7
x86
x86-64

Wireguard 1.0.2 Site to Site Same as above

armv7
x86
x86-64
ARM64
ARM
MIPSBE
MMIPS
SMIPS
PPC

Ocserv 1.1.6 Site to Site Same as above
armv7
x86
x86-64

Tinc VPN 1.0.3.6 Site to Site Same as above

armv7
x86
x86-64
ARM64
ARM
MIPSBE
MMIPS
SMIPS
PPC

Nebula Overlay VPN 1.6.1 Site to Site
Host to Host Same as above

armv7
x86
x86-64
ARM64
ARM
MIPSBE
MMIPS
SMIPS
PPC

5. Implemented Scenarios and Experimental Results

To assess the efficiency of various VPN protocols across different OS and HW configu-
rations illustrated in Table 2, various network configurations were established as depicted
in Figures 2–4. Using guest KVM stems from the ability to nest container networks, possibly
using a MACVLAN approach instead of a classical bridge, directly on individual guest
networks. This would enable harnessing the capabilities of both virtual machines, such as
resilience, and containers, such as lightweightness and portability.

The tools used to capture network traffic data during various VPN and Overlay Tunnel
sessions are those referenced in [23] and the network hosts topology is shown in Table 3.

Table 3. Network topologies HW components.

Hardware Quantity

Workstation with 12th Gen Intel(R) Core(TM) i7-1280P (Santa
Clara, CA, USA)—2.00 GHz, 32GB RAM 1

VMWare VM Debian 12 x86-64 virtualized 2
VMWare VM Alpine Linux Latest x86-64 virtualized 1

VMWare VM OpenWRT 23.x x86-64 virtualized 1

Listings 1–3 (bash scripts) depict the script executed by Ansible to activate a tunnel
(in this case a FOU type) and automatically configure the network settings and kernel
firewall parameters.
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Listing 1. Bash script for a FOU interface.

# MAIN - left-fou-iface-up.sh

#!/bin/bash

IFACE_MTU="1472"
LOCAL_KVM_NET="192.168.122.0/24"
REMOTE_KVM_NET="192.168.123.0/24"

echo "Setting up FOU TUNNEL left side ..."
modprobe ipip
ip fou add port 5555 ipproto 4
ip link add name fou0 type ipip remote ${HOSTB} local ${HOSTA} mode ipip

ttl 255 dev eth0 encap for encap-sport 5555 encap-dport 6666↪→

ip link set dev fou0 up mtu ${IFACE_MTU}
ip a a 10.0.0.1 peer 10.0.0.2 dev fou0
ip r a ${REMOTE_KVM_NET} dev fou0

Listing 2. Bash script for a FOU interface iptables rule.

# ----- IPTABLES VERSION -----

iptables -t mangle -A FORWARD -o eth0 \
-p tcp -m tcp --tcp-flags SYN,RST SYN -s ${LOCAL_KVM_NET} \
-m tcpmss --mss ${IFACE_MTU}:9100 -j TCPMSS --set-mss ${IFACE_MTU}

Listing 3. Bash script for a FOU interface Nftables rule.

# ----- NFTABLES VERSION -----
# filter
table ip filter {

chain input {
type filter hook input priority 0; policy accept;

}
chain output {

type filter hook output priority 0; policy accept;
counter comment "count accepted packets"

}
chain forward {

type filter hook forward priority 0; policy accept;
ip saddr ${LOCAL_KVM_NET} oifname eth0 tcp flags syn tcp

option max seg size set 1360:9100↪→

counter comment "count dropped packets"
}

}

The nodes are connected to a gigabit VMWARE Ethernet switch with 1 Gbps links.
The complete topology deploys a subnet representing the WAN (with public IP assigned)
and two private subnets (the KVM networks) for each workstation, as shown in Figure 6.
In the Site-to-Site scenario, we have two VPN/Overlay Endpoints used as terminations
of the tunnels and linked to local hosts that create traffic flows. In the Site-to-Multi-Site
topology, three endpoints (the number of nodes can be increased) are linked to local hosts
through which traffic flows. To generate the network traffic, the Iperf, Netperf and ping
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tools are used to measure productivity, jitter, bandwidth, and round-trip time (RTT) while
several counters of the same operating system measure the CPU usage.

Figure 6. Generic VPN deploy topology.

To run the emulations necessary to collect the data, Ansible (Ansible Project, https://
www.ansible.com/ accessed on 23 June 2024) was used on the network endpoint machines.
An Ansible playbook to manage network tunnels on Linux works by defining a series of steps
to be executed on one or more Linux systems to configure the desired network tunnels. These
steps typically include:

• Installing necessary packages to support network tunnels, such as OpenVPN, IPSec,
or using the scripts to deploy needed configurations.

• Configuring the specific tunnel configuration files, such as OpenVPN (‘*.conf‘) or
LibreSwan (‘*.conf‘) configuration files.

• Enabling and starting the necessary services to manage the network tunnels.
• Configuring firewall rules, if necessary, to allow traffic through the network tunnels.
• Verifying the status of network tunnels to ensure they are active and functioning correctly.

The Ansible playbook defines the actions to configure and manage network tunnels
on the target Linux system. It allows administrators to automate this process through a
series of declaratively defined steps in the YAML playbook file.

5.1. Considered VPN/Overlay Deployed Topology

This paper describes deployments utilized in the COGITO (COGITO project, https://
www.icar.cnr.it/progetti/cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-
di-apprendere-ed-adattarsi/ accessed on 23 June 2024) project, adaptable to any envi-
ronment, employing selected hardware to measure component performance and ensure
backward compatibility. Figure 6 illustrates the basic network topology with example
IP address ranges. In Site-to-Site scenarios, the right endpoint is periodically swapped,
establishing connections as depicted. Wi-Fi-only devices acting as VPN clients connect
via the left endpoint, initially linked to a dummy WAN mimicking a public network (ISP
sites 1, 2, and 3) with a router (IP 192.168.21.254) on the 192.168.21.0/24 segment, facilitating
communication between VPN endpoints (wired/wireless clients connected to the router
or switch).

Ansible facilitated deployment scenarios administration, while throughput results
were obtained using Iperf2 (version 2.2, included in Debian 12 Repository) and Netperf
(version 2.7, included in Debian 12 Repository), and RTT data using ping. Graphics were
generated based on the output results from Iperf and Netperf.

5.2. Throughput Performance Analysis

Iperf, available in both Iperf2 and Iperf3 versions as open-source software, is uti-
lized for bandwidth measurement across IP networks. Its compatibility spans major
operating systems, including Android and iOS, and its configurable parameters make

https://www.ansible.com/
https://www.ansible.com/
https://www.icar.cnr.it/progetti/cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-di-apprendere-ed-adattarsi/
https://www.icar.cnr.it/progetti/cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-di-apprendere-ed-adattarsi/
https://www.icar.cnr.it/progetti/cogito-sistema-dinamico-e-cognitivo-per-consentire-agli-edifici-di-apprendere-ed-adattarsi/
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it essential for analyzing network performance across diverse protocols, establishing its
prominence in network diagnostics. Netperf supports various performance tests, including
TCP and UDP, single-stream and multi-stream, burst, and latency tests. It is a flexible
and widely used tool in the industry for evaluating network performance and identifying
performance issues.

Figure 7 shows the trend of the average RTT for different connections based on pure IP
and tunneling (for a Maximum Transfer Unit—MTU equal to 1500B on the left and 9000B
on the right). Connections have been sorted in increasing order, and it can be noticed that
the performances are quite acceptable for all connections (always under 5 ms). On both
sides of the figures, some nearly comparable values are observed, so to better understand
how the RTT evaluations are related in function of time, their pdfs have been considered.

Figure 7. The trend of the average RTT for the considered connections.

Figure 8 shows how the instantaneous RTT is distributed over 10 min of simulations
for the first seven tunnels of Figure 7. Their distributions can be perfectly comparable in
terms of both means and standard deviations.

Figure 8. Clustered RTT distribution trend for the first six tunnels (one refers just to a clean IP
connection) of Figure 7.

Although there is a slightly higher difference in the mean values, another cluster can
be identified, as in Figure 9, for the middle set of tunnels illustrated in Figure 7. Also, the
mean and standard deviations are mostly comparable in this case.
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Figure 9. Clustered RTT distribution trend for the central group of tunnels illustrated in Figure 7.

The same considerations for Figures 8 and 9 can be made for Figure 10, where the
last tunnels of Figure 7 (right side) have been clustered. We also show how the RTT is
distributed over time with MTU = 1500B and how the distributions can also be clustered in
this case: Figures 11–13.

Figure 10. Clustered RTT distribution trend for the central group of tunnels illustrated in Figure 7.

At this point, we can state that for a Clean (no tunneling), FOU, GENEVE, GENEVE
IPsec, GREtap, GREtap IPsec, and IPsec (Cluster 1) the average RTT with MTU = 9000B
is µRTT = 1.4231 s, with a standard deviation of σRTT = 0.4821 s. For GRE IPsec, IP in IP,
IP in IP IPsec, MAC VLAN, VTI IPsec, VXLAN, VXLAN IPsec, and XFRMi (Cluster 2)
the average RTT with MTU = 9000B is µRTT = 2.2439 s, with σRTT = 0.6458 s. For Open
Connect, Open VPN, Tinc, and WG (Cluster 3), the average RTT with MTU = 9000B is
µRTT = 4.4304 s, and σRTT = 0.9753 s.
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Figure 11. Clustered RTT distribution trend for the central group of tunnels illustrated in Figure 7.

Figure 12. Clustered RTT distribution trend for the central group of tunnels illustrated in Figure 7.

As regards the MTU = 1500B, we found that for Clean, FOU, GENEVE, GENEVE
IPsec, GRE IPsec, GREtap, GREtap IPsec, GUE, IPsec, MACVLAN, MACsec, VTI IPsec,
VXLAN, and XFRMi (Cluster 1) µRTT = 1.5247 s and σRTT = 0.43023 s, for IP in IP, IP in
IP IPsec, Tinc, VXLAN IPsec, WireGuard and MACsec (Cluster 2), µRTT = 2.12041 s and
σRTT = 0.4868 s and for Nebula, OpenConnect and OpenVPN (Cluster 3), µRTT = 3.22462 s
and σRTT = 0.52786 s. Bold fonts are used to connect different clusters in the MTU function.
From the data illustrated above, we can conclude that, independently from the chosen MTU,
in terms of RTT, Clean (obvious), FOU, GENEVE, GENEVE IPsec, GREtap, and GREtap
IPsec offer the best performance (the needed header length is low and their reaction time is
the minimum for MTUs of both 1500B and 9000B). Out of Cluster 1, the RTT worsens in the
needed header dimension function.
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Figure 13. Clustered RTT distribution trend for the central group of tunnels illustrated in Figure 7.

Let us examine how MTU sizes affect network performance in overlay channels
and VPNs. Using larger MTU sizes enables the operating system to send fewer but
larger packets while maintaining the same network speed. This significantly reduces the
processing required by the operating system, provided that the workload allows for the
sending of larger messages. However, larger MTU sizes will not have a significant impact if
the workload primarily consists of small messages. Using the largest MTU size supported
by the adapter and the network is advisable. For example, with ATM adapters, the default
MTU size of 9180 bytes is much more efficient than using an MTU size of 1500, which is
commonly used by LAN Emulation. In Gigabit and 10 Gigabit Ethernet networks, if all
machines have Gigabit Ethernet adapters and no 10/100 adapters are present, it is best to
use jumbo frame mode. For instance, connections from server to server within a computer
lab can typically be optimized using jumbo frames. The Maximum Transmission Unit
(MTU), or link MTU, is measured in bytes and represents the largest packet size that can
be sent over a hop without fragmentation. This differs from the Path MTU (PMTU), the
smallest MTU among all hops in a path. Iperf assesses IP network bandwidth availability.
When packet loss is present, PMTU discovery may occasionally underestimate the MTU.
To validate the discovered MTU, conducting multiple tests for consistency is advisable.
However, if the discovered MTU matches a recognized standard, it is typically not an
inadvertent underestimation. Common values for MTU are shown in Table 4:

Table 4. Common MTU values by link type.

MTU TYPE MTU SIZE (Bytes)

IP over SONET 4470
Ethernet Jumbo Frames 9000

IP over ATM Ethernet Jumbo Frames 9180
Classic Ethernet 1500

The overhead introduced by various tunneling protocols varies depending on the
specific protocol and configuration. Focus on Overlay links deployed is shown in Table 5.
These overheads should be considered when designing and implementing network tunnels,
as they affect the overall payload size and network performance.
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Table 5. Size of the headers of the analyzed tunnel protocols and types of headers used.

Tunneling Protocol Header Type Header Size (Bytes) Max Header Size (Bytes)

IPIP IP 20 20
VTI IP + VTI 20 + 4 24
GRE GRE 4 + [0...34] 38
GREtap Ethernet Frame + GRE 14 + 4 18
FOU UDP + IP 8 + 20 28
GUE UDP + GRE 8 + 4 + [0...34] 46
GENEVE UDP + IP + GENEVE 8 + 20 + 10 38
VXLAN UDP + IP + VXLAN 8 + 20 + 8 + [0...16] 52
MACVLAN Ethernet Frame + MACVLAN 14 + 4 18
MACsec Ethernet Frame + MACsec 14 + [8...30] 44

When utilizing a tunnel interface over IPsec, the overhead includes IPsec headers, the
outer IP header for IPsec, and the additional IP header for tunnel encapsulation. The IPsec
header comprises the Security Association (SA) information, encryption and authentication
headers (if applied), and other IPsec-related metadata. IPIP encapsulation introduces
another IP header, encompassing the tunnel endpoints’ source and destination IP addresses
and any supplementary IP options.

The total overhead for a tunnel over IPsec is the aggregate of the IPsec and tunnel
type headers, along with any additional IPsec overhead. This overhead varies based on the
specific IPsec configuration (e.g., encryption and authentication algorithms) and tunnel
type configuration. A detailed IPsec and tunnel configurations analysis is required to
determine the specific overhead. Generally, IPsec overhead ranges from tens to hundreds
of bytes, while the IPIP header typically adds twenty bytes.

In Libreswan, the default Maximum Segment Size (MSS) for both tunnel and transport
modes is usually derived from the MTU. For tunnel mode, the default MTU is generally
1400 bytes, leading to an MSS of 1360, calculated as MTU minus the IP and TCP header
sizes (each 20 bytes for IPv4). For transport mode, where the default MTU is typically
1500 bytes, the MSS is 1460, computed similarly.

These calculations are based on standard IPv4 and TCP header sizes. Additional
packet headers, options, or extensions may affect the MSS value. Nonetheless, these
calculations provide a general guideline for determining MSS in Libreswan based on default
MTU values.

Table 6 summarizes the VPN tunneling protocols used.

Table 6. MTU and MSS sizes for various types of VPNs, along with the transport layers they use.

VPN TYPE TRANSPORT LAYER Default MTU SIZE (Bytes) Default MSS SIZE (Bytes)

OpenVPN TCP/UDP 1500 bytes 1450 bytes
WireGuard UDP 1500 bytes 1450 bytes
Tinc UDP 1500 bytes 1450 bytes
Nebula UDP 1300 bytes 1260 bytes

Each protocol has its strengths and trade-offs, making them suitable for various
network configurations and requirements.

Figures 14 and 15 show the connections performance for TCP and UDP connections,
respectively, obtained by the iperf command.

The experiments with Iperf and Netperf were conducted as follows. The server
(Iperf/Netperf) is started on two endpoints: TCP mode and UDP mode. The MTU is set
at the moment of tunnel creation. For IPERF TCP, the client sends 100 Mb of traffic to the
server for each negotiated overlay/VPN channel. In IPERF UDP mode, the client sends
100 Mb of traffic to the server for each negotiated overlay/VPN channel with a bandwidth
of 100 MB. For NETPERF TCP, a TCP network performance test is performed between the
local host and the remote host at 10.0.0.1 for 10 s. During the test, CPU usage is measured
on both the local and remote sides. In NETPERF UDP mode, a network performance test
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is performed between the local host and the remote host at 10.0.0.1 using UDP for 30 s,
measuring the transfer speed in Mbps. The remote side sends UDP packet streams sized at
1024 bytes.

Figure 14. The trend of maximum reachable bandwidth (Mbps) for each TCP connection with the
underlying tunnel (MTU = 9000B).

Figure 15. The trend of maximum reachable bandwidth (Mbps) for each UDP connection with the
underlying tunnel (MTU = 9000B).

First of all, it can be noticed that tinc shows very bad performance and following are
some of the reasons why Tinc VPN may experience low performance:

• An MTU that is too high or too low can cause packet fragmentation or inefficiency in
packet transfer. A value of 1400 can improve performance.

• If compression is enabled, it can cause extra CPU load.
• Suboptimal TCP/IP parameters can affect performance.
• Using outdated versions of Tinc can lead to performance issues, and Tinc has not been

updated since 2021.
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In both cases, Tinc connections are completely unsuitable. In the UDP cases, there
are no differences in terms of bandwidth, while for layer 4 TCP sockets, OpenVPN, Open-
Connect, VTI, Nebula, and XFRMi are unsuitable (very low reachable bandwidth). WG,
FOU, GUE, IP in IP IPsec, VXLAN IPsec, and GREtap IPsec performances are comparable
to the performances obtained with a Clean connection. The other tunnels outperform the
previous ones.

Before going on with the other results, we would like to underline two main aspects:

• Regarding Tinc connections, it is known [30] that Tinc performs better for low MTU
sizes (below 1500B). We show the reachable RTT(s) obtained for low MTU sizes for
completeness. From Figure 16, it is evident that the RTT is quite acceptable for low
values of MTU.

• UDP low reachable bandwidth (as shown in Figure 15, where a bandwidth of 12.4 Mbps
is never exceeded): running virtual machines and enabling tunneled connections
slow UDP throughput due to extra virtualization overhead and networking con-
figuration issues. Typically, for any UDP packet exceeding 1024 bytes, the Win-
dows network stack delays sending the next packet until it receives a transmit
completion interruption.

Figure 16. The trend of Tinc average RTT for different MTU lengths.

Optimizing configurations across all layers and ensuring hardware support can help
mitigate performance issues.

Figures 17 and 18, shows the reachable throughput for TCP and UDP sessions re-
spectively. It can be noticed that tunneling produces many more effects with the TCP
instead of the UDP, it can be seen that the average throughput goes down for Nebula,
OpenConnect, OpenVPN, tinc, and XFRMi, while WireGuard throughput is still compara-
ble to the one of a clean connection. Regarding UDP connections, the Netperf application
allows us to appreciate better performance for Nebula, OpenConnect, OpenVPN, and
Tinc. At the same time, WireGuard and XFRMi can maintain the same performance of a
clean connection.
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Figure 17. The trend of the average throughput (Mbps) for each TCP connection with only a VPN
tunnel (MTU = 9000B).

Figure 18. The trend of the average throughput (Mbps) for each UDP connection with only VPN
tunnels (MTU = 9000B).

Figures 19 and 20 show the connection performance for TCP and UDP connections,
respectively, obtained by the iperf command, with an MTU=1500B. Also, in this case, for
the TCP case, there are unsuitable tunnels, such as openconnect, vti, gre IPSec, vxLAN IPSec,
xfrmi, IP IP IPSec, Gretap IPSec, and the clean connection. Then, another cluster of tunnels
provides an average performance, like vxlan and Geneve. The best results are obtained with
Geneve IPSec, gre, gretap, FOU, gue, IP in IP, and myMACVLAN. As for the MTU = 9000B
case, UDP saturates all connections for the same reasons explained in the previous case
with MTU = 9000B.
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Figure 19. The trend of maximum reachable bandwidth (Mbps) for each TCP connection with the
underlying tunnel (MTU = 1500B).

Figure 20. The trend of maximum reachable bandwidth (Mbps) for each UDP connection with the
underlying tunnel (MTU = 1500B).

Figures 21 and 22 show the obtained performance with the netperf command for TCP
and UDP tunnels, respectively, with MTU=1500B. The obtained values are comparable
in the TCP case, while for the UDP case, only the OpenConnect tunnel exhibits a very
good throughput.
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Figure 21. The average reachable throughput (MBps) for each TCP connection with the underlying
tunnel (MTU = 1500B).

Figure 22. The average reachable throughput (MBps) for each UDP connection with the underlying
tunnel (MTU = 1500B).

6. Conclusions and Future Works

In this work, we provided several details about VPN and Overlay connections in
TCP/IP networks. In particular, we focused on analyzing several tunnels from different
points of view, implementing them into virtualized environments, and giving different
information on how they can be implemented. This work’s second part has been dedicated
to analyzing the obtainable results regarding RTT, maximum bandwidth, and throughput.
One of the main results is the possibility of clustering the tunnels in the function of
the reachable RTT, thus providing a wide variety of choices that respect a given RTT
distribution, depending on the desired results. The second analysis that has been illustrated
regards the performance of tunneling for TCP and UDP connection: we have shown how,
for UDP, all the connections saturate, while for TCP, there are some preferred tunnels. The
same trend has been found for the throughput analysis.
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One of the future works will certainly be to translate this study onto the Proxmox
platform to evaluate the performance achievable through systems managed through this
hypervisor. Proxmox VE optimizes the network and CPU management layers to deliver
high performance and efficiency in virtualized environments. Here is an emphasis on these
optimizations: Proxmox VE supports a wide array of advanced networking technologies
crucial for creating flexible and high-performance virtual networks. These include:

• FOU (Foo Over UDP): efficient encapsulation of IP in UDP, reducing overhead.
• GUE (Generic UDP Encapsulation): offers flexibility for different protocols with

minimal latency.
• GRE (Generic Routing Encapsulation) and GREtap: ensures robust tunneling of vari-

ous network protocols and Ethernet frames, optimizing traffic flow.
• IPIP (IP-in-IP): simplifies tunneling with minimal processing overhead.
• GENEVE and VXLAN: provide scalable solutions for network virtualization, enhanc-

ing performance in overlay networks.
• MACsec: secures data link layer communications, maintaining high throughput

with encryption.
• OpenVPN and WireGuard: deliver secure and efficient VPN solutions, with Wire-

Guard specifically known for its minimal CPU usage and high performance.
• IPsec (VTI, XFRMi, Classic): ensures secure communications with optimized encryp-

tion and tunneling techniques.
• Tinc and Nebula: offer mesh networking solutions that scale efficiently while main-

taining security.

Proxmox VE enhances CPU management through various techniques to ensure that
virtual machines (VMs) and containers run efficiently:

• KVM (Kernel-based Virtual Machine): utilizes hardware virtualization extensions
(Intel VT-x and AMD-V) to ensure near-native performance for VMs.

• CPU Pinning: allows binding of VMs to specific CPU cores, reducing context switching
and optimizing performance.

• NUMA (Non-Uniform Memory Access) Awareness: Proxmox can optimize mem-
ory and CPU allocation across NUMA nodes, improving access times and overall
VM performance.

• Resource Limits and Quotas: enable setting limits and quotas for CPU usage, ensur-
ing fair distribution of resources and preventing any single VM from monopolizing
CPU resources.

• Dynamic Resource Allocation: Proxmox dynamically adjusts resources based on
current workload demands, optimizing CPU and memory usage.

• CPU Hotplug: allows adding CPUs to running VMs without downtime, providing
flexibility and scalability.

• Integration with cgroups and namespaces: ensures fine-grained control over resource
allocation and container isolation, optimizing CPU usage.

Proxmox VE’s optimizations in network and CPU management layers ensure that
virtualized environments operate with high efficiency and performance. The comprehen-
sive support for advanced networking technologies combined with robust CPU manage-
ment techniques makes Proxmox VE a powerful platform for modern data centers and
cloud environments.
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Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
AH Authentication Header
EAP Extensible Authentication Protocol
ESP Encapsulating Security Payload
GDPR General Data Protection Regulation
HW Hardware
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IoT Internet of Things
IPsec IP Security
ISAKMP Internet Security Association and Key Management Protocol
MQTT Message Queue Telemetry Transport
NAT Network Address Translation
OTP On-Time Password
PSK Pre Shared Key
PSTN Public Switched Telephone Network
RTT Round Trip Time
RW Road Warriors
SAD Security Association Database
SPD Security Policy Database
SSL Secure Sockets Layer
SW Software
TLS Transport Layer Security
UTP Unshielded Twisted Pair
VPN Virtual Private Network
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