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Abstract. Discrete mereotopology is a logical theory for the specifi-
cation of qualitative spatial functions and relations defined over a dis-
crete space, intended as a set of basic elements, the pizels, with an
adjacency relation defined over it. The notions of interest are that of
region, intended as an arbitrary aggregate of pixels, and of specific rela-
tions between regions. The mereotopological theory RCC8D extends the
mereological theory RCC5D—a theory of region parthood for discrete
spaces—with the topological notion of connection and the remaining re-
lations (disconnection, external connection, tangential and nontangential
proper parthood and their inverses). In this paper, we propose an encod-
ing of RCC8D into CSLCS, the collective extension of the Spatial Logic
of Closure Spaces SLCS. We show how topochecker, a model-checker for
CSLCS, can be used for effectively checking the existence of a RCC8D
relation between two given regions of a discrete space.

Keywords: RCC8D, Adjacency Spaces, Closure Spaces, Spatial Logics, SLCS,
CSLCS.

1 Introduction

The study of logical approaches to modelling space and spatial aspects of com-
putation is a well established area of research in computer science and arti-
ficial intelligence. A standard reference is the Handbook of Spatial Logics [I].
Therein, several spatial logics are described, with applications far beyond topo-
logical spaces; such logics treat not only aspects of morphology, geometry and
distance, but also advanced topics such as dynamic systems, and discrete struc-
tures, that are particularly difficult to deal with, especially from a topological
perspective (see, for example [T519]). For this reason, most of the work present
in the literature deals with continuous notions of space, such as Euclidean spaces.
In this context, a prominent area of research is represented by the logical the-
ories of “parthood”—Mereology—and of “connection” between “regions”, i.e.
sets of points in a continuous space—~Mereotopology—representative of which
are the Region Connection Calculi RCC5 and RCCS, respectively. In particu-
lar, RCC8 [17] is widely referred to in the Al literature on Qualitative Spatial
Reasoning [5].
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More recently, attention has been devoted also to logical approaches to dis-
crete spaces, including e.g. graphs or digital images, given the importance of
such structures in computer science. In particular, in [I8] the notions of Discrete
Mereology and Discrete Meretopology have been presented and discrete versions
of RCC5 and RCCS, namely RCC5D and RCC8D, have been defined.

On the other hand, in recent work [9JT0], Ciancia et al. proposed the Spatial
Logic for Closure Spaces (SLCS), defined along the same lines as the classical
work of Tarski on the spatial interpretation of the modal possibility operator as
the topological closure operator, but with two major differences. The first one is
that the underlying model for the logic is not that of topological spaces, as in the
classical approach, but rather Closure Spaces [I5[16], a generalisation of topolog-
ical spaces including also discrete structures such as graphs, and, consequently,
digital images. The second one is the inclusion of the surrounded operator—
denoted by S, to be read “surrounded”—an operator similar to the spatial until
discussed in [20] in the context of continuous spaces; a point satisfies &; S P
if it satisfies @1 and there is no way for moving away to a point not satisfying
&1 without first passing by a point satisfying @5. In other words, the points
satisfying @, are surrounded by points satisfying ®5. In addition, in [I0] the
logic has been extended with the collective fragment, leading to the definition
of the Collective Spatial Logic for Closure Spaces (CSLCS), where properties of
(connected) sets of points can be specified. Efficient model checking algorithms
have been defined for both SLCS and CSLCS and have been implemented in the
prototype tool topocheckelﬂ

In this paper we present an encoding of RCC8D into CSLCS. This shows
that CSLCS is a suitable logic not only for reasoning about points in (closure)
spaces and connected sets of such points, but also for regions in the sense of the
Region Calculus and, in particular, of RCC8D.

The paper is organised as follows: in Section[2] SLCS and its extension CSLCS
are briefly described; furthermore, we state a proposition relating the temporal
weak until connective with the interpretation of spatial surrounded on discrete
spatial models—the proof is provided in the appendix. Section [3| recalls Adja-
cency Spaces and RCC8D of [5]. The encoding procedure is described in Section
where some examples of use of topochecker are also shown as well as the (graph-
ical) result of RCC8D relations over sample regions. Finally, in Section |§| some
conclusions are drawn.

2 Spatial Logics for Closure Spaces

Spatial logics have been mainly studied from the point of view of modal log-
ics. In his seminal work of 1938, Tarski presented a spatial, and in particular
topological, interpretation of modal logic; in 1944 Tarski and McKinsey proved
that the simple (and decidable) modal system S4 is complete when interpreting
the possibility modality ¢ of S4 as closure on the reals or any similar metric

! Topochecker: a topological model checker, see http://topochecker.isti.cnr.it,
https://github.com/vincenzoml/topochecker
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space. More specifically, a topological model M = ((X,0),V) of modal logic is
any topological space (X, O) where each point x € X is associated with the set
of atomic propositions p it satisfies, namely the set {p|z € V(p)}, negation and
conjunction are interpreted in the usual way, and the possibility operator ¢ is
interpreted as topological closure, as follows (see [1], Chapter 5):

M,z = OP < for all open sets o € O such that x € o
there exists ' € o such that M,z’ |= .

Of course, by duality, the necessity operator [1 turns out to be interpreted as the
topological interior operator, namely M,z |= O < there exists a open set o €
O such that x € o and M,z |= @ for all ' € 0. We refer the reader to [20] for
further details. A legitimate question is whether the restriction to topological
spaces is too strong. For answering this question, it is appropriate to focus on
discrete spaces, e.g. graphs; any logical approach to reasoning about spatial prop-
erties of distributed systems should obviously be capable to deal with discrete
structures. There exist of course relational models of S4, namely reflexive and
transitive Kripke structures and it is possible to derive a topological space from
any such a structure in a sound and complete way. The topological spaces that
are used are the so-called Alexandroff spaces. These are topological spaces in
which each point has a least open neighbourhood. Unfortunately, the correspon-
dence between topological spaces and reflexive and transitive Kripke structures
is not easily extended to arbitrary Kripke structures, as transitivity and reflex-
ivity always hold in topo-logics where the basic modality is the closure. On the
other hand, requiring transitivity in all models may be too limiting a constraint.
This is the main reason to further investigate non-transitive concepts of spa-
tial models and for resorting to models which are more general than topological
spaces. In our approach we use closure spaces as a generalisation of topological
spaces.

Definition 1. A closure space is a pair (X,C) where X is a non-empty set (of
points) and C : 2% — 2% is a function satisfying the following azioms:

1. C(0) = 0;
22YCCY) forallY C X;

3. C(Y1UYs) =C(Y1) UC(Ya) for all Y,Ys C X. .

It is worth pointing out that topological spaces coincide with the sub-class
of closure spaces for which also the idempotence axiom C(C(Y)) = C(Y') holds.

Given any relation R C X x X, function Cg : 2¥ — 2% with Cgr(Y) £
Y U{z|3y € Y.y Rz} satisfies the axioms of Definition [1| thus making (X,Cgr) a
closure space. It can be shown that the sub-class of closure spaces that can be
generated by a relation as above coincides with the class of quasi-discrete closure
spaces, i.e. closure spaces where every x € X has a minimal neighbourhood

or, equivalently, for each ¥ C X,C(Y) = U, ey C({y}). Thus (finite) discrete
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structures, like graphs or Kripke structures can be (re-)interpreted as quasi-
discrete closure spaces. For example, consider the graph of Figure [I| where a set
Y of nodes is shown in red (Ta)); the closure C(Y) of Y is shown in green (IH).

(a) (b)
Fig. 1: A set of nodes Y in a graph and its closure C(Y) (1b).

Being a special case of graphs, also digital images can be modelled by (fi-
nite) quasi-discrete closure spaces. In particular, the pixels of the image are the
nodes of the space, whereas the relevant relation is typically both reflexive and
symmetric. It may relate any pixel with all the pixels with which it shares an
edge, i.e. 5 pixels in 2D images, or with all the pixels with which it shares an
edge or a corner, i.e. 9 pixels in 2D images. In the first case, the relation is called
othogonal, whereas in the second case it is called orthodiagonal; in Section [3] we
will use the orthodiagonal relation, also called the adjacency relation in [I8]. For
instance, the closure of the set of red pixels Y in Figure is shown in green
in Figure where the orthogonal relation is used, and in Figure where the
orthodiagonal relation is used instead.

(a) (b) ()

Fig. 2: A set of red pixels Y in a digital image (2al) and its closure C(Y') according
to the orthogonal relation and the orthodiagonal relation .

The hierarchy of closure spaces is shown in Figure

2.1 The Spatial Logic for Closure Spaces - SLCS

In [QUT0] the Spatial Logic for Closure Spaces (SLCS) was proporsed. In the
remainder of this section we briefly recall the fragment of the logic we use in
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Fig.3: The hierarchy of closure spaces.

the present paper, which consists essentially of S4—where the ¢ operator is
renamed A (to be read as near) for clarity reasons—enriched with an additional
operator, the surrounded operator S, where &1 S &, characterises the set of points
belonging to an area satisfying #; and such that one cannot “escape” from such
an area without hitting a point satisfying @, i.e. they are surrounded by ;.
The syntax of SLCS is given below, for P a set of atomic predicates p:

¢122p|_|¢|¢1\/¢2|./\/'¢|¢18¢2 (1)

In the sequel we provide a formal definition of the satisfaction relation for SLCS.
To that purpose, we need to first introduce the notion of path. A (quasi-discrete)
pathmin (X,Cg) is a function 7 : N — X such that for all Y C N, 7(Cgyec(Y)) C
Cr(m(Y)), where 7(Y) is the pointwise extension of 7 on a set of points Y and
(N, Csuce) is the closure space of the natural numbers with the successor relation:
(n,m) € Succ < m =n+ 1. Informally: the ordering in the path imposed by N
is compatible with relation R, i.e. w(i) R7(i 4+ 1). Technically, a (quasi-discrete)
path is a continuous function from (N,Cgycc) to (X,Cr). We refer to [10] for
details. Set Y C X is path-connected if for all points y1,y2 € Y there exists a
path 7 and an index 4 such that: 7(0) = y1, 7(i) = y2 and 7 (j) € Y, for all
0<j<i

Definition 2. A closure model M is a tuple M = ((X,C), V), where (X,C) is a
closure space and V : P — 2% is a valuation assigning to each atomic predicate
the set of points where it holds. °

Definition 3. Satisfaction M,z |= @ of a formula @ at point x € X in model
M= ((X,C),V) is defined by induction on the structure of formulas:
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Mz=peP < zeV(p)
Mz =-9 < M,z = D does not hold
Mz EP V Py Mz =Py or M,z = Py
Mz ENO s zelC{yM,y =P}
MzE=Ed,SPy & M,z Py and
for all paths © and indexes £ the following holds:

7(0) =2 and M,n({) E —Pq

implies

there exists index j such that:

0<j <t and M,n(j) E P2 .

Standard derived operators can be defined in the usual way e.g.: &1 A &y =
(=P V—Py), T=pV —p, L=-T, and so on.

In Figure an example is shown of a model, based on a 2D space of 100
points arranged as a 10 x 10 grid, with reflexive, symmetric and orthogonal re-
lation. We assume the set of atomic predicates P is the set {black, white, red}
and, in Figure [a] we color in black the points satisfing black and similary for
white and red. In Figure [4b| the points satisfying formula black V red are shown in
greeﬂ similarly, Figure shows the points satisfying —(black V red), and Fig-
ure [4d] shows those satisfying A black. Finally, the points in Figure [a] satisfying
black satisfy also black S(N'red). Several examples of use of SLCS, extensions
thereof, and related model-checking tools can be found in [QTO/T3IBIT2/TYTT]

(a) (b) (c) (d)

Fig.4: An example model ; the points shown in green are those satisfying
black V red (b)), —(black \V red) , and Nblack .

Finally, we show the formal relationship between the SLCS surrounded op-
erator interpreted on quasi-discrete closure spaces and the temporal logic weak
until operator. Let us consider a set X and a relation R C X x X; the pair
(X,CR) is a quasi-discrete closure space, but also a Kripke frame; any valuation
V of atomic propositions makes such a space (frame) a closure model (Kripke
model). The until operator ®1UP, is well-known. Let us recall the weak until
operator &1 W @5, whose satisfaction for path 7 is defined as M, 7 = &1 W Py
ifft M,7(i) = &1 for all i, or M, 7 = &1U P2 (note that W and U are path-
formulas). The following holds:

2 Note that this colour does not correspond to any atomic predicate and so it is not
part of the model; we use it only for illustration purposes.
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Proposition 1.
@2 \Y (@1 8@2) = A(@l W@Q)

where A is the path universal quantifier. The proof is provided in the Appendix.

2.2 The Collective Extension - CSLCS

In this section we show how the logic defined above is extended in order to
reason about sets of (connected) points, instead of individual points (see [10]
for details). We introduce an additional class of formulas, namely the collective
formulas by extending the grammar given in as follows:

W::=—|W|y71/\y72|@<!p‘g@ (2)

Let @ be an SLCS formula (“individual” formula, in the sequel), and ¥ a
collective formula. Informally, & —< ¥ (read: @ share ¥) is satisfied by set Y
when the subset of points of Y satisfying the individual property @ also satisfies
the collective property ¥. Formula G® (read: group @) holds on set ¥ when the
elements of the latter belong to a group, that is, a possibly larger, path-connected
set of points, all satisfying the individual formula @. The satisfaction relation
¢ for CSLCS is defined below:

Definition 4. Satisfaction M,Y ¢ ¥ of a collective formula ¥ at set Y C X
in model M = ((X,C),V) is defined by induction on the structure of formulas:

MY ¢ -V < MY ¢ ¥ does not hold
M,Y ):C U A Wy @M,Y ':C '] and./\/l,Y ':C /2%
MYEcP < Ve M{zeY Moo eV
MY EcGP & there exists Z C X such that
Y C Z and Z is path-connected and
for all z € Z we have: M,z |= P .

Back to Figure[da] we note that, although each point satisfying black satisfies
also (black V white)Sred, the set consisting exactly of the two points satisfying
black does not satisty the collective formula G((black vV white)Sred), i.e. the mem-
bers of the set are not surrounded collectively by red points. The set of black
points in Figure [5| instead satisfies G((black V white)Sred).

Fig.5: A model where the set of the black points satisfies G((black V white)Sred).



8 Ciancia et al.

Finally, it is useful to note that M,Y =¢c & —< G.1 for every M and every
Y if and only if @ = L. Thus the formula & —< Gl can be used for checking
wether @ denotes the empty set.

3 Discrete Spaces with Adjacency and RCC8D

In this section we briefly introduce a subclass of quasi-discrete closure spaces,
namely those spaces (X,Cr) where the underlying relation R, called the adja-
cency relation, is reflerive and symmetric. The points of any such space can be
thought of as pizels and the space itself can be used as (a model for) a digital
picture [I§].

Discrete Mereotopology (DM) is concerned with the study of the relations
among regions, where a region is interpreted as an arbitrary aggregate ¥ C X
of pixels. In particular, Mereology is the theory of parthood and those relations
which can be defined in terms of it. Parthood is defined as set inclusion restricted
to non-null regions:

P(Yl,YQ) =def Y1 Q Y2 and Yl 7é @

The intuition behind the definition of P(Y7,Y5) is fairly simple and comes from
set theory: Y7 is part of Y5 and should not be empty. The derived relations are
defined below. They are readily explained in terms of set theory; the interested
reader is referred to [I8] for a discussion on the region relations and on their
relationships:

PP(Y1,Y2) =qet P(Y1,Y2) AY] #£Y5 [PROPER PARTHOOD)]
Pi(Y1,Y2) =4t P(Ya, Y1) [INVERSE PARTHOOD]
PPi(Y1,Y2) =qet PP(Y2, Y1) [INVERSE PROPER

PARTHOOD]
0(Y1,Ys) det YaNY1 #0 OVERLAP]

= [
PO(Y1,Y2) =aqer 0(Y1,Ys) A —P(Y7,Y2) A —P(Y2,Y7) [PARTIALLY OVERLAP]
DR(Y1,Ys) =qer —0(Y1,Y2) [DISCRETE]
EQ(Y1,Y2) =der P(Y1,Y2) AP(Y2,Y7) [EQUAL]

The relation set {DR,P0,PP,PPi, EQ} is referred to as RCC5D, i.e. the Discrete
Region Connection Calculus based on 5 relations, which is a purely mereological
language. It is extended to the mereotopological language RCC8D through the
addition of the topological notion of connection and operators derived thereof,
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as follows:
C(Y1,Ys) =qgot W1Y2(y1 € Y1 Aya € Yo Ay1 Rys) [CONNECTION]
DC(Y1,Y3) =get 7C(Y1,Y5) [DISCONNECTION]
EC(Y1,Y5) =qef C(Y7,Y2) A —0(Y1,Y5) [EXTERNAL
CONNECTION]
TPP(Y1,Y2) =qer PP(Y1,Y2) A3Z(EC(Z,Y1) NEC(Z,Y2)) [TANGENTIAL
PARTHOOD]
NTPP(Y1,Y2) =qef PP(Y1,Y2) A -3Z(EC(Z,Y1) ANEC(Z,Y2)) [NON TANGENTIAL
PARTHOOD]
TPPi(Y1,Ys2) =qer TPP(Y2,Y7) [INv. TANGENTIAL
PARTHOOD]
NTPPi (Y7, Y2) =qef NTPP(Y>, Y7) [INv. NON TANG.
PARTHOOD]

The relation set {DC, EC, PO, TPP, NTPP, TPPi, NTPPi, EQ} forms what is known
as RCC8D. In Figure [f] we give an illustration of these relations using models
based on a 2D space of 100 points arranged as a 10 x 10 grid, with reflexive,
symmetric and orthodiagonal relation, as in [I8], which we refer to for a more
detailed description.

i

[T [T
(e) TPP (f) NTPP (g) TPPi (h) NTPPi

Fig. 6: The eight RCC8D relations.

4 Encoding RCCS8D into CSLCS

Let us now focus on the encoding of RCC8D in CSLCS. Let (X,C) be a finite
closure space. We associate the atomic predicate py to each set Y C X, such
that in all closure models M = ((X,C),V) we have V(py) = Y. The encoding
[-] of RCC8D in CSLCS is defined in the sequel.
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We first encode standard set theoretic and closure operations into CSLCS in
the obvious way; in the sequel v, 1,72 range over expressions on sets built out
of constants, complement, intersection and closure:

[Y] = py,for all Y € X [CONSTANT]

7] =Dl [COMPLEMENT]
[vi N2 = [n] A el [INTERSECTION]
€N =N(D [CLOSURE]

Now we add the tests on the empty set, on set-inclusion and set-equality;
note the use of the format ® << G_L to check for the empty set, discussed at the
end of Section 2t

[v=0] =[] <gL [EMPTY]
[vi € 72) = [(m N72) = 0] [INCLUSTON]
[v1 =2 = €] A € 1] [EQuaLiTy]

Finally, the actual encoding of (RCC5D and) RCC8D is given below and is
self-explanatory; the right-hand side of the equation for the encoding of a re-
lation is just the logical encoding of the set-theoretical expression used in the
definition of the relation presented in [I8] and recalled in Section [3|of the present
paper:

[P(Y1,Y5)] =[Y1 CYo] A [y =0] [PARTHOOD]
[PP(Y1,Y2)] =[P(Y1,Y2)]A—[Y1 =Y5] [PROPER PARTHOOD]
[Pi(Y1,Y2)] = [P(Y2,Y1)] [INVERSE PARTHOOD]
[PPi(Y1,Y2)] = [PP(Y>2,Y7)] [INVERSE PROPER
PARTHOOD]
[0(Y1,Y2)] =-[YiNnY; =0] [OVERLAP]
[PO(Y1,Y2)] = [0(Y1,Y2)] A —[P(Y1,Y2)] A =[P(Y2,Y1)] [PARTIAL OVERLAP]
[DR(Y1, Y2)] = —[0(Y1,Y2)] [DISCRETE]
[EQ(Y1,Y2)] = [P(Y1,Ya)] A[P(Ye,Y7)] [EQUALITY ON
NON-NULL REGIONS]
[c(Y1,Ys)] ==([C(Y1)NYe =0] V[C(Y2) NY; =0]) [CONNECTION]
[DC(Y31,Y2)] = -[C(Y1,Y2)] [DISCONNECTION]
[EC(Y1,Y2)]  =[c(¥1,Ya)] A—[0(Yr,Y2)] [EXTERNAL
connection]
[TPP(Y1,Y2)] = [PP(Y1, Y2)] A —[C(Y1) NYz = (] [TANGENTIAL PP]
[NTPP(Y71,Ys)] = [PP(Y1, Y2)] A [C(Y1) NYe = (] [NONTANGENTIAL PP]
[[TPPi(Yl, YQ)H = HTPP(YQ, Yl)]] [INVERSE
TANGENTIAL PP]
[NTPPi(Y7,Y2)] = [NTPP(Y3, Y1)] [INVERSE

NONTANGENTIAL PP]

Correctness of the above encoding is stated below:

Proposition 2. For all RCC8D formulas F the following holds: F' holds in an
adjacency model M = ((X,C),V) if and only if M, X =c¢ [F].
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Proof. The proposition is straightforward to prove. The only case which requires
a bit of explanation concerns the TPP predicate (and NTPP). The definition of
TPP given in [I§] is the following:

TPP(Y1,Ys) = PP(Y1, Ya) A 3Z.(EC(Z, Y1) AEC(Z, Y2)).

We show that the two definitions characterise the same property. Note that,
according to our embedding, TPP(Y7,Ys) implies that C(Y1) N Yz # 0 and Y; C
Ya; the latter also implies, by monotonicity of closure, C(Y;) C C(Y3). Take
Z = C(Y1) N Ya. We show that EC(Z,Y7) holds, i.e. C(Z,Y;) and —0(Z,Y}):
Z C C(Y1) implief’] C(Z) N Yy # 0; moreover C(Y1) N Z = Z and Z # () by
hypotesis; so C(Z, Y1) holds. Y; C Ys implies Y1 N Y3 = ), which in turn implies
ZN Yl = (Z), i.e. _‘O(Z, Yl)

Now we show that EC(Z,Y3) holds, i.e. C(Z,Y2) and —0(Z,Y3): We have
already proved C(Z) NY; # 0; so we get § # C(Z)NY; C C(Z) N Y because
Y1 C Yo, ie. C(Z) NYa # ; moreover ) # C(Y1) NYa = C(Y1) N (C(Y1) NYa) C
C(Y2)N(C(Y1)NYs) because C(Yy) C C(Yz) and C(Y2)N(C(Y1)NYs) = C(Ya)N Z;
so C(Z,Y2) holds. Z C Ys implies Z N Y, = 0, i.e. =0(Z,Yz). In conclusion, we
proved that there exists Z such that EC(Z, Y1) and EC(Z,Y>) which, together
with P(Y7,Y3), completes the first half of the proof.

Now, suppose that PP(Y7,Ys) and there exists Z such that EC(Z,Y;) and
EC(Z,Ys); then Z C Ya, because EC(Z,Y5) implies —0(Z, Y3); moreover, EC is
commutative, so we have also EC(Y7, Z), which implies C(Y;) N Z # 0, and then
C(Y1)NYsy # 0, since Z C Ya. The above, together with P(Y7, Ys), completes the
proof.

Correctness of our definition of NTPP can be proved in a similar way and is
left to the reader.

Note that our definition of [C(Y7, Y3)] could be simplified to =[C(Y1)NY2 = 0]
due to symmetry of the adjacency relation. We prefer the more general definition
covering also the case in which the underlying relation is not symmetric. Finally,
our definition of [TPP(Y7, Y3)] resembles the alternative definition by equation
(32) in [I8].

5 Model checking RCC8D using topochecker

The tool topochecker is a global spatio-temporal model checker, capable of
analysing either directed graphs, or digital images. The tool is implemented
in the functional programming language OCam]EL catering for a good balance
between declarative features and computational efficiency. The algorithms im-
plemented by topochecker are linear in the size of the input space. The spatial
model checking algorithm is run in central memory, and it uses memoization and
on-disk caching to store intermediate results, achieving high efficiency.

3 Tt is trivial to prove that, for quasi-discrete closure space (X,Cr), whenever R is
symmetric, if B C Cr(A) then Cr(B) N A # 0, for all non-empty A, B C X.
* See http://www.ocaml . org
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For SLCS formulas, the output of the tool consists of a copy of its input,
where the points on which each user-defined formula holds are indicated, e.g.
by colouring pixels (for images), or labelling nodes (for graphs). Although such
mechanism is quite useful (for instance, because it permits one to colour so
called “regions of interest” in medical images), it is not apt to report the result
of checking CSLCS formulas of the form M, =¢ ¢. This is so because the
application of Proposition [2] results in a truth value, not a set of points that
satisfy the property. In order not to change the way topochecker produces
its results, and to permit the use of both “truth-valued” CSLCS formulas and
“point-valued” SLCS formulas at the same time, the tool has been augmented
with a conditional formula constructor. Using this constructor, one can define a
new point-valued formula @ by

Let & = IF ¥ THEN &; ELSE {5 FI

where ¥ is a CSLCS truth-valued formula, whereas @, and @, are SLCS point-
valued formulas. The result of such a definition is that @ is true on the points
where @; holds, if M, ¢ ¥, and on the points where @2 holds, otherwise.
Formulas @; and &, can for instance be atomic propositions that denote “indi-
cator” areas that make truth of the CSLCS formula ¥ observable as graphical
output. Application of the conditional constructor is not limited to image mod-
els; for instance, given a quasi-discrete closure-space (X,Cg), one can augment
the space with new isolated points (these are by definition not connected to X
via R), and new special indicator atomic propositions, which characterize each
new point. These indicator atomic propositions can then be used to produce
output in topochecker via the conditional constructor. The formal details are
left as an exercise.

We use this conditional constructor in the example in Figure [7] to illustrate
the TPP operator using topochecker. On the left, an RGB image is displayed,

N = N =
N = N =
| - = | -
—1 | —1 |
"l = " =

m m

Fig.7: Checking the TPP operator using topochecker.

where each pixel has three colour components, red, green and blue, respectively,
each ranging over 8 bits (i.e. taking values from 0 to 255). This is the input
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of the model checking session. Such input image consists of six rows, each one
containing a green-ish rectangle g; on the left, a red-ish rectangle r; on the right
of it (for ¢ in {1,...,6}) and two more squares further to the right yes; (the
leftmost square) and no; (the rightmost square).

All the information is encoded in the red, green and blue components of each
pixel. Each of the six rows is identified by a different shade of the blue component
of the pixels in that row (for example, in the topmost row the value of the blue
component of each pixel is equal to 0, whereas in row 3 the blue component of
each pixel is equal to 80); the pixels in each green-ish rectangle have their green
component equal to 255, whereas the pixels in each red-ish rectangle have their
red component equal to 255 (therefore, when g¢; and r; overlap, the overlapping
area has both red and green components equal to 255, that is, it shows up as a
yellow-ish area in Fig. . Each pixel in a yes; square has both red and green
components that are equal to 100, whereas each pixel in a no; square has both
red and green components that are equal to 200.

Atomic properties for RGB images in topochecker are equalities and com-
parisons on colour components. For instance one can define the points of g3 U
r3 U yess U nos byﬂ

Let row3 = [blue == 80]

because all pixels in the third row have their blue component set to 80. The
points of | J, r;, i.e. all red pixels in all rows, can be identified by

Let right = [red == 255]

therefore, the red rectangle in row 3, namely 73, is characterised by the formula
row3 & right.

On the right of Figure [7} the image produced by topochecker as a result
of spatial model checking is shown. For each row i, one of the two (right-most)
squares has been coloured in orange. More precisely, yes; is coloured if TPP(g;,r;)
holds, and no; is coloured otherwise (indeed, only TPP(gs3,r3) actually holds).
Such image is produced by the following statement:

Check "orange" checktpp(rowl) | checktpp(row2) | checktpp(row3)

| checktpp(row4) | checktpp(rowb5) | checktpp(row6)

where checktpp is a conditional definition that, for each row ¢, identifies either
yes; or no; according to the satisfaction value of TPP(g;,r;). Since the current
Versiorﬁ of topochecker permits only the definition of point-valued macros (not
of truth-valued ones), the encoding of RCC8D in the definition of checktpp has
been expanded manually, as follows:

5 In the remainder of this section, we employ the syntax of topochecker, using & for
conjunction, | for disjunction, ! for negation, -< for the “share” connective, and Gr
for the “group” connective.

5 This may change in a future release of the model checker.
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Let green(row) = row & left;
Let red(row) = row & right;

Let checktpp(row) =
IF ((green(row) & (!red(row))) -< Gr FF) &
(1 ((red(row) & (!green(row))) -< Gr FF)) &
(P (((N green(row)) & (!red(row))) -< Gr FF))
THEN yes & row
ELSE no & row
FI;

The condition of the IF-statement is a direct encoding of the TPP operator
into basic CSLCS operators following the encoding defined in Sect. [4 If the
condition holds then TPP(g;,r;) holds in the given row, i.e. the green area is
indeed a tangential proper part of the red area, and therefore the small square in
the third column is coloured orange, otherwise the square in the fourth, rightmost
column is coloured orange. This produces the results in Fig. |z| (right). Of course,
this is only one way to visualise the model checking results that exploits the
current features of topochecker and used here for the purpose of illustration.
Other ways can be defined or added as preferred or required by the application
at hand.

6 Conclusions

We defined an encoding of the mereotopological theory RCC8D as a fragment of
the Collective Spatial Logic of Closure Spaces (CSLCS). CSLCS comes equipped
with a model checking algorithm and tool, which also contains an experimental
spatio-temporal extension of the logic. The newly defined encoding adds a region-
based point of view to the point-based methodology of the existing framework.
Such developments can be used right away in current applications of spatial and
spatio-temporal model checking, including spatio-temporal properties of smart
transportation systems [IT14], and medical imaging case studies [2]. Especially
for the latter, it is worth mentioning that a new tool is being developed, which
is specialised for digital images (including 3D —e.g., magneto-resonance— scans
for medical purposes). The tool, called VoxLogicA and described in [4], achieves
a two-orders-of-magnitude speedup in the specialised setting. VoxLogicA does
not yet implement the collective operators of CSLCS, but this is a planned
development, enabling, by the encoding of RCC8D we propose, efficient image
analysis with both the point of views of points and regions. Another interesting
domain of application could be that of the characterisation of spatial properties
and relations in the context of simulation of biological systems [SI716].

One open question regards RCCS8D interpreted in arbitrary closure spaces,
not just the symmetric ones. We consider worth investigating in future work
what operators may be obtained when the underlying relation is directed. Indeed,
many relations can be defined (for instance, region A may be “half-connected”
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to region B when there is an edge from A to B even if there is no edge from
B to A). Application domains and case studies will help to clarify which ones
make more sense in practice.
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A Proof of Proposition

Proof. We prove that, for all models M = ((X,C),V) and points € X, the
following holds:

M, x l# Dy V (@1 8@2) iff M, x l;é A((ﬁl W@Q)

For the direct implication, we proceed as follows:

M,z Py V (D1 S Po)
= {Logic}

M,z Py and M,z £ &1 S Py
= {def. of S}

M,z £ Py and

there exists , £ s.t.

m(0) =z, M, 7(£) & @1, and M, 7w(j) £ Do, forall jst. 0<j< ¥
= {Logic}

there exists m, £ s.t.

m(0) = x, M, 7(£) & D1, and M, w(j) £ Do, forall jst. 0<j <0
= {def. of W}

M, P WDy
= {def. of A}

M,z [ A(P1 W D)

For the one but last step of the above derivation, note that: (i) M,w(¢) [~
&, implies that M,w(i) = @ for all ¢ does not hold; and (ii) M,n(j) }
Py, for all js.t. 0 < j < ¢ implies that, if there exists k s.t. M,7(k) & P,
then, it necessarily must be k& > ¢; but then M, 7 = & U P cannot hold be-
cause this would not allow M, 7(¢) = @4, with ¢ < k.

The derivation for the reverse implication is given below:

M,z = A(PL W Do)
= {def. of A}

there exists 7 s.t.

7(0) = 2 and M, 7 = &1 W Dy
= {def. of W}
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there exist 7, ¢ s.t.
m(0) =z and M, w(f) } &1 and M, 7 b 1 U Py
= {M, 7 £ &1 U Py implies M, w(0) £~ Do}
there exists , £ s.t.
m(0) = 2 and M, 7(¢) £ &1 and M, w(0) }£ P and M, 7 = &1 U Py

Take the minimal ¢ as above. If £ = 0, then clearly M, z & $1SP, by definition
of 8, and since we also have M,z £ $o, we get M,z = Py V (P18P3), i.e.
the assert. If instead ¢ > 0, then clearly M, 7(j) E &; for 0 < j < £, by
minimality of ¢, and since we also have M, 7 [ &1 U Py, we get M, m(j) = Po
for 0 < j < £. So, there exist 7, s.t. 7(0) = z, M, w(¢) = =Py and for all j, 0 <
J <, M,7(j) & P2, which, by definition of S, is equivalent to M,z & &1 SP,.
Moreover, since we also know that M, 7(0) & @3, we get M,z = Po V ($15P3),
i.e. the assert.
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