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ABSTRACT

Silica-based optical fibers, fiber-based devices and optical fiber sensors are today integrated in a variety of harsh environments associated with
radiation constraints. Under irradiation, the macroscopic properties of the optical fibers are modified through three main basic mechanisms: the
radiation induced attenuation, the radiation induced emission and the radiation induced refractive index change. Depending on the fiber profile of
use, these phenomena differently contribute to the degradation of the fiber performances and then have to be either mitigated for radiation tolerant
systems or exploited to design radiation detectors and dosimeters. Considering the strong impact of radiation on key applications such as data
transfer or sensing in space, fusion and fission-related facilities or high energy physics facilities, since 1970’s numerous experimental and theoretical
studies have been conducted to identify the microscopic origins of these changes. The observed degradation can be explained through the generation
by ionization or displacement damages of point defects in the differently doped amorphous glass (SiO,) of the fiber's core and cladding layers.
Indeed, the fiber chemical composition (dopants/concentrations) and elaboration processes play an important role. Consequently, identifying the
nature, the properties and the generation and bleaching mechanisms of these point defects is mandatory in order to imagine ways to control the fiber
radiation behaviors. In this review paper, the responses of the main classes of silica-based optical fibers are presented: radiation tolerant pure-silica
core or fluorine doped optical fibers, germanosilicate optical fibers and radiation sensitive phosphosilicate and aluminosilicate optical fibers. Our
current knowledge about the nature and optical properties of the point defects related to silica and these main dopants is presented. The efficiency of
the known defects to reproduce the transient and steady state radiation induced attenuation between 300 nm and 2 um wavelength range is
discussed. The main parameters, related to the fibers themselves or extrinsic - harsh environments, profile of use - affecting the concentration, growth
and decay kinetics of those defects are also reviewed. Finally, the main remaining challenges are discussed, including the increasing needs for
accurate and multi-physics modeling tools.

1. Introduction

Silica-based optical fibers are used for a large variety of applications ranging from high speed, high bandwidth data commu-
nications [1], diagnostics to point or distributed temperature or strain sensing [2]. Most of these applications exploit their low

* Corresponding author.
E-mail address: sylvain.girard@univ-st-etienne.fr (S. Girard).

https://doi.org/10.1016/j.revip.2019.100032

Received 14 February 2019; Received in revised form 10 April 2019; Accepted 17 April 2019

Available online 24 April 2019

2405-4283/ © 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/24054283
https://www.elsevier.com/locate/revip
https://doi.org/10.1016/j.revip.2019.100032
https://doi.org/10.1016/j.revip.2019.100032
mailto:sylvain.girard@univ-st-etienne.fr
https://doi.org/10.1016/j.revip.2019.100032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.revip.2019.100032&domain=pdf

S. Girard, et al. Reviews in Physics 4 (2019) 100032

attenuation that typically ranges below one dB km ! at infrared (IR) telecom wavelengths. All the fiber intrinsic advantages explain
that they are today widely used in telecommunications, structural health monitoring, the oil and gas industries and in medicine [3]. A
very particular application case concerns their integration in harsh environments associated with ionizing or non-ionizing radiations
as those encountered in space, high energy physics facilities, fusion and fission-related facilities [4,5]. Radiation usually strongly
alters the functionality of commercial microelectronic technologies, preventing as a general rule, their use for dose levels exceeding a
few Gy [6]. The optical fibers are generally used as part of data links for signal transport from the irradiation zones to instrumentation
zone, free of radiations [7], later as key component of diagnostics [8,9] and today they serve as the sensitive element of numerous
sensors’ architectures, either punctual (Fiber Bragg Grating (FBG) [10]) or distributed technologies based on Rayleigh, Brillouin or
Raman scattering [3].

It has been shown since more than 50 years that radiation degrades the fiber optical properties in a very complex way, the
main change being called radiation induced attenuation (RIA). RIA corresponds to a decrease of the fiber transmission capability
[4,11]. The RIA levels and kinetics strongly differ from one fiber to another [12]. Numerous studies have been devoted to the
analysis of the underlying parameters driving this phenomenon, especially to develop more radiation tolerant devices. To un-
derstand the RIA origins, the basic mechanisms of the radiation effects at the molecular scale have to be studied. Nowadays, it's
well established that point defects are created by either ionization or displacement damage processes leading to structural
modifications in the pure or doped amorphous host silica matrix of both fiber core and cladding [13-15]. These radiation
induced point defects are associated with optical absorption (OA) bands causing the observed excess loss under irradiation.
Numerous experimental spectroscopic studies have been devoted to the characterization of the structure, optical or electronic
properties of these point defects in silica as well as to the understanding of their thermal or photo-stabilities. The identification
and attribution of these active centers, to a given molecular organization/configuration, is based on their specific signature
responses which can be highlighted by using several crossing techniques such as the spectroscopic ones (absorption, lumines-
cence, Raman, electron paramagnetic resonance...). A number of review papers [15-18], volumes and book chapters [19-21] as
well as PhD thesis [22-25] have been devoted to the analysis of these optically-active point defects, mainly focusing on pure
silica and Ge-doped silica. Even if a large part of these studies is of fundamental interest to understand the optical fiber re-
sponses, the fiber case notably differs from the one of bulk glass. Indeed, a fiber is manufactured by the successive deposition of
numerous differently doped silica layers. Each of these layers will present a different radiation response, leading to a non-
homogenous generation of defects in the optical fiber transverse cross-section. In addition to this composition inhomogeneity,
the fibers are characterized by different internal stress levels in the various layers and at their interfaces, this stress being related
to their manufacturing and drawing process. This stress will also affect the generation efficiencies of some of the defects, this is
the case for example of the non-bridging oxygen hole centers (Si-NBOHC) that are more easily created from strained Si-O-Si
bonds than from regular ones [26]. Furthermore, in optical fibers, the light can only be guided through guided modes that are in
limited number, the relative light power associated to the mode propagating into each layer depends on the waveguide prop-
erties and so the contribution of the defects to the global RIA. For single-mode (SM) fibers, at Telecom wavelengths such as
1550 nm, between 15% and 40% of the light can be guided in the claddings of some specialty optical fibers. Under the modeling
point of view, guiding properties, as a function of the fiber geometry, can be obtained by numerically solving Maxwell Equations
[27,28] using experimentally determined macroscopic dielectric constants. However, the main theoretical efforts have been and
are still mainly focused on the assignment between experimental spectroscopic signatures and point defects atomic structures
[29,30], including attempts to understand generation and conversion mechanisms [29,31-34].

In this review, we focus the analysis on the fiber radiation response in the 300 nm-2000 nm spectral domain, discussing which are
the main defects responsible for the fiber degradation when exposed to transient irradiations (fusion facilities, military applications) or
steady state ones (fission, high energy physics facilities). Even if the active optical fibers such as the Erbium, Erbium-Ytterbium-doped
ones are not directly discussed, it is today well-established that their radiation responses is explained by the host glass matrix selected
for their incorporation that usually contains phosphorus and/or aluminum dopants (see [5] for more details).

2. Radiation effects on optical fibers

In this section, we briefly describe the radiation effects on optical fibers and their impact on the related applications, more details
can be found in the recent review [4]. Three major effects are observed that can impact the functionality of fiber-based technologies:

o The radiation induced attenuation (RIA)
e The radiation induced emission (RIE)
o The radiation induced refractive index change (RIRIC)

The relative importance of these three phenomena depends on the considered fiber, the harsh environment and the fiber profile of
use. RIA almost affects all targeted applications, RIE can generally be mitigated for most of the applications/environments. RIE can
also be used for dosimetry purposes, exploiting the Cerenkov emission [35] or the radioluminescence [36]. RIRIC or compaction is
mainly observed under neutron exposure [37,38] and will especially affect the performances of fiber-based sensors exploiting the
glass structure to monitor environmental parameters and in-core instrumentation, exposed to very high fluences of fast neutrons,
above 10'° n.cm 2 and to high doses of associated gamma radiations (GGy levels) [39,40].
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Fig. 1. Main parameters affecting the radiation response of a silica-based optical fiber in terms of RIA, RIE and RIRIC. The fiber structure is
illustrated as well as the nature of the glass at the core and cladding interface. The inset illustrates a typical silica model used for ab initio calculation
of the point defect properties: core is made of Ge-doped silica and the cladding is in pure silica (Si atoms are in red, Oxygen ones in green and Ge
atoms in purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.1. Radiation-induced attenuation

RIA corresponds to an increase of the fiber attenuation when exposed to radiation. RIA levels and kinetics depend on many
parameters that are reviewed in Fig. 1 and explain why this research domain is still strongly active. Indeed, the response of a given
silica-based fiber has been shown to depend on the irradiation characteristics: dose or fluence (expressed in Gy(SiO2)) [12,41], the
dose rate or flux (Gy(SiO./s)) [42,43], the temperature of irradiation [44,45] and of its profile of use: injected light power [46],
operating wavelength [47,48]. Furthermore, the RIA levels strongly depend on the fiber intrinsic characteristics such as the com-
position of its core and cladding [4,49,50], its manufacturing process [51-53], its opto-geometric parameters [54] and its light
guiding properties [55].

During the irradiation of the fiber at room temperature (RT), a RIA growth is usually observed and when the irradiation stops, for
most of the fibers, the RIA decreases partially, reaching a permanent value depending strongly on the temperature. This behavior can
be explained by competitive defect generation and bleaching mechanisms occurring during irradiation, while bleaching mechanisms
clearly dominate the post-irradiation processes. The main parameter controlling the fiber radiation response in terms of RIA is its core
and cladding composition. Usually, the fiber doping profiles are optimized to achieve two main objectives: first one is the design of
the fiber refractive-index profile that defines the guided modes, confinement factor or sensing properties as its Brillouin signature.
The second one is to ensure that the glass presents very low attenuation, reducing the absorption and Rayleigh scattering levels close
to their theoretical limits.

For these reasons, the common doping elements (named dopants or codopants) are quite limited in number for passive optical
fibers: germanium (Ge), fluorine (F), boron (B), phosphorus (P), aluminum (Al) and nitrogen (N). Most of the telecom-grade optical
fibers possess a Ge-doped core and either a pure silica cladding or a cladding doped with a combination between the Ge, P and F
dopants. Phosphorus and Aluminum dopants are widely used in the core of active optical fibers to reduce the clustering of the rare-
earth ions (Er®*, Yb®*...) [56] and then improve the performances of the fiber-based amplifiers or lasers. As it was shown that fibers
containing one of these two dopants are very radiation sensitive, the response of passive Al- and P-doped optical fibers is today more
and more studied pushed by the increasing need for distributed dosimetry techniques. Boron is also today widely used in polarization-
maintaining optical fibers or to increase the photosensitivity of germanosilicate optical fibers for easier FBG writing. No recent study
has been really devoted to the impact of this dopant on the fiber radiation vulnerability. There exists another class of optical fibers,
less studied in the literature, that have their cores doped with nitrogen through the reduced-pressure plasma chemical vapor de-
position (SPCVD) process [57]. These N-doped fibers present several very interesting properties, including a good radiation tolerance
at low doses for both transient [50] and steady state irradiations [50,57-59]. These fibers also present strong radioluminescence and
optically stimulated luminescence that can serve for online monitoring of photon or proton beams [60]. Another class of fibers is not
covered by this review, the microstructured and photonic band gap (PBG) fibers as only a few papers deal with their radiation
response [61-65]. For the PBG fibers, these fibers present very low RIA levels under steady state y-ray irradiation thanks to their air-
core and pure silica structure [63,64]; for high dose rate transient exposures their potential sounds promising in comparison with
usual PSC fibers but needs more investigations as an unusual dose dependence of the RIA was observed in [65].

Fig. 2 illustrates the RIA dose dependence at 1550 nm observed for four different optical fibers during a steady state X-ray
irradiation: The pure-silica core (PSC) F-doped cladding optical fiber and Ge-doped, P-doped and Al-doped fibers, all with pure silica
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Fig. 2. a) Illustration of the X-ray RIA dose dependence measured at 1550 nm at RT for four different fibers: pure-silica core (PSC), Ge-, P- and Al-
doped cores b) Cathodoluminescence panchromatic images of the fiber cross sections under ~ 20 keV electron beam: ¢) PSC fiber with luminescence
bands peaking at 450 nm, 540 nm and 650 nm from defects present in both its core (red circle) and cladding (blue circle); d) Ge-doped MMF with
defects emitting around 400 nm located in its core e) P-doped MMF without luminescence in its core; f) Al-doped SMF fiber with a strong core
luminescence around 350 nm. The last three fibers present the same emitting centers in their claddings than the PSC fiber.(For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

claddings. From this figure, it is evident that at 1550 nm, the third telecommunication window, the four fibers present very different
vulnerabilities. The PSC fiber presents the lowest level of induced losses at this wavelength, with RIA of about ~40 dB.km ™! after
1 MGy dose. Indeed PSC fibers, together with F-doped fibers, have been shown to be the most radiation hardened waveguides for
applications having to operate at such high dose levels: ITER [8,66], nuclear waste repository [67], nuclear industry [68] or high
energy physics facilities [69,70]... In this case, their radiation response is even more complex as the RIA levels and kinetics are
strongly influenced by the amounts of impurities (chlorine, hydroxyl groups) [71-74] and by the glass properties: fictive temperature
[75], stoichiometry [76,77]. By affecting the glass structure and disorder, variation of the fiber manufacturing or drawing processes
changes its radiation sensitivity by modifying the nature and concentration of the sites acting as precursor reservoir for the generation
of the optically active radiation-induced defects: strained bonds, oxygen-deficient centers, oxygen-excess centers.

Hydrogen also plays a key role in the defect creation and bleaching mechanisms and then in defining the fiber vulnerability
[78,79]. Indeed, hydrogen, coming either from the harsh environments [67] or generated by radiations through interaction with the
fiber coating or cable material [38] is able to easily diffuse into the optical fibers with kinetics depending mainly on the temperature
and fiber geometric parameters [80]. After reaching the fiber core, hydrogen interacts with the radiation-induced defects passivating
some of them (see [80] for a detailed study). As a consequence, hydrogen loading was investigated for the radiation hardening of
optical fibers, showing promising results mainly for pure-silica core in the visible-near infrared [8,81] and active Er- and ErYb-doped
optical fibers at the pump and signal wavelengths [82,83]. This hardening technique is of no practical use if the loaded fibers are
coated with polymers as H, will be able to diffuse out the fiber in a few weeks at room temperature. For long term operation of loaded
fibers, dedicated structures, such as metal-coated optical fibers [84] or carbon-coated optical fibers were first suggested to ensure that
hydrogen remains inside the fiber over long periods [83] but imply performing the loading treatment at both high pressure and high
temperature (> 300 °C). More sophisticated fiber structure has then been proposed, allowing to replenish the H, reservoir in situ
during the irradiation at high doses thanks to the addition of longitudinal holes made in the fiber cladding [85]. Later this concept
was combined with the implementation of a carbon coating, which allowed manufacturing H,-loaded holey active fibers in an H,
impermeable coating without employing too high pressure and temperature that can degrade their amplification properties (so called
hole-assisted carbon-coated optical fibers) [86]. It must be pointed out that the passivation of the radiation induced point defects by
hydrogen (or by deuterium, D,) is accompanied by the generation of Si-OH (Si-OD) and Si-H (Si-D) bonds, resulting in increasing
absorption at infrared wavelengths [80]. As a consequence, H, (or D,) loading is not useful for applications needing optical fibers
operating in the second or third telecom windows. For such cases, radiation hardening techniques are now focusing on the opti-
mization of the preform fabrication regimes [76,77] as well as fiber drawing regimes [87].

Together with pure-silica core fibers (F-doped cladding), F-doped fibers are considered as the most radiation tolerant to high dose
(>100 kGy) steady state y-ray or X-ray irradiations and are used for a variety of applications in such environments from data links
[69,70] to diagnostics [8,88].

However this class of fibers sounds less tolerant to transient high dose rate exposures, with very high transient loss levels [50] that
prevent their use without appropriate treatments [89], e.g. by low dose pulsed pre-irradiation [90]. The Ge-doped fiber presents
intermediate response with about ~250 dB.km ™! at the same dose level. This class of fibers can be used in radiation environments
but only at low dose levels (<100 kGy), for relatively short lengths, the main application for such fibers under radiation are data links
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and distributed sensing. Germanosilicate fibers are also widely used for FBG manufacturing as this glass is photosensitive but under
radiation the use of FBGs written by femtosecond laser in pure or F-doped silica should be preferred to reduce the FBG degradation
[10, 91]. Al and P-doped fibers are very radiation sensitive, having losses at 1.55 um higher than 50000 dB/km at 1 MGy. These fibers
cannot be used in radiation environments except to serve as radiation detectors or dosimeters [92-94]. The exceptional potential of P-
doped fibers for dosimetry was first investigated in [95] and is today exploited in the various facilities of CERN for distributed 1D
dose mapping thanks to its unique response at 1550 nm related to the generation of the P, defect [96,97].

2.2. The radiation-induced emission

When exposed to radiation, light can be generated into the optical fiber core and guided to the detection system. The RIE can
originate from different mechanisms. For high flux of sufficiently energetic particles Cerenkov light is observed, only during the
irradiation run. This Cerenkov signature is, for example, observed in the case of the optical fibers used for in-core monitoring [35] or
for fibers used for plasma or laser diagnostics during an ignition shot and tested under very high dose rate pulsed X-rays [4]. In
addition to Cerenkov, precursors or radiation induced defects can also be associated with luminescence bands and this signal can be
observed during irradiation too. The RIE phenomenon is illustrated in Fig. 2b, that gives the panchromatic images recorded during
cathodoluminescence measurements, i-e irradiation of the fiber cross section with 20 keV electrons and recording the generated
luminescence (integrated between 300-800 nm) in the various fiber regions. As it can be easily seen by considering that all fiber
claddings are made with the same pure silica, Ge and Al doping are associated with strong RIE while in case of P-doping, the RIE
levels are strongly decreased. A complete characterization of the cathodoluminescence responses of the fiber types can be found in
[98,99]. Today the RIE and luminescence properties of irradiated fiber-based materials are widely studied for dosimetry applications,
particularly for medicine applications (see [100] for a recent review). The radioluminescence of Ge, Ce, Cu, N and Gd-doped glasses
or of O, loaded pure-silica fibers are investigated for photons [36,101-103], protons [104,105] or neutrons [106] in situ beam
monitoring. For passive dosimetry, the thermoluminescence properties of the Ge-doped fibers are also deeply characterized for post-
irradiation ionizing and non-ionizing dose measurements [107,108], these fiber materials show performances overcoming those of
commercially-available thermoluminescent dosimeters.

2.3. The radiation-induced refractive-index change

Radiation can change the glass structure, leading to a pure or doped silica compaction and refractive index (RI) changes. These
effects are of primary importance when the fiber is used as a point or distributed sensor relying on the glass response to temperature or
strain. The RIA leads to RI change via the Kramers-Kronig relations. Two main contributions are usually considered: the first one is
related directly to absorption bands of point defects; the second one is related to densification, which can be estimated via the Lorentz-
Lorenz relation [10,109-113]. Regarding the Lorentz-Lorenz relation, it was shown that i) the refractive index linearly increases with
the density at a rate of ~0.18 g~ cm® [13,109], ii) the densification (Ap/p) can be described by the law A x DX, where A is a constant,
D is the dose, and k is equal to 1 for fast neutrons and swift ions whereas it is on average 2/3 for y-rays, electrons, or UV light [110,114]
and iii) radiation induced densification is limited to 3-4% for pure silica [13,40,114]. On the other side, in the Kramers-Kronig relation
the RIRIC increases with the amplitude of the induced absorption and it is inversely proportional to (\>-¢%), where A is the wavelength
at which the RIRIC has to be evaluated and ¢ is the wavelength of the absorption [10]. Regarding the point defect contribution to RIRIC,
it should be remembered that the concentrations of most of these defects tend to saturate at values lower than 10'® cm ™2 for doses of
~10 kGy [13,115,116], exceptions being the SiE” and NBOHC defects whose larger concentrations do not exceed 10%° cm 3. As a
consequence, the part of the RIRIC in the near-IR due to these UV absorbing defects can hardly be the sole responsible for the large RI
variations reported at high doses or fluences. Obviously, for the low dose RIRIC the two contributions should be considered. On this
regard, we note that the Kramers-Kronig relation usually employed remains an approximation [111] and that its correct evaluation
requires the knowledge of the RIA spectral dependence in a large domain. In general, it seems possible to evaluate the contribution of a
specific defect to the RIRIC, but it appears much more complicated to infer if one or more species of color centers are the unique origin
of the RIRIC. Furthermore, in optical fibers different layers have different compositions and can be subjected to different starting stresses
so that structural modification and defect generation can have spatial distributions. These spatial distributions can imply a spatial
distribution of the RIRIC that can modify the guiding properties fixed by the refractive index profile.

3. Points defects related to SiO, and its main dopants

To make the transition between a phenomenological and trial-and-error based development model and a guided rational design of
specialty fibers, a deep knowledge on the atomic structure and related spectroscopic signature of point defects is a basic requirement.
In addition, clear maps of their formation and conversion mechanisms have to be drawn. Experimentally, it is desirable to have access
to preforms and fibers that are manufactured ad hoc to have a sufficient knowledge and control on their chemical composition and
manufacturing conditions. To distinguish such samples with commercially available ones, they are sometimes labeled with the prefix
“canonical” in our studies (see [117-119] for more details). The main and standard characterization techniques comprise EPR,
optical absorption (IR, visible and UV) and luminescence. In special cases, also Raman might provide with some insights [120-122].
In order to identify centers together with their corresponding generation and conversion mechanisms, it is necessary to monitor,
analyze and compare the behaviors of several fiber samples when exposed to different radiation sources (photons, electrons, protons,
neutrons...) and doses at different conditions as, for instance, temperature, pressure or loading with gases (Ha, O3) [123-125].
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Fig. 3. Illustration of the coupled experimental /simulation approach used to identify the structural and optical properties of radiation-induced
point defects in silica. More details can be found in [117-119].

Correlating some of the spectroscopic signatures and behavior to given center structures is, therefore, an expensive, formidable and
cumbersome task which does not guarantee the construction of a meaningful model for the underlying atomic-scale mechanisms. In
this context, atomic scale theoretical modeling might be a very useful complementary tool. Theoretically, electronic and optical
properties of defects were historically (and sometimes still) addressed within the framework of Density Functional Theory (time
dependent or not), (TD)-DFT, or Hartree-Fock and Configuration Interaction in very small cluster models or molecular analogs
[33,34,126-128], in embedded clusters [129,130] or in bulks [131-137]. After the precursory work of E. Chang et al. [138] that
demonstrated the accuracy of solving the Bethe-Salpeter Equation (BSE) within the GW approximation for modeling optical prop-
erties, the combination of both has become a standard in the field, that has allowed for univocal assignments between measured
experimental optical bands and atomic structure [29,139]. Indeed, the BSE accounts, in a computationally efficient way, for
screening and electron-hole interactions from first-principles. The development of the GIPAW [140-142] formalism based on DFT has
represented also a revolution in the field that has opened the way for a parameter-free calculation of the EPR parameters as Fermi
contacts and g-tensors. The GIPAW has successfully been applied to relate measured EPR parameters with the underlying atomic
structure [143-146]. Fig. 3 describes at a glance the standards in modeling and spectroscopic characterization tools.

In this section, we review the main point defects reported in the literature in either the non-irradiated or irradiated glasses used to
manufacture the silica-based optical fibers. For the classification, we considered first the defects observed in pure or F-doped silica
glasses as fluorine has never been associated to a particular defect structure apart from Si-F linkage. However, its presence modifies
the glass disorder resulting in lowering the concentrations of strain bonds and then the ones of some silica intrinsic defects [17].
Then, we review the point defects associated with the following dopants: Ge, P, Al. For each known defect, the following information
are given if available: its structure, its paramagnetic or diamagnetic nature (allowing or not its EPR investigation), its associated OA
band(s) (peak energy and full-width at half maximum (FWHM), oscillator strength), its optical luminescence (OL) band(s), if any
(peak energy, FWHM, lifetime) as well as some of the key references about this particular defect structure. Latest available theoretical
spectroscopic signatures are provided as references or explicitly discussed in the tables listing those properties.

3.1. Point defects in pure silica

Table 1 reviews the main properties of the silica-related point defects identified in the literature on the basis of spectroscopic
investigations: OA; OL or EPR combined with treatments such as irradiation, thermal annealing or gas loading (H,, O, or D»). It
should be noticed that all defects cannot be characterized through the three techniques. As examples, the diamagnetic defects cannot
be probed by EPR and only parts of the defects are luminescent centers. These experimental limitations combined together with the
strong overlapping in the defect OA responses explain that these centers have been studied for the last 50 years. Today, part of these
limitations can be overcome thanks to the development of new multi-physics simulation approach illustrated in Fig. 3.

To highlight the complexity of the RIA in the PSC optical fibers, Fig. 4 compares the RIA observed at RT in a MM PSC solarization-
resistant optical fiber one second after an X-ray pulse (200 Gy(SiO») and dose rate > 1 MGy/s) [177] and during a continuous y-ray
irradiation at a dose of 200 Gy (3 mGy/s).

In both cases the higher RIA levels are observed in the visible domain with reduced degradation in the near-IR. For the transient X-
ray pulsed irradiated fiber, no OA band can be distinguished in the RIA spectrum. The set of Gaussians used to fit the RIA spectra is
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Fig. 4. Illustration of the RIA spectra measured in a PSC solarization resistant multimode optical fiber (MMF) a) 1 s after an X-ray pulse at RT b)
during y-ray irradiation at 200 Gy (RT) with a dose rate of 3 mGy/s. The best achievable fits are reported using the set of defects described in Table 1
and the OA bands of the defects involved in the fiber response.

based on the data of Table 1 that reviews the main characteristics of the silica-related defects. It is evident that the most of the RIA above
2.5 eV is attributable to chlorine related defects such as Cl, and CI°. The defects absorbing too far in the UV such as ODC(I), E” centers
have no or negligible impact in the spectral range of interest for optical fibers. Similarly, the self-trapped holes (STHs), having life-time
of the order of tens of seconds [12], represent the most absorbing defect for energies lower than 2.2 eV. The largest difference between
the transient and continuous irradiations concerns the relative STH; and STH, amplitudes, highlighting the metastable nature of these
defects. Furthermore, in the X-ray pulsed irradiated optical fibers, the contribution of NBOHC to the RIA was found to be negligible. In
[74], the Gaussian deconvolution of the RIA spectra for times between ~0.2 and 1 s after X-ray pulse reveals that the RIA spectrum is
well described by the two RIA bands due to strain-assisted STHs (1.66 eV and 1.83 eV). In a very recent work [147], it was found out
that at smaller post-pulse times (~10 ps — 10 ms), the RIA decay occurs at much higher rate than at larger times. This supports the
assumption that at shorter times the RIA can be explained by the contribution of the inherent STHs and their OA bands centered below
1 eV in the near-IR range. Theoretically, STHs in pure silica models have been addressed in the framework of DFT [148] and their
formation at strained bonds discussed [149,150]. Still a large amount of work should be done to provide exploitable results in the
context of fibers, especially as it was shown that the STHs’ properties could differ between bulk and fibers.

For environments associated with MGy dose levels, it was shown that by reducing the amount of Cl impurity, the contribution of
the absorption bands of the Cl-related species to the UV and visible RIA can be minimized, the NBOHCs then becoming the main RIA
contributor. This can be achieved in silica at the cost of increasing the hydroxyl groups (Si-OH) content (“wet” fibers) and by
particular preform deposition technique allowing manufacturing optical fibers with both low-OH and low-Cl contents. This last
category usually presents radiation response dominated by the STH contribution. To further improve the resistance of this class of
fibers in the visible, it is possible to apply some pre-treatments such as H, loading before the radiation exposure. This hardening
technique was first proposed by Nagasawa et al. [79] for optical fibers, its effects being later investigated in details for the ITER
project [8,78,81] or for space applications (see Section 2.1).

For applications working in the IR domain, e.g. at the two 1310 and 1550 nm telecommunication wavelengths, it has been
recently shown that O,-loaded fibers exhibit better radiation-response than their classical counterparts, in particular the contribution
of self-trapped holes defects to the IR-RIA seems lowered [76,77]. At larger doses (> 10 kGy) and in the IR domain, one long-
wavelength non-Gaussian OA band peaking at the wavelength of >1.7 um has also been observed in PSC fibers (as well as in Ge- and
N-doped fibers) by several researchers [49,58,76,151,152]. The behavior of this absorption is very similar to that of low-temperature
infrared absorption (LTIRA) discovered by Chernov et al. [153] that is associated with inherent STHs: both bands are peaking around
0.6-0.7 eV, are non-Gaussian and seem composed of a continuum of states. However, if the LTIRA component features very short
lifetime [153], the former band appears very stable even at increased temperatures. As an example, this long-wavelength OA band
stretch up to 1 um at GGy doses and high neutron fluences associated with in-core testing and appears as the major RIA contributor at
1550 nm [151,152]. With regards to its thermal stability, this absorption may be different from the LTRIA one; for sure further studies
are needed to improve our knowledge on the RIA origin in this spectral domain. A few studies [154,177,155] also report the possible
presence of an OA band around 1 eV, observed today in PSC fibers which needs also further investigations to be definitively asso-
ciated to a defect structure.

3.2. Germanium-related point defects

Table 2 reviews the main properties of the Ge-related point defects that were first discussed in the literature on the basis of OA, OL
or EPR measurements and more recently through ab initio calculations. The properties of some of these defects have been deeply
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Fig. 5. Illustration of the RIA spectra measured in a Ge-doped MMF a) 1 s after an X-ray pulse at room temperature (RT, 200 Gy, > 1MGy/s) b)
during vy-ray irradiation at 200 Gy (RT) at 4 mGy/s. The best achievable fits are reported using the set of defects described in Table 2 and the
corresponding OA bands.

studied such as the ones of the GeE’, Ge(1), and Ge(2) defects as they can be easily investigated in bulk or preform samples [179,201].
Other defects, only impacting at larger wavelengths (typically above 400 nm) have been less characterized even if they strongly affect
the Ge-doped fiber transmission properties in the visible — near-IR, this is for example the case of GeX defects whose structure is still
unknown.

Fig. 5a) illustrates the RIA spectra measured one second after an X-ray pulse (200 Gy(SiO,), dose rate > 1 MGy/s) for a Ge-doped
multimode fiber (62.5 um core diameter; undoped cladding) [202]. Fig. 5b) shows the RIA spectra measured under steady state y-rays
after the same dose (~4mGy/s) in the same fiber. Both tests were done at RT and the comparison between the obtained results
highlights the existence and contribution of metastable defects, which strongly contribute to RIA at high dose rate or low temperature
irradiations. These unstable defects cannot easily be studied by post mortem analysis such as EPR measurements. These results are
typical of the ones obtained for Ge-doped SMFs or MMFs. The choice to study a MMF rather than a SMF is explained by the fact that
the influence of the light guiding effects on the IR-RIA spectra is minimized in large core fibers. The RIA levels are larger in the UV
and visible ranges than in the IR and no OA bands can be easily distinguished as a result of the overlapping between the numerous
bands of Ge-related defects. These two RIA spectra were reproduced using the set of defects reported in Tables 1 and 2. A first
important result is that in the case of Ge-doping of the silica glass the generation of Ge-related defects is favored compared to the Si-
related ones. The latter centers are present but contribute less to the induced losses in the visible-IR spectral as discussed on the basis
of ab initio calculations [139].

Before discussing the RIA spectra, it must be pointed out that the OA and OL signatures of some of these defects such as Germanium
Lone Pair Centers (GLPC) or the Ge-Non Bridging Oxygen Hole Centers (Ge-NBOHCs) are observed in both non-irradiated germano-
silicate preforms and optical fibers [203,204]. GLPCs that are present in the native fibers serve as precursor sites for the generation of Ge
(1) and Ge(2) defects under irradiation [115,125]. As a consequence, the GLPC concentration decreases with the dose [59] explaining
their absence in the RIA spectra. As shown in Fig. 5 defects such as Ge-E” or Ge(2) absorbing in the UV part of the spectrum can only
marginally contribute to the RIA in the 400 nm — 2000 nm spectral range where germanosilicate optical fibers are used. Indeed, at lower
wavelengths, their linear attenuation is too high even before irradiation for signal transmission. In the visible range, Ge(1), GeX and Ge-
NBOHC defects mainly explained the observed RIA during steady state X-rays, y-rays or neutron exposures [205-208].

For the case of transient exposures, as those associated with ignition experiments, the contribution of a RT metastable defect
absorbing around 3.28 eV [205] appears as mandatory to reproduce the RIA spectra (see Fig. 5a. orange band). It is interesting to
consider that adding this defect allows to fully reproduce the transient IR-RIA spectra. This defect seems absent under steady-state vy-
ray irradiation but for this case, the RIA spectral dependence in the near-IR cannot be explained by the defect set reported in Table 2.
Regarding the contributing defects, if the nature and properties of Ge(1) and Ge-NBOHC have been deeply studied, the GeX properties
remain mostly unknown despite its practical importance for visible, near-IR applications. In the near-IR, the origins of the RIA in the
germanosilicate optical fibers are still unknown. Very recently, an OA band around 900 nm (1.38 eV) has been observed and asso-
ciated to a Ge-related defect, named as GeY. Its structure is still unknown. At larger wavelengths, this long wavelength RIA has been
tentatively explained by the generation of Ge-STHs by analogy with the work of Chernov in pure silica [153], but further studies are
needed to confirm this hypothesis (see Section 3.1 for a more detailed discussion). Ge-STHs and GeY defects are still not sufficient to
reproduce the measured RIA, at least another source of optical losses around 0.9 eV has to be identified for continuous irradiation. For
transient ones, the transient band at 3.28 eV in combination with them allows to fully reproduce the RIA spectrum. It must also be
pointed out that the concentrations and properties of these Ge-defects can be affected by the presence of other codopants such as P or
F in fibers with mixed composition. Finally, in Table 2 the emission properties of these defects are also reported as they can be
exploited for a variety of dosimetry-related applications.
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Table 3
osphorus-related point defects: main optical characteristics and key references.
Phosph lated point defe in optical ch isti d key ref
Name Structure Param OA peak eV Oscillator strength Note PL peak eV (FWHM eV, Refs
(FWHM) eV lifetime RT)
m-POHC” Yes 2.2 (0,35) 0.5 None reported [116,220,222]
T, . 2.5 (0,63) 0.5 None reported
r'.l"'q_':!"r e
& Mo
5.3 (0,74) 0.5 None reported
s-POHC” ¢ T \:'.\_'l. 3.1 (0,73) 0.5 None reported [116,220,222]
A
&
'"r.i" -:‘1'
P1 .E Yes 0.79 (0,29) 0.0007 None reported [116,220, 222]
# :I‘I,I"'-
P2 o, .-._.-" Yes 4.5 (1,27) 0.035 None reported [116,220, 222]
o
o
P4 '-'\.. . Yes 4.8 (0,41) 0.014 None reported [116,220, 222]
PO2 l}‘,, No > 55 eV Unknown Unknown None reported [223]
I:r-__}'.
P,05” No 5.9 0.001 None reported [224]
6.1° 0.05 None reported [224]
[(0-)3-P:1° [224] [+ 5 6.4° 0.04 None reported [224]
D_m-"r;l ]
Type I PODC [225] 8 0.3 Small cluster None reported [225]
simulation
8.43 0.2 Small cluster None reported [225]
simulation
PO,” No 4.7 (0,7) © 0.002 3 (highly asymmetric;  [226]
5-6 ms)
I::"‘-.. .-__ﬂ 6.4 (0,6) © comparable with the 4.7 3 (highly asymmetric;
,-_f"' ="'"|;_-, PLE peak 5-6ms)
P205” No 6.9% 0.004-0.006 None reported [224]
[(0-)s-P = 01° o, ’- 7.16° 0.002 None reported [224]
f
7 M
[224] 7.2° 0.002 None reported [224]
PO3** No 6.1° 0.009 None reported [224]
[+ O 6.5° 0.006 None reported [224]
r__"'rP:’:':.
[(0-)>-P(=0),]1° 7.2° 0.009 None reported [224]
[224] 5.1-5.4% 0.001 None reported [224]
PODC II :'h. ﬂ'". No 6.82-6.99 0.02-0.1 Small cluster None reported [225]
.:_.-‘-:-.\__ simulation
© POHC EPR intensity correlates to the sum of all the OA bands.
@ in ref [220].
© from ab-initio simulation.
®

3.3. Phosphorus-related point defects

from PL excitation.

Table 3 reviews the main properties of the P-related point defects. If this dopant is associated with a variety of absorbing centers,
only one luminescence band around 400 nm has been attributed to a P-related species. A very complete and pioneer work basing on
OA and ESR measurements on thermally-treated and irradiated samples was published by D.L. Griscom in 1983 [220], recent deep
theoretical and experimental investigations of the radiation effects in phosphosilicate glasses have been done by L. Giacomazzi et al.
[224] and D. Di Francesca et al. [116] respectively. As phosphosilicate glasses are more transparent in the UV (before irradiation)
than Ge-doped optical fibers, these fibers could be adapted for some specific applications in the 300 nm-2 pm domain. As an example,
P-doped fibers have been designed for the laser diagnostics of megajoule class lasers [205,221]. Fig. 6 compares the RIA spectra
measured for a P-doped MMF after an X-ray pulse and during a steady state irradiation (here with 40 keV X-ray instead of y-rays).
Once again, the obtained spectra have been fitted using the set of P-defects reported in Table 3. For both irradiation cases, these fibers
are shown to be very radiation sensitive with loss levels as high as 100 dB m ™' at 600 nm after a 200 Gy dose.
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Fig. 6. Illustration of the RIA spectra measured in a P-doped MMF a) 10s after an X-ray pulse at room temperature (RT, 200 Gy, > 1MGy/s) b)
during X-ray irradiation at 200 Gy (RT) at 100 mGy/s. The best achievable fits are reported using the set of defects described in Table 3 and the
corresponding OA bands.

In the visible and near-IR range, the induced losses are mainly caused by the OA band of the various forms (stable, metastable as
defined by [220]) of the phosphorous-oxygen hole centers (POHC) with small contributions from the P, and P, OA bands absorbing at
wavelengths below ~400 nm (E > 3 eV). At infrared wavelengths, the OA band of P; defect can be easily distinguished but this single
defect cannot explain all the losses in this spectral domain. Our analysis clearly highlights that we still miss the origin of the RIA
around 1.2 eV. It should be noted that adding a new OA band (free peak position and FWHM) seems not sufficient to reproduce the
RIA spectra.

Indeed, at least two additional components seem needed. These phosphosilicate glasses are well adapted to dosimetry applications
as well as a host matrix for active optical fibers. Hardening studies on Er and Er-Yb fiber amplifiers show that the P-related defects,
especially Pj-centers, can be efficiently bleached by the hydrogen-loading of the glass or by Ce-codoping [82,86]. Another parti-
cularity of this defect is that its concentration can increase after the end of the irradiation, as it was shown that POHCs can recombine
into P, at room temperature [220].

3.4. Aluminum-related point defects

Literature devoted to Al-related point defects remains significantly less well supplied than for the other silica-associated centers.
First results have been obtained for natural silica that contains Al as impurity [227-229], only in few cases the investigated samples
have Al contents that can be compared to those used for optical fiber manufacturing [55,230-232]. As a consequence, whereas for the
natural silica it is accepted that the Al can be inserted in the glass matrix replacing the Si and with an alkaline charge compensator as
neighbor [228,229] in doped silica (some weight percent) this aspect still needs further investigations to be confirmed. Table 4 details
the optical absorption bands associated with the Al-defects. As shown in Fig. 7, this defect set is sufficient to describe the RIA
measured in the UV-visible spectral range in aluminosilicate fibers both during X-ray steady state irradiation and a few seconds after
a pulsed X-ray. Regarding these attributions we notice that the relation between the Al-OHC and the 2.3 eV OA band is well supported
by various investigations [232,228], whereas the others have still to be confirmed. As an example, there are some investigations in
which the 2.3 eV OA band is clearly present in the RIA spectrum whereas the 3.2 eV seems absent or with a smaller relative amplitude
[228] with respect to those observed in [232,230]. Anyway, the bands reported in Table 4 are not sufficient to fit the data from the
UV to the NIR as evidenced in [230]. Recent investigations have highlighted that the Al-doped fibers are good candidates for
radiation detection [55], a better understanding of the Al insertion in silica matrix as well as the properties of its related defects
represents, for sure, one of the future challenges.

4. Conclusion

In this review paper, we presented the main macroscopic radiation effects on optical fibers: the radiation induced attenuation, the
radiation induced emission and the radiation-induced refractive index change. The amplitudes and kinetics of these changes depend
on a large number of parameters, some of them being related to the fibers such as composition or manufacturing processes; others are
extrinsic such as the ones related to the irradiation characteristics and the fiber profile of use. These macroscopic effects can mainly
be explained by the point defects generated by radiation in the pure or doped silica layers constituting the fiber core and cladding.
Understanding their generation and bleaching mechanisms, identifying their optical properties (absorption, luminescence) and
thermal stabilities allow devising ways to control the fiber radiation response. Such optimization is done to enhance the fiber
radiation resistance, hardening studies, as it was successfully proved by the H, loading treatments of the fibers or by the codoping of
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Table 4
Aluminum-related point defects: main optical characteristics and key references.
Name Structure Param. OA peak eV (FWHM Oscillator Note PL peak eV (FWHM eV, lifetime Refs
eV) strength RT)
AI-OHC  =Al-0-Si= Yes 2.3 (0.9) 0.060 PL excited in the range 1.5-1.0 and 0.7-0.2 [232,233]
1.7-2.5
3.2() 0.124 Proposed by simulation Unknown
4.9 (1.08) 0.126 See ref [233] for the oscil. Unknown
strength
AIE =Al- Yes 4.1(1.02) 0.214 Unknown [232]
4.9 (1.08) 0.126 Unknown
? ? ? Higher than 7.5 eV Unknown Structureless induced Unknown [228]
absorption
under ArF irradiation at 80 K
Transit No Excitation ArF laser Unknown The decrease of the 2.7 P1 4-4.5 (not reported; 4.5 ns)
ODC(ID) ? ? was attributed to the back [228]
relaxation
Modified Unknown of the surrounding 2.7 (not reported,1.7 ms)”

@ afterglow during hundreds of seconds after switching off the laser [228]; recombination between STHS and modified ODCs(II).
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Fig. 7. Illustration of the RIA spectra measured in an Al-doped MMF a) 1 s after a pulsed X-ray (6.2 Gy, > 1MGy/s) b) during X-ray irradiation at
200 Gy (RT) at 100 mGy/s. The best achievable fits are reported using the set of defects described in Table 4 and the contributing OA bands.

P or Al-doped fibers with Ce®* ions. There is also today an increasing interest for using radiation sensitive optical fibers for radiation
detection or dosimetry. In this paper, we presented typical responses of the four main types of fibers to both pulsed X-ray irradiations
(representative of fusion by inertial confinement constraints) and steady state X-ray or y-rays irradiation (representative of space and
nuclear industry constraints). We reviewed the today's knowledge about the point defects related to silica, Ge, P and Al and discussed
how the known defects can explain the measured RIA. Though the identified defects are usually able to reproduce the loss excess in
the UV and visible, for most of the fiber types, it is clearly shown that we are still missing part of the infrared RIA origins despite the
large use of fibers at Telecom wavelengths. Historically most of the acquired knowledge was obtained by combining various ex-
perimental spectroscopic techniques such as absorption, luminescence, or electron paramagnetic resonance. Today with the estab-
lishment of very accurate and parameter free first-principle approaches, as GW-BSE and GIPAW, it becomes possible to somehow
overcome the experimental limitations and to support the correlation between defect structure and experimentally observed sig-
natures. However, the application of parameter-free accurate approaches, that overcome the known drawbacks of Density Functional
based-frameworks, on complex models (interacting dopants and/or defects) larger than few hundreds of atoms, requires an order of
magnitude leap in computational power to be achieved successfully. In addition, the accurate modeling of self-trapping through
electronic excitations, as well as luminescence is yet not straightforward. Only one group was able to perform the extremely com-
putationally demanding calculation of the structure and luminescence of Self-Trapped Excitons in quartz [183] within the GW-BSE
framework. On the other side, while point defects in pure silica have attracted most of the theoretical efforts, primary, because of
their interest for microelectronics, the number of available studies decreases significantly for Ge-doped silica and furthermore for
other dopants relevant for optical fibers. Indeed, entire class of dopants, impurities and related defects lack, even, from an atomic-
scale structure model that reproduce some experimental spectroscopic signatures and/or explain some measured behavior. The
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drawing of an exhaustive map of defects and dopants together with their spectroscopic signature and generation and conversion
mechanisms that links experimental results with atomic-scale models is a priority.
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