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Generation of spin currents by a temperature
gradient in a two-terminal device
Rafael E. Barfknecht 1,2✉, Angela Foerster 3, Nikolaj T. Zinner4,5 & Artem G. Volosniev6

Theoretical and experimental studies of the interaction between spins and temperature are

vital for the development of spin caloritronics, as they dictate the design of future devices. In

this work, we propose a two-terminal cold-atom simulator to study that interaction. The

proposed quantum simulator consists of strongly interacting atoms that occupy two tem-

perature reservoirs connected by a one-dimensional link. First, we argue that the dynamics in

the link can be described using an inhomogeneous Heisenberg spin chain whose couplings

are defined by the local temperature. Second, we show the existence of a spin current in a

system with a temperature difference by studying the dynamics that follows the spin-flip of

an atom in the link. A temperature gradient accelerates the impurity in one direction more

than in the other, leading to an overall spin current similar to the spin Seebeck effect.
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The coupling between charge and heat currents—the ther-
moelectric effect—was discovered more than two centuries
ago. Today, this effect is a standard topic in physics

textbooks1, and is at the heart of thermoelectric generators and
thermocouples. The spin thermoelectric effect—the interaction
between heat and spin currents—has a much shorter history2–4,
but it already demonstrates the potential to complement the
success of its older sibling. Spin thermoelectrics encompasses spin
Seebeck5, spin-dependent Seebeck6, spin-dependent Peltier7, and
related physical phenomena, which may lead to conceptually new
devices based on the spin degree of freedom. While solid-state
setups have provided crucial insight into the problem of spin
transport, their limited degree of tunability does not allow one to go
beyond the parameter regime given by the material at hand.
Therefore, a logical next step is to explore spin thermoelectric effects
using quantum simulators, in particular, cold-atom simulators,
which provide a highly controllable environment for studying
transport phenomena8,9. Features of cold-atom systems such as the
possibility to realize low-dimensional geometries and to control
interactions are particularly favorable for the study of spin transport.

It has been proposed to simulate certain features of spin
caloritronics using three-dimensional cold gases where spin-up
particles are separated from spin-down particles by applying
a spin-dependent temperature gradient10,11. However,
those approaches are experimentally challenging, especially
in a strongly interacting regime. In this work, we propose a
two-terminal device to study spin thermoelectrics for strongly
interacting systems. Two-terminal cold-atom systems are a
state-of-the-art interpretable platform for studying transport
phenomena12–15, and a playground for developing sophisticated
quantum technologies. To illustrate our idea, we study the
dynamics of a strongly interacting two-component atomic system
in a small one-dimensional link between two reservoirs at dif-
ferent temperatures. The system has a large population imbal-
ance, and we focus on the dynamics of the minority component.
To describe the system, we employ a basic theoretical model,
which does not manifest any heat and charge transfer (in contrast
to the DMRG study performed in Ref. 16, for instance). Instead, it
exhibits certain features of the magnon-driven spin Seebeck
effect17. In particular, it contains the microscopic physics of a
spin current in a ferromagnetic insulator.

In our study, we rely on a correspondence between strongly
interacting one-dimensional systems and spin chains. For zero
temperature, this correspondence was studied theoretically in
Refs. 18–27, and experimentally in a few-body setup of Ref. 28. In the
present work, we use it to study the dynamics of a finite-
temperature system. In most cases, we will focus on the dynamics
that follow a single spin-flip in the link, namely the “impurity”
model, which connects our findings to the physics of spin excita-
tions in cold-atom simulators29. However, our observations can be
generalized easily to a few spin impurities placed in the reservoirs.

For convenience of the reader, let us summarize the main
findings of the paper: a) we introduce an effective model for
studying the time dynamics of a strongly interacting one-
dimensional system at finite temperatures. This allows us to cir-
cumvent the need to explicitly include excited states in the ana-
lysis; b) Using this model, we present a microscopic theory in
which a spin current is induced by a temperature gradient.

Results
System description. We consider a quasi-one-dimensional
quantum wire whose ends are connected to two infinite reser-
voirs, see Fig. 1. The system is spin-polarized at t < 0 (t for time),
i.e., it contains only ‘spin-up’ fermionic particles. The reservoirs
are at two different temperatures, T1 and T2, which are kept

constant at all times. Moreover, the system is in a steady state at
t≃ 0, i.e., there are no mass currents. At t= 0, there is a spin-flip
of a particle in the link, which can be implemented in cold-atom
experiments using microwave or radio frequency pulses. The spin
impurity allows us to introduce a meaningful definition of a spin
current, since, with a spin-polarized system, one can study only
mass currents. Note that, without interactions, the motion of the
impurity cannot be affected by the temperature gradient. There-
fore, non-trivial spin dynamics is possible only if particles
interact. The goal of this paper is to understand the quench
dynamics at t > 0 assuming that the ‘spin-up’-‘spin-down’ inter-
action is strong. We do not introduce any sudden changes to the
trapping geometry of the system and assume that a single spin-
flip does not influence the density (cf.21). In other words, we keep
the spatial densities fixed and focus only on the spin dynamics.
To validate this assumption, we note that the motion of the
density of strongly interacting 1D systems is much faster than
time evolution of the spin degrees of freedom—an effect related to
the well-studied phenomenon of spin-charge separation, see, e.g.,
Refs. 30–34 for more detail about this effect in cold-atom systems.
This allows us to consider spin dynamics in mesoscopic samples
with a fixed density (cf.35–37).

We remark that the reservoirs in cold-atom experiments are
finite, and, thus, we must clarify the meaning of a steady state at
t < 0. Indeed, if one simply prepares a cold-atom system with a
temperature mismatch, then particles will first flow from the hot
reservoir into the cold reservoir due to the difference in chemical
potentials, in agreement with the Landauer picture38. Later,
the particle current might be reversed due to the difference
in the particle number between two reservoirs, and, eventually,
the system will come to a thermal equilibrium. We note that
the timescale of particle transfer can be tuned in these
experiments14,39. In particular, this timescale can be made
comparable or smaller than the timescale associated with
spin transfer in small strongly interacting one-dimensional
systems, which is typically 0.1−1ms. This makes the steady-
state assumption adequate.

Fig. 1 Sketch of the system. A small link connects a hot (red, right)
reservoir at temperature T2 to a cold (blue, left) reservoir at T1 (T2 > T1).
Initially, the system is completely polarized (black ‘spin-up’ particles), and
by assumption there is a time-independent temperature gradient across the
link. a At t= 0 a particle at the center of the system has its internal state
changed by a spin-flip pulse. b Due to the presence of the temperature
gradient, one observes a spin current across the system, which is caused by
the motion of the impurity from the low- to the high-temperature region.
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We consider the link between the reservoirs as a one-
dimensional strongly interacting gas whose size and the number
of particles is fixed. To simulate the effect of the reservoirs whose
properties are not affected by the emission and absorption of
particles from the link, we will later employ a Lindblad master
equation, with spin-flip operators acting at the edges of the
system. These play the role of the impurity being exchanged with
a particle from a reservoir. We shall also include a ‘pump’ term,
which realizes a spin-flip at the center of the chain, in contrast to
the operators acting at the edges. These effects could in principle
also be modelled through a closed-system approach, in which the
entire system (both reservoirs plus the link) are described by a
strongly interacting, low-density, one-dimensional system40,41.
We leave, however, the exploration of this approach to future
studies.

Hamiltonian. To model the link disconnected from the reser-
voirs, we adopt the following ‘fundamental’ Hamiltonian

H ¼ ∑
N"

i¼1
hsðxiÞ þ ∑

N#

j¼1
hsðyjÞ þ g∑

i;j
δðxi � yjÞ; ð1Þ

where hsðxÞ ¼ � _2

2m
∂2

∂x2 þ VðxÞ is the single-particle Hamiltonian.
Below, the trapping potential V(x) is a box potential, although our
findings can be extended to inhomogeneous potentials that
change weakly on the length scale given by the density of the gas.
Particles in the system have identical masses m, but can be dif-
ferentiated by some internal degree of freedom, which we label as
↑, ↓ and refer to as the ‘spin’. The total number of particles,
N=N↑+N↓, is time-independent, but the value of N↑ (N↓) can
be changed, e.g., by a spin-flip protocol (see below). In cold-atom
experiments, spin can be simulated using hyperfine42 or nuclear
spin states43. The interaction in Eq. (1) is modelled by a delta-
function potential. Its strength g is related to the three-
dimensional scattering length and to details of the trapping
geometry44. For simplicity, we shall use the systems of units in
which ℏ=m= 1.

We assume that particles in the link are strongly interacting, in
the sense that the energy scale associated with interactions is
much larger than any other energy scale of the problem. This
limit is often denoted as g→∞. It can be simulated with cold
atoms at the few- and many-body levels28,45–47. For 1/g= 0, the
Hamiltonian (1) can be related to a problem of N↑+N↓ spin-
polarized fermions48. For strong but finite interactions, it was
shown in Refs. 19–21 that the solution of the problem can be
obtained by diagonalizing the spin-chain Hamiltonian:

HA ¼ EA � 1
2g

∑
N�1

l¼1
αA;lð1� σ l � σ lþ1Þ; ð2Þ

where σ l is a vector of Pauli matrices. Here, A denotes a particular
energy manifold, which determines not only the energy at the
fermionization limit EA, but also the value of the exchange
coefficients αA;l (which furthermore depend on the choice of
the underlying trapping potential). In the Methods section, we
provide details on how the wave function for a particular
manifold A is constructed, as well as how to calculate the
coefficients αA;l.

To date, the focus of theoretical works was mainly on the spin-
chain Hamiltonian with A= 1, which describes the ground state
properties of a strongly interacting system23–26,35,49–52. The
coefficients α1;l that enter H1 have been calculated with great
precision in systems as large as N ≈ 6053,54, allowing one to study
in depth static and dynamic behavior at T= 0. In the present
paper, we extend the discussion of spin-flip dynamics to excited
manifolds, which allows us to study finite-temperature physics.

Exchange coefficients. As mentioned previously, we assume that
V(x) is a box potential, i.e., the potential is zero if− L/2 < x < L/2,
and infinite otherwise. In this case the exchange coefficients are
position-independent for the ground state manifold51,55, i.e.,
α1;i= α1;j. We have checked that αA;i= αA;j also for excited
manifolds (within numerical accuracy 0.01%), which allows us to
simplify the notation: αA≡ αA;i. As an additional check, we have
calculated coefficients αA;i for a random set of {A; i} using
the numerical routine CONAN53. To the best of our knowledge,
there is no rigorous proof that αA;i= αA;j for a general value of A,
but for A= 1 one can show that the coefficients α1,i do not
depend on i by analyzing the Bethe ansatz solution51. It seems
straightforward to extend the line of argument in Ref. 51 to
excited-state manifolds.

We now notice that αA ¼ ∑N�1
i¼1 αA;i=ðN � 1Þ, which is a trivial

identity if αA;i= αA. However, this expression for αA allows us to
integrate over the whole space xi∈ [−L/2, L/2] (see Eq. (14) in the
Methods section). Once the boundaries of a specific ordering of
particles do not play a role, the calculation of αA is simple:
αA= 2EA/L.

The quantity αA/g is the only parameter in Eq. (2) that can
define a non-trivial timescale for the spin dynamics. We use this
fact in the Methods section to show that the spin dynamics at low
temperatures are determined by the Hamiltonian

h ¼ αðTÞ
2g

∑
N�1

l¼1
σ l � σ lþ1; ð3Þ

where α(T)= 2ϵ(T)/L, and ϵ(T)=∑APA(T)EA is the average
energy of a system of N spinless fermions at temperature T. Our
derivation shows that the exchange coefficient α(T) is a natural
extrapolation of the zero-temperature coefficient, α(0)= 2ϵ(0)/
L51,52, to finite T. Note that α(T) is an increasing function of T,
which means that that the spin dynamics becomes faster as we
increase the temperature. This is logical – when we increase T, we
increase the kinetic energy, which makes an exchange of particles
quicker.

We propose to use the Hamiltonian (3) for the analysis of the
time dynamics in a strongly interacting system at finite
temperatures. The advantage of this Hamiltonian [for instance,
with respect to Eq. (15)] is that it can be analyzed using well-
developed approaches to the spin-chain Hamiltonians, see, e.g.,56.
In particular, the spin-flip dynamics can be studied using the
spectrum of magnons (see Methods section for details).

Let us take a moment to discuss the dependence of the
coefficients α(T) on the temperature in the thermodynamic limit.
For small temperatures, we expand the energy ϵ(T) using the
Sommerfeld expansion57, see also58,

ϵðTÞ
L

¼ π2ρ3

6
þ 1

6ρ
ðkBTÞ2; ð4Þ

where ρ=N/L is the density of the gas and kB is the Boltzmann
constant. The corresponding expansion for α reads as

αðTÞ � α1 1þ 1
ρ4π2

ðkBTÞ2
� �

: ð5Þ

where α1= α(T= 0) (that is, the exchange coefficient calculated
using solely the ground state manifold). The expression above
shows a T2-dependence of the coefficients α(T) in this limit. For
high temperatures, the equipartition theorem requires ϵ(T) be
proportional to T. Note that we do not consider this high-T limit
in the paper, since the mapping onto the effective Hamiltonian
(3) fails when the values of α(T) are large, see Methods section.

Finally, we discuss α(T) for a finite number of particles, since
we are mainly interested in experimentally relevant small links
between the reservoirs. In Fig. 2, we show the behavior of α(T) for
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N= 5, 7, and 9. We also plot the low-temperature result of
Eq. (5). For convenience, we normalize kBT by the energy per
particle in the thermodynamic limit (with density ρ= 1), that is
ϵ0= π2/6. All in all, the results for finite N qualitatively agree with
the predictions of Eq. (5) for kBT/ϵ0≪ 1; in other words, finite-
size effects lead only to a quantitative change. To ensure the
convergence of the curves in Fig. 2, we use 106 energy manifolds.
Smaller values of the number of manifolds (e.g.,≃ 104) do not
lead to accurate results for α(T) for the considered parameters.
For the time dynamics, this implies that a simultaneous
consideration of 106 energy manifolds is needed. The effective
Hamiltonian h provides a convenient way to incorporate these
many manifolds. It is worthwhile noting that α(T)/α1≃ 1 for
kBT/ϵ0≲ 2; therefore, a necessary condition for the validity of the
mapping of H onto h can be satisfied in an experimentally
accessible window of temperatures.

In the following, we will use Eq. (3) along with the local density
approximation to study the dynamical properties of an impurity
in the presence of a temperature gradient. Note that we assume
that the local density is constant across the system even with the
temperature gradient. This assumption is crucial, and should hold
true for experimental set-ups, which attempt to measure the
discussed spin dynamics. The Hamiltonian h can be used to
describe also spin dynamics that follow more than a single spin-
flip (arbitrary number of magnons). However, it should not be
used to study static properties. In the derivation of Eq. (3), we
explicitly rely on the time-dependent nature of the problem at
hand. Therefore, we do not expect that Eq. (3) can describe static
properties accurately.

Dynamics in the presence of a temperature gradient. Once we
have established the mapping given in Eq. (3), we can use it to
investigate the quench dynamics. Quench dynamics are con-
sidered to understand transport properties of the many-body
Heisenberg model and related Hamiltonians, especially the
transition from ballistic to diffusive regimes, see, e.g.,59–62. Here
we study quench dynamics to investigate the effect of a tem-
perature gradient on the motion of an impurity. We stress that,
within our formalism, the simplest case of a constant temperature
field across the system leads only to faster dynamics in compar-
ison to the zero-temperature limit, and does not introduce any

additional effects. The temperature gradient is essential for the
findings discussed here.

In this section, we illustrate the dynamics in finite systems (see
the Methods section for a brief discussion of the current in the
thermodynamic limit). To that end, we study time evolution that
follows a spin-flip in a small link with N= 7. First, we consider a
closed system where the link is decoupled from the reservoirs,
and then an open system where the reservoirs are modelled using
the Lindblad master equation. In all calculations, we assume
dimensionless time and temperature units by writing J0t and
kBT/ϵ0 respectively, where J0= α1/g. The corresponding timescale
for cold-atom experiments can be tuned by changing the density
of particles and the value of g. To interpret our results in this
section, one could use values 0.1−1ms, which are typical for cold
alkali atoms, e.g., 6Li.

Closed system. We start our study of the spin-fip dynamics by
assuming a closed system where the temperature gradient is
introduced in the form of a simple step function. We consider the
effective model (3) with the exchange coefficients

αi ¼
αðT1Þ; i < ðN þ 1Þ=2
αðT2Þ; i≥ ðN þ 1Þ=2

�
;

where N= 7, 1 ≤ i ≤ N− 1, and we fix kBT1= 0 and kBT2= 2ϵ0.
For convenience, we define the temperature difference as ΔT=
(T2− T1). For this particular system size, we have ϵ0/ϵF= 1/3,
where ϵF is the Fermi energy.

For the sake of discussion, we take as the initial state
ψ0

�� � ¼ """#"""
�� �

, and then consider time evolution of this
state under the effect of the temperature difference, i.e., we solve
the Schrödinger equation i_ψ0 ¼ hψ with ψ(t= 0)= ψ0. We start
by calculating the average probability for the impurity to be found
at a given site,

hS#i ðtÞi ¼ ψðtÞ� ��S#i ψðtÞ
�� �

; ð6Þ
where S#i ¼ ð1� σzi Þ=2. Figure 3 illustrates the expectation value
of this observable for kBΔT= 2 ϵ0, and the zero-temperature case.
The temperature difference leads to a higher probability for the
motion of the impurity towards the edge with a higher
temperature, in agreement with our discussion for the thermo-
dynamic case in the Methods section.

At ΔT= 0, the dynamics of hS#i ðtÞi can be found analytically,
e.g., by using the Bethe ansatz. The probability of finding the
impurity at a particular site for a large system reads as63

hS#i�i0
ðtÞi ¼ J ji�i0j J0t

� 	h i2
; ð7Þ

where i denotes the lattice site, J is the Bessel function of the first
kind, and i0 determines the initial position of the impurity. This
result is expected to describe a finite system for short times, see
also the experiment of Ref. 29. In Fig. 4, we compare our result for
hS#i ðtÞi to the predictions of Eq. (7). For this comparison, we
choose the sites adjacent to the center of the chain i ¼ Nþ1

2 ± 1.
Figure 4 shows that the temperature gradient introduces an

asymmetry in the motion of the impurity. The impurity moves
towards the hot side, since large exchange coefficients lead to
faster spin dynamics in comparison to the cold side. Figure 4 also
compares exact results to those of Eq. (7) obtained with the
coefficients α(T1) and α(T2). We conclude that Eq. (7) can be used
to study initial dynamics also for ΔT ≠ 0. At later times the
inhomogeneity and finite-size effects start to play an important
role, and Eq. (7) fails.

Open system. We now consider a link in contact with two
reservoirs, as depicted in Fig. 1. To describe the time dynamics of

Fig. 2 Temperature dependence of the exchange coefficients. Exchange
coefficients α(T) for different numbers of particles N= 5, 7, and 9 (dotted
blue, dashed yellow, and solid red curves, respectively). Here, α1 denotes
the values of the coefficients at T= 0. The black dashed curve shows the
prediction of Eq. (5). The inset zooms in the region kBT/ϵ0≪ 1, where kB is
the Boltzmann constant and ϵ0 is the energy per particle in the
thermodynamic limit. All presented quantities are dimensionless.
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spins in the link, we work with the master equation that describes
the time evolution of the spin density matrix, ρs(t),

∂ρsðtÞ
∂t

¼ � i
_

h; ρsðtÞ

 �þ γ

2
∑

i¼1;N
2S�i ρsðtÞSþi � fρsðtÞ; Sþi S�i g
� 	

;

ð8Þ

where � � �½ � and {⋯ } denote the commutator and anti-com-
mutator, respectively, and the jump operators are given by
S± ¼ σx ± iσyð Þ=2. The coupling to the reservoir is quantified
by γ, which we shall always present in units of J0. The parameter
γ describes the rate at which spins up are flipped to spins down
(we do not introduce any "

�� � ! #
�� �

processes at the edges of the
link because we assume that the reservoirs are spin polarized).
Notice that the coupling to the reservoir occurs only at the edges
of the spin chain, and does not depend on temperature (i.e., it is
identical at the left and right edges), since we are mainly inter-
ested in the dynamics in the link.

We write the density matrix at t= 0 as ρsð0Þ ¼ ψ0

�� �
ψ0

� ��,
where ψ0

�� �
is the initial state considered in the previous

subsection, that is ψ0

�� � ¼ """#"""
�� �

. Instead of a step
function, now, we consider a linear temperature gradient across
the system, which within the local density approximation leads to
a set of continuously increasing coefficients αi. The parameter
ΔT= T2− T1 specifies the difference of the temperatures at the
edges of the system. As before, we fix T1= 0. Our main focus is
on the total spin current

jðtÞ ¼ ∑
N�1

i
ψðtÞ� ���σ iyσ iþ1

x � σ ixσ
iþ1
y

	
ψðtÞ
�� � ð9Þ

which expresses the net spin motion in the system, and the total
magnetization

mðtÞ ¼ 1
2
∑
N

i
ψðtÞ� ��σzi ψðtÞ�� � ð10Þ

that registers the effect of the loss terms contained in Eq. (8).
Figure 5 shows the time evolution of j(t) and m(t). The spin

current occurs in the presence of a finite-temperature gradient,
see panel a). The amplitude of this current is controlled by ΔT.
For t→∞ the current vanishes due to the effects of the losses at
the edges. This can also be detected through the total
magnetization: we find that m(t→∞)→N/2, which indicates
that the impurity is completely lost to the reservoirs, and the link
becomes fully polarized.

Next, we consider a scenario where the initial state is fully
polarized: ψðt ¼ 0Þ

�� � ¼ """""""
�� �

. The dynamics is initiated
by adding the spin-flip term to Eq. (8):

PðtÞ ¼ γI
2

2SþNþ1
2
ρsðtÞS�Nþ1

2
� fρsðtÞ; S�Nþ1

2
SþNþ1

2
g

� 

; ð11Þ

which acts only at the center of the chain and can be interpreted
as a constant spin ‘pump’ that introduces spin-down spins in the
system at a rate given by γI (in units of J0).

Figure 6 a) presents time evolution of the total current for
different choices of ΔT. As in Fig. 5 a), no current is generated if
ΔT= 0. For a finite gradient, however, we observe a transient
regime for small t, evolving towards a steady state at longer times.
In the steady state, the losses at the edges match the spin flips in
the center. In the inset, we also show the behavior of the
magnetization, which, contrarily to the previous case, now drops
from the fully polarized value to a constant determined by the
parameters of the master equation. It is worthwhile analyzing the
behavior of the steady-state current (i.e., j(t→∞)) for different
temperature gradients, we observe an increase in this quantity
with ΔT in all cases, see Fig. 6 b). For T→ 0, this increase is
quadratic in temperature, which is in agreement with our
previous remark regarding the low-T limit. We find a noticeable
sensitivity of the values of the steady-state current on the
parameters γI and γ. For example, for very large values of γI,
the system becomes saturated with spin-down particles, which
reduces the total current. Our conclusion however always holds: a

Fig. 3 Time evolution of the impurity. The contour plot presents the
average probability for the impurity to be found at the ith-site, hS#i ðtÞi, as a
function of time, t. The data are for an N= 7 system with an impurity
initialized at the center with a) kBΔT= 0 and b) kBΔT= 2ϵ0. Here, ϵ0 is the
energy per particle in the thermodynamic limit, kB is the Boltzmann
constant, J0= α1/g, where α1 is the value of the exchange coefficients at
T= 0 and g is the interaction strength. In panel a), the impurity probability
evolves symmetrically with respect to the edges as the system is
homogeneous. In panel b), the presence of the temperature difference
across the system leads to a directional motion of the impurity towards the
high-temperature edge. Red (blue) colors correspond to higher (lower)
probabilities. All presented quantities are dimensionless.

Fig. 4 Time evolution of the impurity at the sites adjacent to the center of
a chain with N= 7. Here, kBΔT= 2ϵ0, where kB is the Boltzmann constant
and ϵ0 is the energy per particle in the thermodynamic limit. The red solid
(blue dotted) curve shows the result obtained with Eq. (2) for hS#5 ðtÞi
(hS#3 ðtÞi). The remaining curves show the predictions of Eq. (7) with
α= α(T1) (gray, dashed) and α= α(T2) (black, dot-dashed) at i= 5. Note
that Eq. (7) implies identical probabilities for i= 3 and i= 5. On the
horizontal axis, J0= α1/g, where α1 is the value of the exchange coefficients
at T= 0, and g is the interaction strength. All presented quantities are
dimensionless.
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temperature gradient leads to an overall spin current for all
considered parameters and protocols.

Conclusions
We have studied the dynamics of spin impurities placed in a
small link between two reservoirs of different temperatures. Here,
the link is described by a one-dimensional system of strongly
interacting cold atoms. The reservoirs are simulated using an
open quantum system approach. We argue that the dynamics of
the system can be obtained by considering a spin chain whose
exchange coefficients depend on temperature. Our argument is
based upon the Bose-Fermi correspondence and the local density
approximation.

Having established the effective spin-chain Hamiltonian, we
consider the motion of a single spin impurity initialized at the
center of the link. We observe that the motion of the impurity is
highly influenced by the temperature gradient. The impurity
moves toward the highest-temperature reservoir, leading to a spin
current in the system. Next, we consider a spin pump at the
center of the system. In this case, the system evolves towards a
steady-state regime with a nonvanishing spin current whose
magnitude depends on the temperature gradient. The formalism
presented here can be applied to different atomic models, which
can be mapped onto spin-chain Hamiltonians. For instance,
the same formalism can be applied to study one-dimensional
bosonic systems with strong interactions, which realize a XXZ

Hamiltonian21,23. The spectrum of magnons in such a system can
be modified by manipulating the boson-boson interactions, and,
hence, we expect that the dynamics of an impurity can be made
different from that presented here.

Our study provides a microscopic description of the coupling
between the spin degree of freedom and temperature for strongly
interacting one-dimensional systems. It paves the way for
studying spin caloritronics (and related quantum technologies)
with quantum simulators, in particular, cold-atom simulators.

Even though the present paper focuses on a system of cold
atoms, our results are general and can be applied to other physical
systems described by the fundamental Hamiltonian. For example,
quantum wires at low electron densities provide a possible rea-
lization of the model introduced in Eq. (1). Indeed, in a one-
dimensional geometry, low electron density implies strong
interactions, which can be described using zero-range potentials.
GaAs devices are especially interesting in this regard, for review
see64,65, and references therein. These devices are some of the
cleanest and most studied semiconductor systems. They have
relatively weak spin-orbit coupling, which is a prerequisite of
using Eq. (1). Spin coherence necessary for our study is present in
the system at temperatures that are low in comparison with the
exchange energy between neighboring electrons. To introduce a
spin polarization into the system, one can use a magnetic field.
The listed properties put GaAs set-ups forward as solid-state
systems for observing the physics discussed here.

Fig. 5 Dynamics of spin currents and magnetization. Time evolution, according to Eq. (8), of a) the total spin current and b) the total magnetization with
γ/J0= 3.102 where J0= α1/g (α1 is the value of the exchange coefficients at T= 0 and g is the interaction strength). In both panels kB is the Boltzmann
constant and ϵ0 is the energy per particle in the thermodynamic limit. Curves show results for temperature gradients indicated in the legends. Our choice of
the parameter γ (the rate at which spins are flipped at the edges) is arbitrary. It does not change the overall dynamics, but only the timescale for reaching
equilibrium. All presented quantities are dimensionless.

Fig. 6 Spin currents under the action of a spin pump. a Time evolution according to Eqs. (8) and (11) of the total spin current for different values of the
temperature gradient with γ/J0= 3.102 and γI/J0= 0.620. Here, γ is the loss rate of down spins at the edges (as in the previous plot) and γI is the rate at
which down spins are pumped into the system at the center (kB is the Boltzmann constant, ϵ0 is the energy per particle in the thermodynamic limit, J0= α1/
g, where α1 is the value of the exchange coefficients at T= 0 and g is the interaction strength). The inset shows time evolution of the total magnetization
for the same set of parameters. b The amplitude of the steady-state current as a function of the temperature gradient for different choices of γI. The black
dashed curve shows a quadratic fit for kBΔT/ϵ0 < 1. All presented quantities are dimensionless.
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Methods
Mapping a strongly interacting atomic system onto a spin chain. We assume
that the spectrum of spin-polarized fermions is {E1, E2, . . . } (E1 ≤ E2 ≤ E3 ≤ . . . ); the
set of the corresponding many-body wave functions is given by {Ψ1,Ψ2, . . . }. The
function ΨA yields (N↑N↓)!/N↑!N↓! wave functions of H each with the energy EA.
These functions can be written as

ϕA;iðx1; :::; yN#
Þ ¼ ∑

ðN"N#Þ!
N" !N# !

P¼1
aPΨAðx1; :::; yN#

Þ1GP
; ð12Þ

where 1GP
is an indicator function, GP determines a specific ordering of particles,

e.g., G1 ¼ x1 < x2 < x3 < ::: < yN#
. The coefficients aP can be calculated by con-

sidering 1/g ≠ 0, where the degeneracy of states is lifted.
For strong (but finite) interactions, the energies and coefficients aP are obtained

either using perturbation theory around infinite-interaction point20,66 or,
equivalently, by diagonalizing the Heisenberg Hamiltonian for a given
magnetization (N↑−N↓)/219,21

HA ¼ EA � 1
2g

∑
N�1

l¼1
αA;lð1� σ l � σ lþ1Þ; ð13Þ

The exchange coefficients αA;l are determined solely by the trapping geometry as

αA;l ¼
Z

x1 < :::< xN�1
dx1 ::: dxN�1

∂ΨAðx1; :::; xN Þ
∂xN

����
����
2

xN¼xl

: ð14Þ

In the limit g→∞, the eigenstates of the Hamiltonian (1) are given by the set {ϕA,i};
the corresponding energies are ϵA,i The parameter A determines the energy
manifold (note that ϵA,i≃ EA for all values of i), and i determines the position of the
state within this manifold. We introduce the following notation to express this fact

H ’ ∑
A
HA; ð15Þ

which means that eigenstates in H can be obtained using eigenstates of HA , which
are presented in Eq. (12). This is true as long as the gap between EA and EA±1 is
large enough, i.e., the state A is not coupled by particle-particle interaction to the
states with A ± 1. Such a decoupling is essential for our discussion. It naturally
occurs in few-body systems with large values of g even for highly excited states, i.e.,
for A≫ 1.

Dynamics at finite temperature. We study here the quench dynamics that follow
a spin-flip in the link (assuming that the link is disconnected from the reservoirs)
without a temperature gradient. We consider the following spin-flip protocol at
T ≠ 0: At t < 0, there are N spin-polarized fermions at temperature T, which are
described by the density matrix

ρ ¼ ∑PAðTÞ ΨA

�� �
ΨA

� ��; ð16Þ
where ΨA

�� �
is a many-body state whose spatial representation is ΨA.

PAðTÞ ¼ e�βEA=∑Ae
�βEA , where β= 1/(kBT). At t= 0, a single spin is flipped

somewhere in the system. This could be a single-site flip or a quantum super-
position involving a few sites. Our goal is to understand the time dynamics at t > 0.
According to Eqs. (15) and (16), any spin observable OðtÞ can be calculated by
considering different manifolds separately, i.e.,

OðtÞ ¼ ∑PAðTÞOAðtÞ;
where OAðtÞ describes the time dynamics of the observable in a given manifold.
The unitary map that determines the corresponding time dynamics reads as e�iHAt .
The time evolution of any observable can be written as OAðtÞ ¼ f ðαAtÞ, where f is
some function. The observable O is then given by

OðtÞ ¼ ∑
A
PAðTÞf ðαAtÞ: ð17Þ

Our focus is on low temperatures, for which only low-energy states are populated,
and, hence, αA= α1(1+ δA), where δA≪ 1. Using that ∑PA= 1, we rewrite O as

OðtÞ ¼ f t∑
A
PAðTÞαA

� �
þ∑

A
OððδAtÞ2Þ: ð18Þ

This expression allows us to obtain the spin dynamics—up to the terms OððδAtÞ2Þ -
governed by H from the time dynamics resulting from the effective Hamiltonian
(see Eq. (3))

h ¼ αðTÞ
2g

∑
N�1

l¼1
σ l � σ lþ1: ð19Þ

As mentioned in the main text, the spin-flip dynamics in our XXX model can
also be studied using the spectrum of magnons:

EMðp;TÞ ¼
2αðTÞ
g

ð1� cosðpÞÞ; ð20Þ

where p is a quasi-momentum and p= 2πn/N with integer n. In the infrared limit
of N≫ n, we can write EMðp;TÞ ’ αðTÞp2=g, which allows us to study the
dynamics using a free-particle picture with the temperature-dependent effective

mass: meff= g/(2α(T)). This renormalization of the effective mass of a magnon can
be observed in cold-atom experiments. In particular, if we assume that at t= 0 the
wave packet of a spin-impurity has a Gaussian profile, then the probability density
at later times is

jψðx; tÞj2 ¼ e
� 2x2

1þ4t2=m2
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πð1þ 4t2=m2
eff Þ

s
: ð21Þ

This formula shows how the effective mass changes the time dynamics, which can
be detected in situ29. By exploring a single-particle picture further, we conclude
that the experiment should observe a diffusive behavior [in a sense of an analytic
continuation to classic diffusion] of an initial spin-flip with the diffusion coefficient
that depends on the temperature as: D ¼ ½2meff ðTÞ��1.

Dynamics in a temperature gradient: results in the thermodynamic limit. Here
we consider an infinite link (L→∞) where the temperature gradient is defined by a
step function, i.e., T= T1 for x < 0 and T= T2 for x > 0. We apply the local density
approximation to write α(T1) [α(T2)] for the exchange coefficients at x < 0 [x > 0].
Let us then investigate what happens to the impurity as it is introduced in the
center of the system (at x≃ 0). We start by formulating two observations that
might suggest different outcomes, on the one hand, higher temperatures lead to
faster dynamics, favoring the movement of the impurity into the high-temperature
region. On the other, the density of states in the high-temperature region is smaller
than that in the colder region, indicating the opposite dynamics. Without the
temperature gradient, the density of states may be calculated using Eq. (20).
Assuming a large system, we derive that the density of states for x > 0 is propor-
tional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðEαðT2ÞÞ

p
and for x < 0 it scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðEαðT1ÞÞ

p
. To estimate the

relative importance of these observations, we consider the Schrödinger equation

� 1
2meff ðxÞ

∂2

∂x2
f ¼ Ef ; ð22Þ

which describes the infrared dynamics of the impurity in the thermodynamic limit;
meff= g/(2α(T1)) for x < 0 and meff= g/(2α(T2)) for x > 0. The solution we are after
reads as

f ¼ e�ik1x ; x < 0

eik2x ; x > 0

(
;

where k21αðT1Þ ¼ k22αðT2Þ ¼ gE. These expressions constitute a phenomenological
description of a source of particles with a given energy E at x≃ 0. The flux that
corresponds to these solutions is given by jPðx < 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EαðT1Þ=g

p
and

jPðx > 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EαðT2Þ=g

p
. We see that the particle is more likely to move into the

region with high temperature. The ratio of the probability currents reads as
jPðx > 0Þ=jPðx < 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðT2Þ=αðT1Þ

p
:

jPðx > 0Þ
jPðx < 0Þ ’ 1þ ðT2 � T1ÞðT2 þ T1Þ

k2Bm
2

2_4ρ4π2
: ð23Þ

Notice the quadratic dependence of the currents on temperature for T1→ 0. This
dependence is typical for the low-temperature spin currents in our model, and is
verified in our simulations.

Finally, we note that in the derivation above we fixed the energy E. If we fixed
the momentum instead, which is logical if the parts with different temperatures are
disconnected, then we would derive that jP(x > 0)/jP(x < 0)= α(T2)/α(T1). This
modification does not change the conclusions of this subsection.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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