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Executive Summary

This deliverable presents the first release of the carma Eclipse plug-in, the software tool supporting
the carma process algebra and specification language developed in WP4 and discussed in D4.2. We
show carma in practice, applied to the analysis of a smart-city model. More specifically, we present
an executable carma implementation of a distributed protocol based on coalitional game theory
for power trading and coordination in a smart grid, recently proposed in [ST15] and also discussed
in D1.3. In this respect, this contribution complements D4.2. While in D4.2 a model of a public
transportation system has been specifically developed to showcase the features of carma, here the
goal is to demonstrate how carma is expressive enough to describe a realistic smart-grid scenario
that has been originally studied independently from the development of the language. The model is
presented in a tutorial style, which serves as a guide to the usage of the carma Eclipse plug-in.

In addition, the deliverable discusses a number of satellite tools that have been developed during the
course of the second reporting period. While the development activities have been mostly decoupled
from those of the carma Eclipse plug-in, these tools implement techniques that have the potential to
be integrated in future releases to enable further forms of analysis than those currently supported for
CAS modelling. Specifically, the Bus Data Visualizer implements real-data visualisation methods as
well as techniques for model validation using measurements; FlyFast is a basis for the integration of
efficient model-checking techniques; CRNReducer implements model-reduction algorithms; finally, the
PALOMA Eclipse plug-in features deterministic approximation techniques based on moment closures.

All the reported tools can be reached from http://quanticol.sourceforge.net/.

QUANTICOL 1 Sept 30, 2015

http://quanticol.sourceforge.net/


(Revision: 1.0) Sept 30, 2015

Contents

1 Introduction 3

2 Case Study: Power Trading Coordination in Smart Grids 4

3 Tutorial on the CARMA Eclipse Plug-in 6
3.1 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 CARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Stochastic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Satellite Tools 14
4.1 Bus Data and Bus Data Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 FlyFast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 CRNReducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 The PALOMA Eclipse plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions and Roadmap 24

QUANTICOL 2 Sept 30, 2015



(Revision: 1.0) Sept 30, 2015

1 Introduction

The goal of WP5 is to provide software support for the techniques developed in the project in order to
be able to design and analyse models of smart cities. During the course of the second reporting period,
this task has been accomplished along two main directions of research. First, we have developed an
initial release of the carma Eclipse plug-in. This has been done in close collaboration with WP4,
where the theoretical underpinnings of the carma language have been investigated. The plug-in uses
state-of-the-art Eclipse-based technology such as the Xtext framework for the development of domain
specific languages [Xte]. It provides a fully-fledged text editor with syntax highlighting and static
analysis as well as support for stochastic simulations and facilities for the visualisation of results.

The carma specification language is discussed in detail in D4.2, together with a model that exhibits
all the major features of the language. Instead, in this deliverable we present, in a tutorial fashion, the
more concrete workflow to be followed with the tool in order to develop and analyse carma models.
To offer more complementarity with respect to D4.2, which uses a model of smart public transport,
here we focus on the other case study envisaged in the project, namely a smart-grid scenario consisting
of a mechanism of power trading coordination among micro-grids. Another difference is that while the
case study of D4.2 has been written directly in carma, the model presented here is reported in D1.3,
taken from [ST15] where it has been developed in the mathematical framework of coalitional game
theory, thus independently from high-level specification languages such as carma. We believe that
this unanticipated ability to capture such a case study in a concise manner represents a significant
added value for carma.

The second direction of research, in line with the plan set out in the project’s Description of
Work, concerns activities focussed on the development of further “satellite” applications and software
libraries for the analysis and verification of smart-city models. In this deliverable we report on four
software tools that provide different analysis techniques. The Bus Data Visualizer has been developed
to support the automatic derivation of patch-based models from real data (specifically, GPS measure-
ments), following the procedure described in [RG14; RGH14]. FlyFast offers an efficient on-the-fly
algorithm for model checking PCTL formulae, as described in [LLM15], including scalable mean field
approximation. CRNReducer provides algorithms for the exact reduction of ordinary differential equa-
tions (ODEs) arising from chemical reaction networks with mass-action semantics, implementing the
results of [Car+15] (and reported in D3.2). Finally, the PALOMA Eclipse plug-in supports the re-
cently proposed PALOMA process algebra [FH14] with a novel ODE approximation technique based
on moment closures [FHG] (also reported in D3.2).

Although the development of these applications has proceeded separately from that on the carma
Eclipse plug-in, since often disjoint teams of developers have been involved, all the work in WP5 has
followed the overall common strategy of planning for the potential of interoperability and integration.
To accomplish this, both FlyFast and the PALOMA Eclipse plug-in have been developed within the
Eclipse framework. The user can already work with them in the same development environment;
furthermore, the plug-in communication facilities of Eclipse can be leveraged in the future to allow
for a tighter integration between the tools. The Bus Data Visualizer can be accessed from the Web,
which allows for straightforward integration with any other tool. Finally, CRNReducer is a pure-Java
application, hence it can be seamlessly included (for instance, as a library) in any Java project.

This deliverable is organised as follows. Section 2 summarises the original model of power trading
coordination in smart grids presented in [ST15]. Section 3 offers a tutorial on how to encode the model
in carma using the Eclipse plug-in. The theoretical results in [ST15] of convergence of the model to
a stable state and of non-uniqueness of such stable state are backed by numerical results provided by
the plug-in. Section 4 provides an overview of the satellite software tools. Finally, Section 5 concludes
with some final remarks and an outlook for future work. All the reported tools can be reached from
http://quanticol.sourceforge.net/.
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// Outer algorithm: Power loss minimization dynamic learning process:

repeat

// Inner algorithm: Coalition formation:

repeat

...

until (stable state);
//The set of formed coalitions = power distribution conditions are satisfied;

until (stable state);
//Power loss is minimized

Tab. 1: The global algorithm of power trading strategy.

2 Case Study: Power Trading Coordination in Smart Grids

Motivation. In [ST15], the problem of power trading coordination among “micro-grids” (MGs)
(e.g., solar panels, wind turbines, PHEVs, etc.) is investigated (see also D1.3). The motivation is that
in traditional power distribution models, consumers acquire power from the central distribution unit
(CDU), while MGs in a smart power grid can also trade power between themselves. Hence, whenever
some MGs have an excess of power while others have a need for power, it might be beneficial for these
MGs to exchange energy with one another instead of requesting it from the main CDU.

The advantage of such a local exchange is twofold:

• The energy exchange between nearby MGs can significantly reduce the amount of power that is
wasted during the transmission over the distribution lines;

• Performing a local exchange of energy contributes further to the autonomy of the MG system
while reducing the demand and reliance on the main electric grid.

This problem fits well the CAS framework because the scenario involves collectives (MGs) which
need to perform adaptations since the excess/demand for power can depend on the current weather
conditions as well as the usage profile.

The algorithm in [ST15] aims at minimising the amount of dissipated power during generation and
transfer using an approach that combines coalitional game theory and dynamic learning. In particular,
the coalitional game theory-based algorithm finds a set of coalitions of MGs that achieves a feasible
power distribution condition where all the surplus power from MGs is absorbed by the network and,
dually, all the deficit power of MGs is provided by the network. The dynamic learning algorithm,
instead, modifies the set of coalitions in order to minimize the power loss. The two approaches are
nested, as illustrated in Table 1. Here we briefly sketch the main ingredients that are relevant for the
presentation of this approach as a CARMA implementation. In particular, for the sake of simplicity
the CARMA model presents only the coalitional game theory-based algorithm (inner step) that leads
to a feasible power distribution among MGs in a distributed fashion.

Model. Consider a distribution network composed of a single CDU that is connected to the main
grid as well as to M MGs, denoted by the set M = {1, . . . ,M}. We denote the CDU by the index 0.
At any given time point, each MG m has a residual power load Qm which is defined as the difference
between the generated power and the overall demand (of its own area). A positive quantity represents
the surplus power that the MG can transfer to other MGs or to the CDU, whereas a negative quantity
represents the deficit power the MG needs to acquire from other MGs or from the CDU. MGs that are
able to exactly meet their demand, do not participate in any energy exchange. We denote suppliers
(Qm > 0) and demanders (Qm < 0) with M+ and M−, respectively, such that M = M+ ∪M−.
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Problem statement. The objective is to form a set of not necessarily disjoint and possibly singleton
coalitions of MGs denoted by K = {K1, . . . ,KK}. MGs in each coalition can trade power between
themselves and with the CDU. Each non-singleton coalition consists of one supplier which serves the
assigned demanders. On the other hand, the MG in a singleton coalition only trades directly with the
CDU. A coalition structure will be formed only if the following two conditions are satisfied:

i) surplus power quantities of all suppliers are completely loaded;

ii) deficit power quantities of all demanders are completely served.

Let us denote by Pij the quantity of power the MG i loads and transfers over the transmission line
i → j, and by Lij the amount of dissipated power over the transmission line i → j. So, Pij − Lij is
the amount of power the MG j receives from the transmission line i → j. Using these quantities, the
above requirements can be encoded in the following “power-distribution conditions”:

∑
n∈M−

Pmn + Pm0 = Qm ∀m ∈ M+

∑
m∈M+

(Pmn − Lmn) + (P0n − L0n) = −Qn ∀n ∈ M−

(1a)

(1b)

Coalition formation. For coalition formation, the goal is to determine the best amount of loaded
power at all the uni-directional transmission lines. The algorithm is a dynamic learning process
where each Pmn is a learner that individually decides the amount of loaded power at the sending-end
terminal. By doing so:

• A supplier i ∈ M+ and a demander j ∈ M− will be in the same coalition if the supplier i loads
some power over the transmission line i → j;

• An MG m ∈ M forms a singleton coalition if it trades its whole power quantity with the CDU.

A coalition structure will be formed if and only if the power-distribution conditions in (1) are
satisfied. As can be seen, the value of Pm0 appears only in the first condition (1a), the value of Pn0

in the second condition (1b), and the value of Pmn in both conditions of (1). From the first condition
(1a), the following equality is derived:

Pm0 = Qm −
∑

n∈M−

Pmn =: Cm0 ∀m ∈ M+ (2)

Essentially, the equation is rewritten in such a way that each transmission-line power is expressed as
a function of the others. The use of the symbols Ci0 plays a role in the dynamic learning process. The
interpretation of these is that they are the constants that satisfy the power-distribution conditions.

In a similar fashion we express these constants for (1b), after simple algebraic manipulations:
C0n = −Qn −

∑
m∈M+

Pmn + L0n +
∑

m∈M+

Lmn ∀n ∈ M−;

Cmn = 0.5

Qm −Qn −
∑

n ̸=n′∈M−

Pmn′ −
∑

m̸=m′∈M+

Pm′n − Pm0 − P0n + L0n +
∑

m′∈M+

Lm′n

 ∀m ∈ M+, n ∈ M−.

(3)
These values must be learnt iteratively by the algorithm, which updates the tentative powers Pij . So,
the power-distribution conditions are satisfied if all equalities Pij = Cij hold.

For each learner to verify these conditions, the temporary power values of all other learners must
be known. The rationality of each learner is to update its own value Pij in order to achieve the value
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Fig. 1: Learner utility, ωij , as a function of Pij − Cij with α ≫ 0.

of Cij exactly. At each iteration of the learning process, each learner updates its power value according
to the following learning utility function:

ωij = −
√

|Pij − Cij | + α · u (Pij − Cij) (4)

where u (·) is the step function, and α is a sufficiently large positive constant. If Pij = Cij , the learner
earns the highest possible payoff, ωij = α (see Fig. 1). The learners can distinguish whether the value
of Pij is either smaller or larger than Cij only by knowing their own payoffs.

During the coalition formation learning process each learner individually makes its decision as:

P̃ij = Pij − sign (ωij) ·∆P̃ij (5)

where sign(·) is the sign function, ωij is the learner’s payoff, P̃ij is the tentative power, and the power
step ∆P̃ij is the particular outcome (value) of a random variable. If ωij < 0, then Pij < Cij , and the
best strategy for the learner is to increase its power so as to increase its payoff. If ωij ≥ 0 the best
strategy is on the contrary to decrease its power.

At each iteration, all learners simultaneously and distributively adjust the tentative powers P̃ij ’s.
If the tentative powers increase all learners’ payoffs, then each learner accepts its tentative power and
sets Pij := P̃ij . Otherwise the learners discard the tentative powers and keep the old value. Adjusting
Pij changes all values of Cm0 and C0n ∀m ∈ M+ and ∀n ∈ M−. To reduce the number of occurrences
of this event, we modify our algorithm by requesting each learner not to update its power value at
one iteration with probability λij ∈ [0, 1].

In [ST15] it is proven that the algorithm reaches a fixed point at which Pij = Cij , for all transmis-
sion lines. Here we implement this algorithm as a carma model and back this proof of convergence
by means of numerical examples.

3 Tutorial on the CARMA Eclipse Plug-in

Using the case study of Section 2, in this section we present a tutorial on the carma Eclipse Plug-in.
A brief overview of the development environment is provided in Section 3.1, followed by a presentation
of the carma model of the case study in Section 3.2. Numerical experiments by means of stochastic
simulation are reported in Section 3.3.
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Fig. 2: A screenshot of the carma Eclipse plug-in.

3.1 Development Environment

The carma specification language is implemented as an Eclipse plug-in using the Xtext framework.
It can be downloaded using the standard procedure in Eclipse by pointing to the update site at
http://quanticol.sourceforge.net/updates/1. After the installation, the carma editor will open
any file in the workspace with the carma extension. In addition to the source code, the Sourceforge
repository at https://sourceforge.net/projects/quanticol/ contains sample carma model files.
The model at http://sourceforge.net/projects/quanticol/files/EXAMPLES/SmartGrid.carma
is the carma model of the case study of Section 2, discussed in the next section. Upon opening the
model in the workspace, the user will find a familiar Eclipse text editor featuring syntax highlighting.
A screenshot is given in Fig. 2.

Given a carma specification, the carma Eclipse Plug-in automatically generates the Java classes
providing the machinery to simulate the model. This generation procedure can be specialised to enable
the use of different kind of simulators. Currently, a simple ad-hoc simulator, is used. The simulator
provides generic classes for representing simulated systems (named here models). To perform the
simulation each model provides a collection of activities each of which has its own execution rate. The
simulation environment applies a standard kinetic Monte-Carlo algorithm to select the next activity
to be executed and to compute the execution time. The execution of an activity triggers an updated
in the simulation model and the simulation process continues until a given simulation time is reached.
In the classes generated from a carma specification, these activities correspond to the actions that
can be executed by processes located in the system components. Each of these activities in fact
mimics the execution of a transition of the carma operational semantics (see D4.2). Specific measure

1Detailed installation instructions can be found at http://quanticol.sourceforge.net
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Fig. 3: carma Eclipse Plug-In: simulation wizard.

Fig. 4: carma Eclipse Plug-In: Experiment Results View.

functions can be passed to the simulation environment to collect simulation data at given intervals. To
perform statistical analysis of collected data the Statistics package of Apache Commons Math Library
is used2. Finally, the framework relies on a factory-pattern approach to allow replicated execution of
simulations.

To access the simulation features, a user can select the menu Carma→Simulation. When this menu
is selected, a dialogue box pops up to choose the simulation parameters (see Figure 3). This dialogue
box is automatically populated with appropriate values from the model. When the selection of the
simulation parameters is completed, the simulation is started. The results are reported within the
Experiment Results View (see Figure 4). There, the average and standard deviation of the collected
values, which correspond to the measures selected during the simulation set-up, are reported in a
tabular form. These values can then be exported in CSV format and used to build suitable plots in
the preferred application.

2http://commons.apache.org
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1 record LSet = [ real l10 , real l13 , real l14 , real l20 ,

2 real l23 , real l24 , real l03 , real l04 ];

3
4 record MG = [ real m1, real m2 , real m3 , real m4 ];

Fig. 5: The block of records.

3.2 CARMA Model

Here, we present the algorithm in Sec. 2 for power trading coordination in smart grids using carma.
For ease of presentation we consider a simple smart grid network consisting of only M = 4 MGs with
M+ = {1, 2} and M− = {3, 4}. The model, however, can be straightforwardly generalised to larger
topologies. Here we remark that the possibility of describing the autonomous behaviour of the learners
to satisfy the power-distribution conditions (1) is an interesting feature of carma.

In Fig. 5 two records are declared:

1) record LSet declares the set of learners, i.e., the transmission lines. Each field name lij refers
to the link from the terminal i to the terminal j. The set of learners is ordered as [l10, l13, l14,
l20, l23, l24, l03, l04] with corresponding indices 0 : 7 (from 0 to 7). In the carma model, we
will declare different variables with type of LSet record in order to assign various parameters to
each learner, such as power loaded, payoff, value of Cij , and voltage.

2) record MG declares the set of MGs. Each field name mi with i = 1..4 refers to MG i and the
attribute qi determines its quantity of power.

The carma model consists of two components. Component Learner presents the behaviour of
the learner (cf. Fig. 6). Each Learner is initialised with the index i according to its position in
the record LSet. The attributes power and rnd represent the initial power value and the probability
value λij ∈ [0, 1] of the learner, respectively. The component ComputingServer models the central
computing unit, i.e., the CDU (cf. Fig. 7).

Each Learner starts in state SP, as specified in line 30. Thus, at the initial time point, it per-
forms the unicast action sendpower (Fig. 6, line 26) to send out its initial power value and its in-
dex. This action is synchronised with ComputingServer, which starts in state RP (Fig. 7, line 46).
ComputingServer waits for the power values of all learners by counting how many messages it has
received in any round (incrementing the attribute my.rcvnum). This is possible because the model
ensures that no message can be lost when transmitted. Once all messages have been received (by
checking the condition my.rcvnum == 8), ComputingServer computes the values of Cij (according
to Eq. 3) and the payoffs of all learners (line 29). The function which performs these computations,
CalcPayoffs, is not shown for the sake of brevity. It is worthwhile to note that the values Cij are
computed at a central unit that has the whole information of the network, since each Cij is a function
of some other power values and parameters. Still, each learner updates its current power based on a
randomised local decision.

At line 33, the ComputingServer checks for the stability of the payoffs, i.e., if all learning pay-
offs are equal to the highest possible value, setting the flag a accordingly. If stability is reached
ComputingServer transits to the state nil and the process terminates (line 35). Otherwise, it decides
whether to accept or ignore new power values (line 38). The new power values are accepted if the norm
of their corresponding payoffs is strictly greater than the previous values. Finally, state DC performs
the broadcast output action updatepower to send new payoffs and powers to all Learners. After this,
it transits to the initial state RP where it is ready for a new iteration.

Once each Learner receives the new learning payoffs and powers from the ComputingServer, it
extracts its payoff and power value (Fig. 6, line 16). Then, each Learner individually decides whether
to update its power value in the next time step, with probability rng (Fig. 6, line 20). If it does, it
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1 component Learner(int index , real power , real rnd){

2 store{

3 attrib i := index; //0..8 the index of the learner in LearnerSet

4 attrib p := power; //the current power level

5 attrib lambda := rnd;

6 attrib pf := -1.0* Alpha (); // payoff

7 attrib rng := 0.0;

8 }

9
10 behaviour{

11 // RPP: Receive powers and payoffs

12 // GR: Generate random

13 // DU: Decide to update

14 // UP: Update power state

15 // SP: Send new power state

16 RPP = updatepower *(powers , payoffs_attrib){pf := ReturnVal(payoffs_attrib , my

.i), p := ReturnVal(powers , my.i)}.GR;

17
18 GR = generaterandom *{rng := RND}.DU;

19
20 DU = [rng < lambda]samepower *.SP + [rng >= lambda]changeupdate *.UP;

21
22 UP = [pf >= 0 && pf < Alpha ()]decreasepower *{p := DecreaseP(my.i, my.p)}.SP

23 + [pf < 0 && pf > -1*Alpha ()] increasepower *{p := IncreaseP(my.i, my.p)}.

SP

24 + [pf <= Alpha () || pf >= -1*Alpha ()]samepower *.SP;

25
26 SP = sendpower <my.i, my.p>.RPP;

27 }

28
29 init{

30 SP

31 }

32 }

Fig. 6: The component Learner.

QUANTICOL 10 Sept 30, 2015



(Revision: 1.0) Sept 30, 2015

1 component ComputingServer (){

2 store{

3 attrib a := 0;

4 attrib rcvnum := 0;

5 attrib stable := 0;

6 attrib alphas := [ l10:=Alpha (), l13:=Alpha (), l14:=Alpha (), l20:=Alpha (),

7 l23:=Alpha (), l24:=Alpha (), l03:=Alpha (), l04:=Alpha () ];

8 attrib newpowers := [ l10: =0.0, l13: =0.0, l14: =0.0, l20: =0.0, l23: =0.0,

9 l24: =0.0, l03: =0.0, l04: =0.0 ];

10 attrib powers :=[ l10: =0.0, l13: =0.0, l14: =0.0, l20: =0.0, l23: =0.0, l24: =0.0,

11 l03: =0.0, l04: =0.0 ];

12 attrib newpayoffs := [ l10: =0.0, l13: =0.0, l14: =0.0, l20: =0.0, l23: =0.0,

13 l24: =0.0, l03: =0.0, l04: =0.0 ];

14 attrib payoffs := [ l10:=-Alpha (), l13:=-Alpha (), l14:=-Alpha (),

15 l20:=-Alpha (), l23:=-Alpha (), l24:=-Alpha (), l03:=-Alpha (),

16 l04:=-Alpha () ];

17 }

18
19 behaviour{

20 // RP : Receive the new power of a learner

21 // CP : Calculate Payoffs

22 // EA : Checks payoffs equal to alpha

23 // FS : Finishing state

24 // PP : Payoff check

25 // UP : Update powers and payoffs

26 RP = sendpower(i, p){a := UpdateVal(my.newpowers , i, p),

27 rcvnum := rcvnum + 1, step := 1}.CP;

28
29 CP = [my.rcvnum < 8] waitalllearners *.RP

30 + [my.rcvnum == 8] calcpayoffs *{

31 newpayoffs := CalcPayoffs(my.newpowers), rcvnum := 0}.EA;

32
33 EA = payoffAlphas *{a := isStable(my.newpayoffs)}.FS;

34
35 FS = [a == 1] stablestate *{ payoffs := newpayoffs , powers := newpowers }.nil

36 + [a == 0] continue *.PP;

37
38 PP = payoff *{a := Greater(my.newpayoffs , payoffs)}.UP;

39
40 UP = [a == 1] updatepower*<newpowers , newpayoffs >{ payoffs := newpayoffs ,

41 powers := newpowers }.RP

42 + [a == 0] updatepower*<powers , payoffs >.RP;

43 }

44
45 init{

46 RP

47 }

48 }

Fig. 7: The component ComputingServer.
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1 system SmartGrid{

2 collective{

3 new Learner (0:7, 0.0, 0.2);

4 new ComputingServer ();

5 }

6
7 environment{

8 prob{

9 default: 1.0; // no message loss

10 }

11
12 rate{

13 default: 1.0; // models discrete time

14 }

15 }

16 }

Fig. 8: The block system.

1 fun LSet PowerLoss(LSet newpowersvect){

2 LSet pL := new LSet(0, 0, 0, 0, 0, 0, 0, 0); // Power Loss

3 LSet resistors := GetResistors ();

4 LSet voltages := GetVoltages ();

5
6 pL.l10 := resistors.l10*Pow(newpowersvect.l10/voltages.l10 , 2);

7 pL.l13 := resistors.l13*Pow(newpowersvect.l13/voltages.l13 , 2);

8 pL.l14 := resistors.l14*Pow(newpowersvect.l14/voltages.l14 , 2);

9 pL.l20 := resistors.l20*Pow(newpowersvect.l20/voltages.l20 , 2);

10 pL.l23 := resistors.l23*Pow(newpowersvect.l23/voltages.l23 , 2);

11 pL.l24 := resistors.l24*Pow(newpowersvect.l24/voltages.l24 , 2);

12 pL.l03 := resistors.l03*Pow(newpowersvect.l03/voltages.l03 , 2);

13 pL.l04 := resistors.l04*Pow(newpowersvect.l04/voltages.l04 , 2);

14
15 return pL;

16 }

Fig. 9: The function power loss.

individually updates its power value according to (5): that is, if the payoff is negative then the learner
increases the power; otherwise, the power is decreased (lines 22–24). Then it performs the unicast
action sendpower to send the new power value and its index to ComputingServer. The interaction
between Learners and ComputingServer proceeds until ComputingServer transits to the state nil.

The block system, in Fig. 8, initialises the model. It creates eight learners (with indices from 0

to 7), all with initial power value 0.0 and probability of updating power updating equal to 0.2. The
block environment states that the probability of receiving messages is 1.0 and that the rates of the
actions are equal to 1.0. This is used to describe a discrete time model using the continuous time
semantics of carma.

According to the power-distribution conditions (1), to compute the values of Cij the compo-
nent ComputingServer needs to calculate the amounts of power loss Lij across all transmission lines
(learners). The function PowerLoss (Fig. 9) receives the powers over transmission lines as input and
returns a variable with LSet record type each of whose attributes determines the amount of power
loss over the corresponding transmission line. The function GetVoltages (Fig. 10) returns the voltage
at sending-end of each transmission line as a variable with LSet record type. Similarly, the function
GetResistors (not shown for brevity) returns resistors of the transmission lines.
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1 fun LSet GetVoltages (){

2 return [ l10: =20.0 , l13: =10.0, l14: =10.0 , l20: =20.0, l23: =10.0, l24: =10.0 , l03:

=20.0 , l04: =20.0 ];

3 }

Fig. 10: The function GetVoltages.

Time

0 200 400 600

P
o

w
e

r 
v
a

lu
e

0

7

15

(a) Power values - Simulation 1

Time

0 200 400 600

P
o

w
e

r 
v
a

lu
e

0

15

30

(b) Power values - Simulation 2

Time

0 150 300

P
o

w
e

r 
v
a

lu
e

0

8

15

(c) Power values - Simulation 3

Time
0 200 400 600

P
a

y
o

ff

-50

0

50

(d) Payoff values - Simulation 1

Time
0 200 400 600

P
a

y
o

ff

-50

0

50

(e) Payoff values - Simulation 2

Time
0 150 300

P
a

y
o

ff

-50

0

50

(f) Payoff values - Simulation 3

Fig. 11: The behaviour of learners during the coalition formation learning process. Each learner is
associated with a different line colour in the plots.

3.3 Stochastic Analysis

In this section we illustrate the stochastic simulation features of the plugin. As an interesting ap-
plication to our case study, we confirm the theoretical results of convergence established in [ST15].
In particular, we show that each simulation runs converges to a “stable state”, i.e., a state where all
learners have agreed on their output power. Formally, in carma this is a state of the underlying
continuous-time Markov chain where no outgoing transition is allowed. Furthermore, we show that
the stable state is not unique — different runs may lead to different output powers. The convergence
results of [ST15] are provided by reducing the algorithm to the run of a discrete time Markov chain.
Hence, in our analysis we set all the rates to the same value (as shown in Fig. 8). We remark however,
that the continuous-time semantics of carma allows us to study further scenarios with different rates
among the learners. This could model communication delays in a possible deployment. The numerical
results are collectively reported in Fig. 11. Figures 11(a)–(c) show the outputs of the learners as a
function of the simulated time for three different runs. Below these figures, for completeness, we show
the dynamics of the pay-offs, which all converge to the maximum value, as expected.

As discussed, the final power values are different across the runs. Interestingly, in all cases the
total power loss in the network is significantly lower compared to a traditional non-cooperative scheme.
This is the scheme where each micro-grid trades the whole quantity of residual power load with the
CDU, i.e. Pm0 = Qm ∀ m ∈ M+ and P0n − L0n = −Qn ∀ n ∈ M−. We measure such improvement
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by defining the power loss ratio as the ratio between the overall amount of dissipated power in the
proposed cooperative scheme and that in the traditional non-cooperative distribution model. This
ratio is equal to about 13%, 22%, and 18% in the three simulation runs shown above, respectively.

4 Satellite Tools

The carma Eclipse plug-in currently offers model analysis by stochastic simulation only. We now
present other tools that implement techniques with the potential to be integrated in future releases.
The Bus Data Visualizer implements real-data visualisation methods as well as techniques for model
validation using measurements; FlyFast is a basis for the integration of efficient model-checking tech-
niques; CRNReducer implements model-reduction algorithms; finally, the PALOMA Eclipse plug-in
features deterministic approximation techniques based on moment closures.

4.1 Bus Data and Bus Data Visualizer

We have developed a tool for the parameterisation and visualisation of bus models. The tool is based
on an API made publicly available by Lothian Buses (at http://www.mybustracker.co.uk/?page=
API%20Key) that allows developers to access live bus GPS data. It can be made to collect data, which
is then stored in a database so that it can be visualised at any time. In addition, it is also able
to visualise live data. Unfortunately, there often seem to be 2-3 minutes between GPS updates, in
contrast to the 30-40 seconds of the datasets used previously and discussed in Deliverable 5.1.

A screen shot of the tool is displayed in Figure 12. After selecting the desired services, vehicles,
and time period using the control panel (which is hidden in Figure 12), the tool allows the user to
create animations of the data or to scroll through it manually. For the latter, the user has two options:
use the slider directly under ‘Simulation Controls’ to move quickly to a time point between the first
and last entries of the selected dataset, or use the fast forward/rewind buttons below the slider (next
to the ’play’ button). Step sizes of forward/rewind steps can be configured in the ‘Configure’ menu
to the top-right of the slider. The bus icons on the main visualisation are coloured according to their
route, and can be clicked to create a pop-up window with more information.

Fig. 12: Screenshot of the Bus Data Visualizer
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The tool can also visualise traces of patch-based bus models as described in [VCG14] and [RGH14].
This model type involves one or several buses moving through ‘patches’ (i.e., segments of the route)
such that the sequence of patches is fixed for each bus (i.e., its route). The time spent in each patch
is modelled using the phase-type distribution. This type of modelling also allows for the computation
of interesting quantities such as the probability of being “on time” or one of the punctuality criteria
for frequent services discussed in [RG14].

Parameterisation of a patch-based model involves several stages, of which the most important ones
are (1) patch identification and (2) estimation of the parameters of the phase-type distributions. Given
a patch structure, the procedure for the latter phase is as follows: we use the dataset to construct
a set of observations of the amount of time buses spend in each patch, and then execute a phase-
type fitting algorithm implemented, for instance, in the tool HyperStar [RKW13] or the well-known
statistical package R. Development of techniques for automated patch identification is ongoing and
will be presented as part of Deliverable 2.2.

Implementation details. The visualisation tool is implemented as a web application in JavaScript
using jQuery and Bootstrap, with a back-end NoSQL database using Node.js and MongoDB. The tool
is currently hosted at an Amazon server at http://ec2-52-28-155-29.eu-central-1.compute.

amazonaws.com:3000/#/tool. Documentation for installation procedure on a local machine is avail-
able at http://ec2-52-28-155-29.eu-central-1.compute.amazonaws.com:3000/#/doc.

4.2 FlyFast

In [LLM15] a new analysis technique that combines on-the-fly model-checking and mean-field ap-
proximation techniques [BMM07] has been proposed. This proposed technique can be used to verify
bounded PCTL (Probabilistic Computation Tree Logic) [HJ94] properties of selected individuals in
the context of systems consisting of a large number of similar, but independent, interacting objects; a
limited form of global system properties can be treated as well. The procedure is scalable in the sense
that it can be used with huge population sizes, typical of analysis techniques based on mean-field
approximation. The proposed technique has been included in a prototype implementation, named
FlyFast, and provided within the jSAM framework3. The proposed model checker has been also used
to study a selection of simple and more elaborate case studies from the field of computer epidemic
(also discussed in [Bor+13]) and public transportation [LLM15], in particular bike sharing.

Systems are formalised in FlyFast via a Population Language. This is used to describe model
composed of N identical interacting objects. At any point in time, each object can be in any of its
finitely many states and the evolution of the system proceeds in a clock-synchronous fashion: at each
clock tick, each member of the population either executes one of the transitions that are enabled in
its current state, or remains in that state (see [LLM15] for all the formal details).

An example of a specification is reported in Figure 13. The provided model describes a network
of computers that can be infected by a worm. Each node in the network can acquire infection from
two sources, i.e. by the activity of a worm of an infected node (inf_sus) or by an external source
(inf_ext). Once a computer is infected, the worm remains latent for a while, and then activates (act).
When the worm is active, it tries to propagate over the network by sending messages to other nodes.
After some time, an infected computer can be patched (patch), so that the infection is recovered.
New versions of the worm can appear; for this reason, recovered computers can become susceptible to
infection again, after a while (loss). The described automaton is reported in Figure 14.

FlyFast provides simulation tools that can be used to analyse the system’s behaviour. Two kinds
of simulations are available: one based on standard probabilistic simulation and one based on fast
simulation. The latter uses a mean-field approximation to simulate the behaviour of a single object
in the context of a large class of elements. Moreover, using FlyFast one can check whether a given

3http://j-sam.sourceforge.net/
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Fig. 13: FlyFast population model.

element satisfies a given property when it is located in an environment with a given structure. The
FlyFast model checking view (top of Figure 15) can be used to select the states of interest of the single
elements and the initial state of the global system represented as the fraction of individuals in each of
their local states (initial limit occupancy measure). For example, FlyFast can be used to estimate the
probability that an object in state S can get infected within the next t steps. Analysis results are then
displayed within the appropriate view integrated in FlyFast (bottom of Figure 15). The population
language is also suitable to model systems consisting of multiple classes of objects and several forms
of interaction or cooperation between objects can be expressed.

4.3 CRNReducer

Chemical reaction networks (CRN) are a classical model of system dynamics in many natural sciences
including biology, chemistry, and ecology. More recently, they have been proposed as a foundational

Fig. 14: FlyFast population model.
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Fig. 15: FlyFast model checking and graph views.
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model of concurrent computation, where agents are interpreted as chemical species and the patterns
of synchronisation, interaction, and communications are represented by reactions [RS02]. The well-
known kinetic law of mass action, which has been proven formally correct for a class of CRNs [Gil77],
is based on a general argument of random encounters between populations of different types, which
has found applications in the study of engineered systems such as computer networks [Zha+07]. In
light of this analogy, we see CRNs as a basic quantitative model for CAS.

CRNReducer is a Java tool for the automatic reduction of CRNs. The tool supports the continuous-
state semantics of CRNs which provides a system of ordinary differential equations (ODEs) for a
CRN. In particular, CRNReducer exploits two novel reduction techniques defined for such semantics,
the Forward and Backward Bisimulations for CRNs [Car+15]. These techniques, discussed in the
Deliverable D3.2, bring to the chemical context well-established reduction techniques for models of
computation based on the notion of bisimulation.

A Forward CRN bisimulation (FB) is an equivalence among species of a CRN inducing an ordinary
lumpable partition of its ODEs. An FB-reduced CRN can be automatically computed, containing a
species per block of FB-equivalent species of the original CRN. The solution of the ODEs of such
reduced CRN gives the exact sum of the concentrations of the species of each equivalence class. A
Backward CRN bisimulation (BB) is similar, but equivalent species have the same solution at all time
points; in other words, a BB relates species whose ODE solutions are equal whenever they start from
identical initial conditions. A BB-reduced CRN can also be automatically computed, containing a
representative species per block of BB-equivalent species of the original CRN.

The tool, available at sysma.imtlucca.it/crnreducer/, currently supports CRNs given in the
“.net” format generated with the well-established tool BioNetGen [Bli+04], version 2.2.5-stable. We
use this format because it allows us to access a rich repository of large-scale CRNs, which we use as
benchmarks for our reduction techniques. Listing 1 exemplifies a simple CRN in .net format. Lines 2-9
provide the set of five species of the CRN: {A, B, C, D, E}. As sketched in Line 3, each species definition
is composed of the identifier of the species, followed by its name and its initial concentration. Lines 12-
19 depict the reactions of our example CRN. As sketched in Line 13, each reaction definition contains
the identifier of the reaction, followed by two comma-separated multisets of species identifiers, and
by the rate of the reaction. The two multi-sets of species identifiers specify the reagents and products

species of the reaction, respectively. For example, the reaction of Line 14 is a unary reaction A
6.0−−→ B,

specifying that instances of species A spontaneously evolve into instances of species B (modelling, for
example changes of its internal state like phosphorylation). Instead, the reaction of Line 18 is a binary

reaction A+B
3.0−−→ C. The latter reaction specifies that, upon collision, a pair of instances of species

A and B might become an instance of species C (modelling, for example binding or complexification
operations).

Our CRN bisimulations can be applied to any .net model by just running the following command

java -Xmx4068M -jar CRNReducer.jar technique fileIn fileOut

where technique is either FB or BB to apply our Forward or Backward CRN reduction, respectively.
When the BB technique is used, then species are additionally pre-partitioned in blocks of species with
the same initial conditions.

The parameter fileIn specifies the .net file containing the CRN to be reduced up to our CRN
bisimulations, while fileOut is the file in which to store the reduced CRN. The latter file also contains
information about the computed partition of species, preceding each species with a comment listing
all the species of the corresponding block.

Usage example. Let us assume that the CRN shown in Listing 1 is stored in the file
./BNGNetworks/runningExample.net, then we can reduce it using our Forward CRN reduction by
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Listing 1: A simple CRN

1 //List of species

2 begin species

3 //(id , name , initial concentration)

4 1 A 1.0

5 2 B 1.0

6 3 C 1.0

7 4 D 1.0

8 5 E 1.0

9 end species

10
11 //List of reactions

12 begin reactions

13 //(id , comma-separated reagents ids , comma-separated products ids , rate)

14 1 1 2 6.0

15 2 2 1 6.0

16 3 3,4 3,3,4 5.0

17 4 4,5 4,5,5 5.0

18 5 1,2 3 3.0

19 end reactions

Listing 2: Output printed by CRNReducer while FB-reducing the CRN in Listing 1

1 java -Xmx4068M -jar CRNReducer.jar FB ./ BNGNetworks/runningExample.net

2 ./ BNGNetworks/runningExampleFB.net

3
4 Importing: ./ BNGNetworks/runningExample.net

5 Read parameters: 9, read species: 5, read CRNreactions: 5.

6
7 FB partitioning ./ BNGNetworks/runningExample.net ... completed.

8 From 5 species to 4 blocks. Time necessary: 0.007 (s).

9 Reducing the CRN with respect to the obtained partition ... completed.

10 Time necessary 0.003 (s).

11
12 The original CRN: ./ BNGNetworks/runningExample.net: 5 species , 5 reactions.

13 The FB reduced CRN: 4 species , 4 reactions.

14
15 The current CRN is updated with the reduced one.

16
17 Writing the CRN in file ./ BNGNetworks/runningExampleFB.net ... completed

running

java -Xmx4068M -jar CRNReducer.jar FB ./BNGNetworks/runningExample.net

./BNGNetworks/runningExampleFB.net

From the output, provided in Listing 2, we know that the coarsest partition of FB-equivalent
species of the CRN has four blocks, and that its computation required 0.007 seconds. The correspond-
ing reduced CRN has been instead computed in 0.003 seconds, and contains four species and four
reactions. In particular, the species section of the automatically generated FB-reduced CRN stored
in ./BNGNetworks/runningExampleFB.net is provided in Listing 3. Here, each reduced species is
preceded by a comment block (lines starting with “//”) specifying the represented block of species.
In particular, we note that the original species C and E are FB-equivalent and have been collapsed in
the reduced species C.

We remark that the FB- and BB-reduced CRNs created by CRNReducer are also provided in the
.net format, and are thus amenable to any analysis technique supported by BioNetGen. In other
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Listing 3: FB-Reduced species of the CRN in Listing 1

1 //List of FB-reduced species

2 begin species

3 // Representative of block (with 1 species):

4 // A

5 1 A 1.0

6 // Representative of block (with 1 species):

7 // B

8 2 B 1.0

9 // Representative of block (with 2 species):

10 // C

11 // E

12 3 C 2.0

13 // Representative of block (with 1 species):

14 // D

15 4 D 1.0

16 end species

Original model Forward reduction Backward reduction

Id |R| |S| Red.(s) |R| |S| Speed-up Red.(s) |R| |S| Speed-up

M1 3538944 262146 4.61E+4 990 222 — 7.65E+4 2708 222 —
M2 786432 65538 1.92E+3 720 167 — 3.68E+3 1950 167 —
M3 172032 16386 8.15E+1 504 122 1.16E+3 1.77E+2 1348 122 5.34E+2
M4 48 18 1.00E–3 24 12 1.00E+0 2.00E–3 45 12 1.00E+0
M5 194054 14531 3.72E+1 142165 10855 1.03E+0 1.32E+3 93033 6634 1.03E+0
M6 187468 10734 3.07E+1 57508 3744 1.92E+1 2.71E+2 144473 5575 3.53E+0
M7 32776 2506 1.26E+0 16481 1281 6.23E+0 1.66E+1 32776 2506 x
M8 41233 2562 1.12E+0 33075 1897 1.12E+0 1.89E+1 41233 2562 x
M9 5033 471 1.91E–1 4068 345 1.04E+0 4.35E–1 5033 471 x
M10 5797 796 1.61E–1 4210 503 1.47E+0 7.37E–1 5797 796 x
M11 5832 730 3.89E–1 1296 217 1.32E+1 6.00E–1 2434 217 7.55E+0
M12 487 85 2.00E–3 264 56 1.88E+0 6.00E–3 426 56 1.31E+0
M13 24 18 1.20E–2 24 18 x 7.00E–3 6 3 1.00E+0

Tab. 2: Forward and backward reductions and corresponding speed-ups in ODE analysis. Speed-up
entries “—” indicate that the original model could not be solved; entries “x” indicate that the coarsest
bisimulation did not reduce the original model.

words, we provided a backward-compatible extension of BioNetGen with model reduction capabilities.

Tool evaluation. The support for the .net format of BioNetGen [Bli+04] allowed us to evaluate the
CRN bisimulations and their implementation in CRNReducer against a wide set of existing models
in the literature. We now study their effectiveness in reducing the ODEs of a number of biochemical
models from the literature. As discussed, here we use them as numerical benchmarks. We refer
to [Car+15] for a biological interpretation of the reductions.

Table 2 lists our case studies: four synthetic benchmarks to obtain combinatorially larger CRNs
by varying the number of phosphorylation sites (M1–M4) [SFE11]; a model of pheromone signalling
(M5, [SD13]); two signalling pathways through the Fcε complex (M6–M7, [Fae+03; SFE11]); two
models of enzyme activation (M8–M9, [BFH09]); a model of a tumor suppressor protein (M10, [BH13]);
a model of tyrosine phosphorylation and adaptor protein binding (M11, [Col+09; Col+10]); a MAPK
model (M12, [KFL12]); and an influence network (M13, [Car14]).

The headings |R| and |S| give the number of reactions and species of the CRN (and of its re-
ductions), respectively. The reduction times (Red.) account also for the computation of the quotient
CRNs. The speed-up is the ratio between the time to solve the ODEs of the original CRN and that
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of the reduced one including the time to reduce the CRN. Measurements were taken on a 2.6 GHz
Intel Core i5 with 4GB of RAM. The time interval of the ODE solution was taken from the original
papers; for M1–M4, where this data was not available, time point 50.0 was used as an estimate of
steady state. The initial conditions for the ODEs were also taken from the original papers. The initial
partition for FB was chosen to be the trivial one containing the singleton block {S} (i.e., no species
was singled out). Instead, the initial partition for BB was chosen consistently with the ODE initial
conditions; that is, two species may be equivalent only if they have the same initial conditions in the
original CRN. This ensured that the backward reduced CRN was a lossless aggregation of the original
CRN.

We make three main observations: (i) FB and BB can reduce a significant number of models.
In the two largest models of our case studies, M1 and M2, the bisimulations were able to provide a
compact aggregated ODE system which could be straightforwardly analyzed, while the solutions of
the original models did not terminate due to out-of-memory errors, consistently with [SFE11]. (ii)
FB and BB are not comparable in general. For instance, both reduce M5 to 10855 and 6634 species,
respectively, while M6 is reduced to 3744 species by FB, and to 5574 by BB. Also, FB was able to
reduce M7–M10, while BB did not aggregate. The influence network M13 shows the opposite; in
fact, none of the influence networks presented in [Car14] can be reduced up to FB (here we showed
M13, which is the largest one from [Car14]). (iii) Models M1–M4 and M12 show that the intersection
between FB and BB is nonempty.

4.4 The PALOMA Eclipse plug-in

The PALOMA Eclipse plug-in provides a fully-featured development environment for modelling with
the recently proposed PALOMA process algebra [FH14], which was discussed in deliverable D4.1. The
plug-in consists of:

• An editor for PALOMA models with syntax highlighting functions;

• A simulator which supports population-level stochastic simulation of PALOMA models using
Gillespie’s algorithm [Gil77];

• Plotting facilities for simulation results;

• A generator which can translate a PALOMA model to directly runnable Matlab scripts for
moment-closure analysis using ODEs [FHG].

The source code of the plug-in is available in https://github.com/cfeng783/paloma. A user manual
about how to install and use the plug-in can be found in http://groups.inf.ed.ac.uk/paloma/

usermanual.pdf. Once the plug-in is installed, one can create a PALOMA model, parse it and then
do time-series analysis of the model by stochastic simulation and moment-closure approximation. In
the following we show the typical workflow supported by the tool.

Creating a PALOMA model. To create a PALOMA model, the user only needs to create a file
whose name ends in .paloma. Three sample PALOMA models can be found in https://github.com/

cfeng783/paloma/wiki#example-models. In the forthcoming screenshots, we show the concrete syn-
tax for one of these, which can be downloaded from http://groups.inf.ed.ac.uk/paloma/example.

paloma.

Parsing a PALOMA model. To parse a PALOMAmodel, the user simply needs to get the mouse’s
focus on the PALOMA file. Then a PALOMA menu will appear on the Eclipse menu bar. By clicking
the PALOMA menu, a drop-down command list will show up. Clicking the parse command, the model
will be parsed and the parsing result will show on the console view (see Figure 16).
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Fig. 16: Parsing a PALOMA model

Time-series analysis. Once the model has been parsed successfully, it is possible to perform time-
series analysis by stochastic simulation using Gillespie’s algorithm, and moment-closure approximation
by exporting Matlab ODE scripts.

Stochastic simulation is performed by clicking the launch simulation command (see Figure 16). A
dialogue box allows the user to set the number of simulation runs and the time length of each run, as
shown in Figure 17.

Fig. 17: Simulation options

Once the simulation is finished, the plot command under the PALOMA menu allows the user to
choose which variables to plot (see Figure 18).
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Fig. 18: Choose variables to plot

Clicking plot in the pop-up dialogue generates the plots. The simulation results will be displayed
in a pop-up graph, which can be saved as a PNG picture (see Figure 19).

Fig. 19: Plot result

To export Matlab scripts for moment-closure approximation, the user clicks the export ODE script
command under the PALOMA menu. Then, she chooses the variables to analyse, and clicks export in
the pop-up dialogue (see Figure 20). The generated scripts are directly runnable in Matlab.
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Fig. 20: ODE export options

5 Conclusions and Roadmap

This deliverable has discussed the first release of the carma Eclipse plugin, the software tool that
supports the carma process algebra, developed in close collaboration with WP4. The case study that
was used as a running example to show the features of the tool has also allowed us to highlight useful
characteristics of the language. Indeed, it was possible to encode a distributed algorithm for power
trading coordination in smart grid which has been originally developed in the context of WP1 without
having in mind a high-level specification language. This encoding, we believe, brings the algorithm
closer to a possible implementation/deployment because it more clearly separates the components
involved in the protocol and the communication mechanisms to be adopted. It is interesting to remark
that such an encoding is not possible with any other stochastic process algebra we are aware of, because
they all focus on behaviour only and lack the possibility of handling (real-valued) data. This feature
is clearly crucial in order to properly handle adaptation in this context, whereby a stopping criterion
for the algorithm is based on the current values of the power on the transmission lines.

carma also offers the opportunity to test variants of the protocol in a rather straightforward
manner. For instance, it would be possible to study the speed of convergence under the assumption
of imperfect communication links. Interestingly, this can be done without “invasive” changes to the
model: only the environment would be modified while leaving the learners’ behaviour unaltered; the
model description is mostly independent from coalition under study, which allows for easy generalisa-
tion to other, and larger, smart-grid topologies.

The satellite tools presented in this deliverable have covered different aspects of smart-city mod-
elling that were originally planned for this project, including data visualisation and model parameter
fitting using measurements (in the context of WP2), model order reduction, scalable analysis through
ordinary differential equations, and support for model checking (in collaboration with WP3).

Future work in WP5 will build upon what has been presented in this deliverable and will be
focussed on augmenting the feature set of existing tools as well as tightening integration between
them. In particular we highlight the following priority tasks:

• The bus data visualisation tool will be used as a platform to demonstrate the work in WP2
(specifically from Task 2.3) on automatic patch identification.

• Automatic model reduction is currently available for chemical reaction networks with ODE
semantics. There is a plan to integrate with carma according to one of the following routes: i)
explicit declaration of carma models with mass-action type semantics, which are automatically
translated into a chemical reaction network; ii) extension of the tool to other forms of semantics.
This second route will likely require significant advances in the theory, to be developed in the
context of WP3.
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• Implementation work will also aim to improve the efficiency of stochastic simulation. In partic-
ular, a future extension of the PALOMA plug-in will incorporate the recently proposed model
reduction technique for Markov population processes presented in [FH15]. Furthermore we will
also identify a dialect of carma which is equivalent to PALOMA and so widen the applicability
of these techniques to carma models also.

• We plan to support ODE-based fluid-flow analysis of carma within the plug-in, in collaboration
with the research work underway in WP4. This will significantly extend the current analysis
supported which is limited to stochastic simulation, and build on results form WP1.
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