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Abstract. Spatial logic and spatial model checking have great poten-
tial for traditional computer science domains and beyond. Reasoning
about space involves two different conditional reachability modalities: a
forward reachability, similar to that used in temporal logic, and a back-
ward modality representing that a point can be reached from another
point, under certain conditions. Since spatial models can be huge, suit-
able model minimisation techniques are crucial for efficient model check-
ing. An effective minimisation method for the recent notion of spa-
tial Compatible Path (CoPa)-bisimilarity is proposed, and shown to
be correct. The core of our method is the encoding of Closure Mod-
els as Labelled Transition Systems, enabling minimisation algorithms
for branching bisimulation to compute CoPa equivalence classes. Initial
validation via benchmark examples demonstrates a promising speed-up
in model checking of spatial properties for models of realistic size.

Keywords: Spatial minimisation · Closure spaces · Spatial logics ·
Spatial bisimilarity · Branching bisimilarity · Spatial model checking

1 Introduction

Spatial and spatio-temporal model checking have recently been successfully
employed in a variety of application areas, ranging from Collective Adaptive
Systems [14,20] to signals [30], images [5,18,25] and polyhedra [9], just to men-
tion a few. These methods for spatial analysis are enjoying an increasing interest
in computer science and beyond, also in unexpected domains such as medical
imaging [6,8]. Medical images are obtained from diagnostic instruments such as
magnetic resonance images (MRI), computer tomography scans, positron emis-
sion tomography or dermoscopic images. Such images usually consist of millions
of pixels, in 2D, or voxels (volumetric pixels) in 3D images.
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Spatial model checking consists in the automatic verification of properties,
expressed in a suitable spatial logic, on each point of a suitable spatial model.
In [17] the Spatial Logic for Closure Spaces (SLCS) was introduced and further
developed in [18]. Closure spaces, or Čech closure spaces [33], are a generalisation
of topological spaces suitable to model many kinds of spatial objects, ranging
from topological objects in continuous spaces, such as Euclidean spaces, to dis-
crete spatial objects, such as general and regular graphs and adjacency spaces.
The latter are particularly useful to represent images. Closure spaces (CS) and
the sub-class of quasi-discrete closure spaces, QdCSs for short, form a convenient
theoretical framework because of their generality and relative simplicity. A prac-
tical demonstration of this is the tool VoxLogicA, the recently developed spatial
model checker [6–8] that can efficiently check SLCS properties of large images
represented as symmetric quasi-discrete closure models—QdCMs, i.e. models
with QdCSs as underlying spaces.

Fig. 1. Cross section of a dataset element of BrainWeb [4] pat04 MRI at slice
(x, y, z) = (129, 147, 78), (fLTR: axial, coronal, sagittal view): VoxLogicA analysis of
the segmentation of white matter, shown as a green overlay on top of a red overlay
representing the ground truth.

For example, the 3D MRI image of a healthy brain shown in Fig. 1 consists of
circa 12 M voxels (i.e. 256× 256 × 181) requiring approximately 10 s to analyse
using VoxLogicA on a desktop computer [7].1 Note that VoxLogicA checks such
logical specifications for every point in the model exploiting parallel execution,
memoization, and state-of-the-art imaging libraries [8].

A way to increase the time efficiency of spatial model checking is to exploit
suitable model minimisation algorithms based on spatial bisimilarity. To that
purpose several spatial bisimilarities have been proposed in [13]. In particular,
CoPa-bisimilarity, based on a notion of “path-compatibility” is promising. The
notion of path compatibility essentially requires that two paths, in order to be
compatible, have to be both composed of a (non-empty) sequence of an equal
number of non-empty adjacent “zones”, such that each point in one zone of
one path must be related, by the bisimulation relation, to every point in the
corresponding zone of the other path (see the illustration in Fig. 3b).

In [13], a logical characterisation of CoPa-bisimilarity has been given. More
precisely, Infinitary Compatible Reachability Logic (ICRL) has been defined that
is a modal logic with infinitary conjunction and two modalities, !ζ and !ζ, express-
ing conditional forward and backward reachability, respectively. Given two ICRL
1 Intel Core I9 9900K processor (with 8 cores) and 32 GB of RAM.
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formulas Φ1 and Φ2, a point x satisfies !ζΦ1[Φ2] if it satisfies Φ1 or there is a path
from x to a point y along the path satisfying Φ1 and all points from x (included)
to y satisfy Φ2. Similarly for !ζΦ1[Φ2], which is satisfied by x if it satisfies Φ1

or there is a path from a point y satisfying Φ1 to x and all points on the path
from y to x (included) satisfy Φ2.2

This paper includes two original contributions, one of more theoretical nature
and another more practical one.

Theoretical Contribution. Definition and correctness proof of an encoding of
finite Closure Models (CM) in Labelled Transition Systems (LTS), that preserves
CoPa-bisimilarity. More precisely, two points in the input CM are CoPa-bisimilar
if and only if the states they are mapped onto by the encoding are branching
bisimilar [23,24,26]. Thus, given a finite CM, the encoding makes it possible
to effectively compute the minimal model with respect to CoPa-bisimilarity via
the composition of the encoding and a very efficient minimisation algorithm for
branching bisimulation, proposed in [24,26].

Practical Contribution. For a feasibility study and validation of the approach,
we developed a prototype implementation of the encoding, and assembled a
toolchain involving mCRL2 [10], VoxLogicA and GraphLogicA, a prototype spatial
model checker. The latter is a variant of VoxLogicA handling general graphs.
We applied our toolchain to a set of images at various resolutions, in order to
gather insight on the potential gain in computational efficiency of spatial model
checking. We observed a considerable speed-up, especially at larger resolutions,
which suggests interesting directions for future research and applications.

Related Work. Qualitative reasoning about spatial entities [21] has been, and
still is, a very active area of research in which the theory of topology and closure
spaces play a important role. Prominent examples of that area are the region
connection calculi, such as RCC8D. An embedding of the latter in the collective
variant of SLCS was presented recently in [19]. Our work is also inspired by spa-
tial logics (see [3] for an extensive overview), with seminal work dating back by
Tarski and McKinsey in the forties of the previous century. The work on spatial
model checking for logics with reachability originated in [18], which includes a
comparison to the work of Aiello on spatial until operators (see e.g. [1]). In [2],
Aiello envisaged practical applications of topological logics with until to minimi-
sation of images. The present paper builds on and extends that vision. Bisim-
ilarity for spatial logics with reachability is a relatively new subject. In [27], a
bisimulation relation that is correct with respect to SLCS has been presented.
Such definition has not yet been proved complete, and is aimed at characterising

2 Note that, different from the context of classical temporal logics, in the context
of space, and in particular when dealing with notions of directionality (e.g. one
way roads, public area gates), it is important to be able to distinguish between the
concept of “reaching” and that of “being reached”. The interested reader is referred
to [13] for a discussion on the issue.
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the logic including the near operator, therefore, not quotienting up-to reachabil-
ity, as done in the present paper. The papers [9] and [28] introduce bisimulation
relations that characterise spatial logics with reachability in polyhedral models
and in simplicial complexes, respectively. It will be interesting future work to
apply the minimisation techniques we present to such relevant classes of models.

In the Computer Science literature, other kinds of spatial logics have been
proposed that typically describe situations in which modal operators are inter-
preted syntactically against the structure of agents in a process calculus. We refer
to [11,12] for some classical examples. Along the same lines, a recent example
is given in [32], concerning model checking of security aspects in cyber-physical
systems, in a spatial context based on the idea of bigraphical reactive systems
introduced by Milner [29]. A bigraph consists of two graphs: A place graph, i.e.
a forest defined over a set of nodes which is intended to represent entities and
their locality in terms of a containment structure, and a link graph, a hypergraph
composed over the same set of nodes representing arbitrary linking among those
entities. The QdCS models that are the topic of the present paper, instead,
address space from a topological point of view rather than as a containment
structure for spatial entities.

The structure of the paper is as follows. Section 2 recalls relevant concepts and
introduces notation. Section 3 recalls CoPa-bisimilarity for QdCMs. In Sect. 4 the
encoding of finite QdCMs into LTSs is presented, together with the correctness
results. Section 5 briefly describes a feasibility study of the application of the
encoding and related toolchain to a series of examples. All detailed proofs can
be found in [15].

2 Preliminaries

We first introduce some relevant concepts and notation, in particular recalling
an LTS, branching bisimilarity [23,24,26], (quasi-discrete) closure spaces and
closure models and paths therein.

Given a set X, P(X) denotes the powerset of X. For a function f : X → Y ,
A ⊆ X and B ⊆ Y , we let f(A) and f−1(B) be defined as {f(a) | a ∈ A} and
{a | f(a) ∈ B}, respectively. For binary relation R ⊆ X × X, we let R−1 denote
the converse of R and R= denote the reflexive closure of R. The set of natural
numbers is denoted by N. For n,m ∈ N we often use the interval notation [m,n]
denoting the set {ι ∈ N |m ≤ ι ≤ n}, [m,n) denoting the set {ι ∈ N |m ≤ ι < n},
and similarly for (m,n] and (m,n).

In the sequel, branching bisimilarity [23,24,26] of states of LTSs plays a
central role. Below we recall the relevant definitions.

Definition 1 (Labelled Transition System - LTS). A Labelled Transition
System, LTS for short, is a tuple (S, Act,→) where S and Act are non-empty
sets of states, and action labels respectively and relation → ⊆ S × Act × S is
the transition relation.
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As usual, we distinguish an action τ ∈ Act that models a “silent move” of
the LTS. Moreover, we call the elements of → transitions, and we write s

α−→ s′

whenever (s,α, s′) ∈ →. A (non-empty, finite) trace in the LTS is a sequence
s0α1s1 . . . sn−1αnsn of states and actions such that n > 0 and si−1

αi−→ si for
i = 1, . . . , n. For such traces, we use the notation s0

α1−→ s1 · · · sn−1
αn−→ sn. In

such a situation, if s = s0, w = α1 · · ·αn, and s′ = sn, we have occassion to
write s

w−→ s′, as in the definition of branching bisimilarity which follows.

Definition 2 (Branching bisimilarity – ↔b). Given an LTS S = (S, Act,
→), a symmetric relation B ⊆ S × S is a branching bisimulation for S iff, for
s, t, s′ ∈ S and α ∈ Act, whenever sB t and s

α−→ s′, it holds that: (i) s′ B t

and α = τ , or (ii) sB t̄, s′ B t′ and t
τ∗

−→ t̄, t̄ α−→ t′ for some t̄, t′ ∈ S.
Two states s, t ∈ S are called branching bisimilar in S if sB t for some

branching bisimulation B for S. Notation, s ↔S
b t.

From now on, for readability, we omit the superscript S in ↔S
b , when this does

not cause confusion. Our framework for modelling space is based on the notion
of Čech closure space [33], CS for short, that provides a convenient common
framework for the study of several different kinds of spatial models, including
models of both discrete and continuous space [31]. We briefly recall definitions
and results on CSs, that are relevant for this paper — most of which are borrowed
from [22] (see also [13,18]).

Definition 3 (Closure Space – CS). A closure space is a pair (X, C) where
X is a set (of points) and C : P(X) → P(X) is the closure operator, i.e. a
function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪ A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X.

It is worth pointing out that CSs are a generalisation of topological spaces.
In fact, the latter coincide with CSs that satisfy the idempotence axiom, i.e.
C(C(A)) = C(A) for all A ⊆ X.

Definition 4 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that for each A ⊆ X it holds that C(A) =

⋃
x∈A C({x}).

Given a relation R ⊆ X ×X, define the function CR : P(X) → P(X) as follows:
for all A ⊆ X, CR(A) = A ∪ {x ∈ X |∃a ∈ A s.t. aRx}. It is easy to see that,
for any R, CR satisfies all the axioms of Definition 3 and so (X, CR) is a CS. The
following theorem is a standard result in the theory of CSs [22].

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X × X such that C = CR.

The above theorem implies that graphs coincide with QdCSs. We prefer to treat
graphs as QdCSs since in this way we can formulate key definitions at the level
of closure spaces leading to a uniform treatment for graphs and other kinds
of models for space (e.g. topological spaces) [31]. Furthermore, if X is finite,
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any closure space (X, C) is quasi-discrete. In the sequel, we consider only finite
CSs and often refrain from explicitly writing the subscript R in CR, when this
does not cause confusion. Finally, we say that (X, CR) is symmetric iff R is a
symmetric relation. An example of the result of applying the closure operator C
induced by a relation R to a set A is shown in Fig. 2.

(a) (b)

Fig. 2. a: a finite QdCS (X, C); the arrows represent the relation underlying C. The
points of the set A ⊆ X are shown in white, remaining points are shown in black. b:
additional points in C(A) are shown in grey.

In the context of the present paper, paths over CSs play an important role.
Following the tradition in topology, in the theory of CSs paths are defined as
continuous functions from an appropriate index space to the CS at hand. For
finite CSs, it is sufficient to consider bounded, finite, paths.

Definition 5 (Finite path). A finite path in a finite CS (X, C) is a continuous
function π : [0, (] → X, for some ( ∈ N, such that π(i + 1) ∈ C({π(i)}) for
i = 0, . . . , ( − 1. We call ( the length of π and we denote it by len(π).

For x ∈ X, FPathsF(x) denotes the set of all finite paths π in (X, C) such that
π(0) = x (paths From x). Similarly, FPathsT(x) denotes the set of all finite
paths π in (X, C) such that π(len(π)) = x (paths To x). In the sequel, whenever
we write “path” we mean “finite path”.

Remark 1. It is worth pointing out that the notion of path in a QdCS is similar
to that of a path in a graph or of a trace in an LTS, but it is not the same. In
particular, due to axiom (ii) of closure operator C and the requirement π(i+1) ∈
C(π(i)), paths in CSs allow stuttering; in other words, for QdCS (X, C), x ∈ X,
and path π, it may happen that π(i) = π(i + 1) = x, for i < π(len(π)) even
when (x, x) is not an element of the relation R ⊆ X × X underlying C. This is
different for a path . . . n1n2 . . . in a graph (N,E), where in order for nodes n1

and n2 in N to be adjacent, it is required that (n1, n2) is an element of the edge
relation E. A similar issue arises when comparing paths in QdCSs with traces
in LTSs. In fact, for LTS (S, Act,→), two states s1 and s2 can be adjacent in a
trace · · · s1

α−→ s2 · · · only if (s1,α, s2) ∈ →, and this holds also if s2 = s1.

We assume a set AP of atomic proposition letters is given and introduce the
notion of closure model (CM for short).
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Definition 6 (Closure model – CM). A closure model is a tuple M =
(X, C,V), with (X, C) a CS, and V : AP → P(X) the valuation function, assigning
to each p ∈ AP the set of points where p holds.

All definitions for CSs also apply to CMs; thus, a quasi-discrete closure model
(QdCM for short) is a CM M = (X, C,V) where (X, C) is a QdCS. For a closure
model M = (X, C,V) we often write x ∈ M when x ∈ X. Similarly, we speak of
paths in M meaning paths in (X, C).

In the sequel, for a logic L, a formula Φ ∈ L, and a model M = (X, C,V)
we let [[Φ]]ML denote the set {x ∈ X |M, x |=L Φ} of all the points in M that
satisfy Φ, where |=L is the satisfaction relation for L. For the sake of readability,
we refrain from writing the subscript L when this does not cause confusion.

3 CoPa-Bisimilarity for QdCM

In [13] several notions of spatial bisimilarity for closure models have been inves-
tigated. In particular, CM-bisimilarity, and its refinement for QdCMs CMC-
bisimilarity, are a fundamental starting point for the study of spatial bisimilarity
due to their strong links to topo-bisimilarity. On the other hand, they are rather
fine-grained relations for reasoning about general properties of space, since they
are based directly on the closure operator.3 For instance, with reference to the
model of Fig. 3a, where all black points satisfy only atomic proposition b while the
grey ones satisfy only g, the point at the center of the model is not CMC-bisimilar
to any other black point. This is because CMC-bisimilarity is based on the fact
that points reachable “in one step”—i.e. contained in the closure—are taken into
consideration. This, in turn, gives bisimilarity a sort of “counting” power, that
goes against the idea that, for instance, all black points in the model could be
considered spatially equivalent. In fact, they are all black and all can reach black
or grey points. Furthermore, they could be considered equivalent to the black
point of a smaller model consisting of just one black and one grey point mutually
connected—that would, in fact, be a minimal representation of the closure model.

Fig. 3. A model (a); zones in paths (b).

In order to relax “counting” capability of bisimilarity as mentioned, a weaker
notion of bisimulation has been introduced in [13] that is based on paths,
3 Or its dual operator called ‘interior’.
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instead of single closure steps, and on a notion of “compatibility” between rel-
evant paths that essentially requires each of them be composed of a non-empty
sequence of non-empty, adjacent “zones”. More precisely, both paths under con-
sideration in a transfer condition should share the same structure, as follows (see
Fig. 3b):
– both paths are composed by a sequence of (non-empty) “zones”;
– the number of zones should be the same in both paths, but
– the length of “corresponding” zones can be different, as well as the length of
the two paths;

– each point in one zone of a path should be related by the bisimulation to
every point in the corresponding zone of the other path.

This notion of compatibility gives rise to Compatible Path bisimulation, CoPa-
bisimulation, recalled below for QdCMs.
Definition 7 (CoPa-bisimilarity - !M

CoPa). Given QdCS M = (X, C,V), a
symmetric relation B ⊆ X × X is a CoPa-bisimulation for M if, whenever
x1 B x2, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all π1 ∈ FPathsF(x1) such that π1(i1)B x2 for all i1 ∈ [0, len(π1)) there

is π2 ∈ FPathsF(x2) such that the following holds: x1 B π2(i2) for all i2 ∈
[0, len(π2)), and π1(len(π1))B π2(len(π2));

3. for all π1 ∈ FPathsT(x1) such that π1(i1)B x2 for all i1 ∈ (0, len(π1)] there
is π2 ∈ FPathsT(x2) such that the following holds: x1 B π2(i2) for all i2 ∈
(0, len(π2)], and π1(0)B π2(0).

Two points x1, x2 ∈ X are called CoPa-bisimilar in M if x1 B x2 for some
CoPa-bisimulation B for M. Notation, x1 !M

CoPa x2.
It is easy to see that !CMC is strictly stronger than !CoPa; the interested reader
is referred to [13] for details.

We recall the definition of the Infinitary Compatible Reachability Logic (ICRL)
proposed in [13] that provides a logical characterisation of CoPa-bisimilarity.
Definition 8 (Infinitary Compatible Reachability Logic - ICRL).
The abstract language of ICRL is defined by:

Φ ::= p | ¬Φ |
∧

i∈I

Φi | !ζ Φ1[Φ2] | !ζ Φ1[Φ2]

where p ranges over AP and I ranges over a collection of index sets. The satisfac-
tion relation for all QdCMs M, points x ∈ M, and ICRL formulas Φ is defined
recursively on the structure of Φ as follows:

M, x |=ICRL p ⇔ x ∈ V(p)
M, x |=ICRL ¬Φ ⇔ M, x |=ICRL Φ does not hold
M, x |=ICRL

∧
i∈I Φi ⇔ M, x |=IRL Φi for all i ∈ I

M, x |=ICRL
!ζ Φ1[Φ2] ⇔ path π and index ( exist such that π(0) = x,

M,π(() |=ICRL Φ1, and M,π(j) |=ICRL Φ2 for j ∈ [0, ()
M, x |=ICRL

!ζ Φ1[Φ2] ⇔ path π and index ( exist such that π(() = x,
M,π(0) |=ICRL Φ1, and M,π(j) |=ICRL Φ2 for j ∈ (0, (].
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Logical equivalence with respect to ICRL is defined as expected.

Definition 9 (ICRL-equivalence - ,M
ICRL). For CM M = (X, C,V), the equiv-

alence relation ,M
ICRL ⊆ X × X is defined as: x1 ,M

ICRL x2 if and only if for all
ICRL formulas Φ, it holds that M, x1 |=ICRL Φ if and only if M, x2 |=ICRL Φ.

The following result establishes the relationship between CoPa-bisimilarity and
ICRL-equivalence [13].

Theorem 2. For every QdCM M it holds that ICRL-equivalence ,M
ICRL coincides

with CoPa-bisimilarity !M
CoPa.

In the remainder of the paper, since we are concerned with finite models only,
we confine to the finitary fragment of ICRL, i.e. the fraction where I ranges over
a collection of finite index sets. Furthermore, we will refrain from writing the
superscript M in q!M

CoPa and ,M
ICRL, when this will not cause confusion.

In this work, given a QdCM M = (X, CR,V), we aim at running the model
checking algorithm of [18] on the quotient of X with respect to ,ICRL. The
remainder of this paper is devoted to explain how to compute such set. It is a
natural question at this point, whether the minimal model exists in the class of
QdCMs. In other words, one needs to show that the set of equivalence classes of
,ICRL can be endowed with a quasi-discrete closure operator, in such a way that
logical truth is preserved and reflected. We do so in Proposition 1 below.

Proposition 1. Given a QdCM M = (X, CR,V), let Xmin be the set of equiv-
alence classes of X modulo ,ICRL. Let R′ be the relation {(x, y) ∈ X × X |
y ∈ CR({x})}. Let Rmin be the relation {(α,β) ∈ Xmin × Xmin | ∃x ∈ α.∃y ∈
β.(x, y) ∈ R′}. For each atomic proposition p, let Vmin(p) = {α ∈ Xmin | ∃x ∈
α.x ∈ V(p)}. Let Mmin = (Xmin, CRmin ,Vmin). Then for each x in X and for
each formula Φ, we have M, x |= Φ ⇐⇒ Mmin, [x] |= Φ, where [x] is the
equivalence class of x modulo ,ICRL.

4 From QdCMs to Labelled Transition Systems

In this section we show how a finite QdCM can be encoded as an LTS in such a
way that the images of points that are CoPa-bisimilar in the QdCM are mapped
to branching bisimilar states in the LTS and viceversa. A simplification of the
encoding is possible for the special case of QdCMs where the relation underlying
the closure operator is symmetric.

4.1 General Encoding for Finite CMs

The encoding takes a finite QdCM as input and produces an LTS as output. To
illustrate the various steps in the encoding, we use the QdCM in Fig. 4 and its
LTS encoding in Fig. 5 as a running example. LetM = (X, C,V) be a QdCM and
R the binary relation on X that underlies the closure operator C. The output
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LTS(M) = (S, Act,→) of the encoding of M is an LTS where we can identify
two parts, the direct part and the converse part. Roughly speaking, the direct
part corresponds to R, whereas the converse part corresponds to the converse of
R, i.e. R−1. Both parts consist of the same number of states as the number of
points in X.

More specifically, the set of states of the direct part is the set {!x |x ∈ X} ⊂ S,
i.e. for each point in X there is a state in S in LTS(M). We decorate it with
an arrow from left to right to emphasise that it belongs to the direct part.
Moreover, for all x, x′ ∈ X, whenever x′ ∈ C({x}) — i.e. xR= x′ — and x′ 0= x,
there is a transition from !x to !x ′ in LTS(M). In particular, if x and x′ satisfy
the same set of atomic proposition letters, i.e. V−1({x}) = V−1({x′}), then an
internal transition !x

τ−→ !x ′, is generated. If, instead, there is a change in the
set of atomic proposition letters satisfied by x′ with respect to those satisfied by
x, then the transition !x

ch−→ !x ′ is generated, where ch signals such a change.
In addition, for each x ∈ X, the actual proposition letters p satisfied by x are
encoded as self-loops !x

p−→ !x.
The set of states of the converse part is the set { !x |x ∈ X} ⊂ S and the

right-to-left arrows witness it. Moreover, for all x, x′ ∈ X, whenever x ∈ C({x′})
— i.e. x (R=)−1 x′ — and x′ 0= x, there is a transition from !x ′ to !x in LTS(M).
For what concerns the labels of such transitions in the converse part the same
rules apply as those for the direct part. The encoding of satisfaction of atomic
propositions by self-loops does not need to be repeated in the converse part.

Finally, from each state !x in the direct part there is a transition, labelled
by cv, leading to the corresponding state !x in the converse part, i.e. !x

cv−→ !x
and, similarly, from each state !x in the converse part there is a transition, labelled
by dr, leading to the corresponding state !x in the direct part, i.e. !x

dr−→ !x. The
translation is formalised in Definition 10.

Fig. 4. A finite QdCM

Definition 10 (Encoding Finite CMs into LTSs). Let M = (X, C,V)
be a finite CM. Define labelled transition system LTS(M) as follows. LTS(M) =
(S, Act,→) where: (i) S = {!s | s ∈ X}∪{ !s | s ∈ X}; (ii) Act = AP∪{τ, dr, cv, ch},
where {τ, dr, cv, ch}∩AP = ∅; (iii) the transition relation → contains exactly the
following transitions:

!s
p−→ !s for all p ∈ AP and s ∈ V(p)

!s
cv−→ !s for all s ∈ X

!s
dr−→ !s for all s ∈ X

!s
τ−→ !s ′, !s ′ τ−→ !s if s′ ∈ C({s}) \ {s} and V−1({s}) = V−1({s′})

!s
ch−→ !s ′, !s ′ ch−→ !s if s′ ∈ C({s}) \ {s} and V−1({s}) 0= V−1({s′}).
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Fig. 5. LTS resulting from the application of the encoding defined in Definition 10 to
the QdCM of Fig. 4.

The following lemma states an interesting property of the output of the encoding.
Such a property turns out to be useful for the proof of the main result, asserting
correctness of the encoding with respect to CoPa-bisimilarity.

Lemma 1. Let M = (X, C,V) be a finite CM. It holds that

!s ↔b !t if and only if !s ↔b !t for all s, t ∈ X.

The proof of Lemma 1 builds on the following technical result.

Lemma 2. Let M = (X, C,V) be a finite CM. It holds that

if !s
τ−→ !s ′ and !s ↔b !s ′, then !s ′ τ−→ !s and !s ↔b !s ′.

The proof of Lemma 2 goes by induction on the depth of a direct state. In general,
for an LTS, silent transitions τ∗

−→ split the state space in τ -strongly connected
components (τ -SCCs): states s and s′ are in the same τ -SCC if both s

τ∗
−→ s′

and s′ τ∗
−→ s. Moreover, in the case of a finite LTS, τ -SCCs are well-ordered; a

τ -SCC C is less than τ -SCC C ′ if s′ τ∗
−→ s for some s′ ∈ C ′, s ∈ C, but not the

other way around. The depth of a state is then defined as the number of τ -SCCs
a path of τ -transitions passes through to reach a so-called bottom τ -SCC.

Below we formulate the main theorem, showing that two points s and t in
the QdCM are CoPa-bisimilar if and only if the corresponding states !s and !t are
branching bisimilar, where the LTS is obtained by applying the encoding defined
in Definition 10.

Theorem 3. Let M = (X, C,V) be a finite CM. Then, for all s, t ∈ X we have

s !CoPa t if and only if !s ↔b !t.

For a proof from left to right one defines a CoPa-bisimulation on M obtained
from branching bisimulation in LTS(M): put s B t if !s ↔b !t for points s, t ∈
X. Lemma 2 is used to reduce the proof of obligation for requirement 3 of
Definition 7 to the case of its requirement 2. A proof right to left is more direct;
a branching bisimulation R defined by having !s R !t and !s R !t in case s !CoPa t.
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Fig. 6. A symmetric finite QdCM

4.2 Optimised Encoding for Symmetric Finite CMs

For symmetric finite CMs a simplified version of the encoding can be given.
Symmetric QdCMs naturally emerge as representations of digital images where
points are related via an adjacency relation as discussed in Sect. 1.

Definition 11 (Encoding Symmetric Finite CMs into LTSs). Let M =
(X, C,V) be a symmetric finite CM. Define LTSsym(M) = (S, Act,→) where:
(i) S = {↔

s | s ∈ X}; (ii) Act = AP ∪ {τ, ch}; (iii) the transition relation →
contains exactly the following transitions:

↔
s

p−→↔
s for all p ∈ AP and s ∈ V(p)

↔
s

τ−→↔
s ′ if s′ ∈ C({s}) \ {s} and V−1({s}) = V−1({s′})

↔
s

ch−→↔
s ′ if s′ ∈ C({s}) and V−1({s}) 0= V−1({s′}).

As an example, consider the symmetric finite QdCM of Fig. 6 and its LTS encod-
ing in Fig. 7, obtained with the encoding given in Definition 11. It is easy to see
that a symmetric QdCM with n nodes and t transitions leads to an LTS with n
nodes and t+ n transitions.

Theorem 4. Let M = (X, C,V) be a symmetric finite CM. Then, for all s, t ∈
X we have: s !CoPa t if and only if

↔
s↔b

↔
t .

Fig. 7. LTS resulting from the application of the encoding in Definition 11 to the
symmetric QdCM of Fig. 6.

The 2D maze in Fig. 9a, part of our feasibility study, exemplifies the significance
of CoPa-minimization on images. Each node of the graph represents an area
of interest in the image: exit (green), walls (black), walking areas (white) and
starting points (blue). The three white nodes, as an example, represent three
different kinds of white walking areas: the ones from which neither an exit nor
a starting point can be reached (without crossing walls), the ones from which
a starting point can be reached (but not the exit), and the ones from which a
starting point and the exit can be reached.
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5 Feasibility Study

In this section we provide an experimental validation of the theory presented in
the previous sections. In particular, a prototype implementation of the encoding
of Sect. 4 is introduced and applied to two representative benchmark examples.

5.1 Implementation

The encoding of Sect. 4.1 has been implemented as Free and Open Source Soft-
ware, derived from the sources of the spatial model checker GraphLogicA, han-
dling general finite QdCMs, in order to reuse its model loading functionality.

Procedure. The tool converts a spatial model — either an image (e.g. png), or
a general graph written in a simple json format — to an LTS in the aut file
format, which is one of the LTS formats accepted by the mCRL2 tool suite [10].
For images, the optimised encoding described in Sect. 4.2 is used. The resulting
LTS is minimised using the efficient branching bisimulation minimisation algo-
rithm [24] implemented in mCRL2. This last step results in a minimised LTS in
aut format which can be used for spatial model checking with GraphLogicA, after
a simple conversion back to the json format. For measuring the model checking
speed-up, in our toolchain, we use GraphLogicA for checking the minimal model,
and VoxLogicA to check the full model4.

Fig. 8. Monoscope test pattern Philips PM5544

5.2 Experimental Setup

The procedure described above was used to produce the minimised LTSs shown
in Fig. 9b, of the image of a maze of Fig. 9a, and to minimise the classical Philips
5544 monoscope test pattern, shown in Fig. 8. Our tests have been run on
a workstation equipped with an Intel CoreTM i9 9900 K and 32 gb of RAM.

4 Note that VoxLogicA is inherently much faster than GraphLogicA as it is specialised
for images, exploiting state-of-the-art imaging libraries and automatic parallelisa-
tion. This poses a further challenge to the speed-up via minimisation and is the
reason why we use VoxLogicA instead of GraphLogicA for the full model.
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Fig. 9. An image of a 2D maze (9a), its minimal LTS using the general encoding of
Definition 10 (9b - top), and that obtained using the optimised encoding of Definition 11
(9b - bottom). For readability, self-loops labelled by atomic propositions are not shown;
the corresponding states are shown in the colour represented by the omitted label;
symmetric transition pairs are drawn as doubly-headed arrows.

Full data, source code and tools needed to reproduce the experiments can be
found in a Zenodo repository [16].

Test Images. For experimental evaluation, the two images have been rescaled at
various resolutions. The “name” column of Table 1 indicates the vertical resolu-
tion of each image. The maze image is square, therefore the horizontal resolution
coincides with the vertical one. The monoscope has a 16:9 ratio, thus, e.g., the
horizontal resolution of mono-1080 is 1920 pixels.

Logical Specifications. For the maze image, the model checking specification
consists of the computation of three reachability-based formulas, identifying:
1) the white points from which both a blue point and a green point can be
reached (roughly, the white paths connecting blue points to the exit), via the
formula !ζ blue[white] ∧ !ζ green[white]; 2) the blue points from which there is no
white path to the exit (via a similar formula); 3) the blue points from which,
instead, an exit can be reached (again, using reachability). For the monoscope
pattern, the logical specification is more artificial, as it has been designed to
be more demanding in terms of computation time (both model checkers have
linear complexity in the number of sub-formulas). A single property Φ has been
designed, characterising the points from which very specific paths start, crossing
a number of different colours in a specific order, using 16 nested reachability
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constraints, in the shape !ζ ′(!ζ ′(!ζ ′(. . .)[green])[cyan])[yellow ], where !ζ ′ φ1[φ2] is
defined as ¬φ1 ∧ !ζ φ1[φ2].

5.3 Results and Discussion

Table 1 reports the results for each test image, for the logical properties specified
in Sect. 5.2. Even though some models are equivalent (for instance, all the min-
imised versions of the maze), we have re-run all the phases of our experiment for
each image, including model checking of the minimal model, as we do not test
for equality of models for each pair of images in our experiment (which would
yield a quadratic number of tests).

The obtained speed-up is noteworthy, especially for large images, as shown
in the right-most column in Table 1. The longer formula used in the monoscope
test demonstrates that minimisation clearly pays off when multiple formulas are
checked on the same model, which is common in formal verification. For the
larger images, the model checking time for the full model is substantially longer
than the sum of the conversion, minimisation, backwards conversion, and model
checking of the minimal model. For the maze example, the minimal model has
the same size (actually, it is byte-by-byte the same file) for each resolution. The
monoscope test, on the other hand, is designed to highlight artifacts in images.
The original image is the one of 1080 pixel height and when downsampled at
various resolutions, some lines disappear (specifically, belonging to the vertical
bars close to the middle of the image), yielding different reachability proper-
ties, and therefore a more varied setup for our tests. We report the times both
excluding and including input/output, for completeness. The intermediate file
size for the aut files may be very large, thus saving and parsing times mask the
effective computation. In perspective, the computation time is more relevant, as
in the future intermediate files will be avoided altogether, by constructing mCRL2
models directly in memory, using its programming interfaces.

As expected, with larger image sizes, the speed-up obtained in model checking
becomes more prominent (again with reference to Table 1 the speed-up of model
checking for the largest image is 22). Large images are particularly relevant in 3D
medical imaging, which will be the subject of future work exploring the potential
impact of bisimulation-based techniques to this novel application domain.

Ongoing work, also taking into account the results presented in [34], is
devoted to translating spatial-logic properties to the language of mCRL2 in order
to use its state-of-the-art model checking techniques to verify spatial properties
of directed graphs, in order to leverage the obtained speed-up even further.
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Table 1. Results. All times are in seconds, rounded to two decimals. In order: conver-
sion time from png to aut, without and with I/O; number of states, transitions, and
aut file size of full model; minimisation time, without and with I/O; number of states
and transitions of minimal model; time to convert the minimal model back to json;
time for model checking the full model with VoxLogicA, and the minimal model with
GraphLogicA; model checking speed-up.

Name Conversion Full model Minimisation Model checking

Time t.w.IO States Transitions Aut file size Time t.w.IO States Trans. t.blck ch. full ch. min Speedup

maze-128 0.34 0.34 16.00K 142.50K 2.47 MiB 0.00 0.03 7 21 0.36 0.49 0.39 1.25

maze-256 0.41 0.43 64.00K 573.00K 10.35 MiB 0.02 0.12 7 21 0.29 0.46 0.44 1.06

maze-512 0.34 0.78 256.00K 2.24 M 44.55 MiB 0.08 0.49 7 21 0.30 0.45 0.47 0.97

maze-1024 0.39 1.28 1.00 M 8.99 M 184.34 MiB 0.32 2.06 7 21 0.31 0.51 0.38 1.34

maze-2048 0.46 4.12 4.00 M 35.98 M 793.73 MiB 1.31 8.10 7 21 0.34 0.82 0.41 1.98

maze-4096 0.87 21.91 16.00 M 143.95 M 3.27 GiB 5.37 33.32 7 21 0.33 1.81 0.45 4.01

maze-8192 2.20 173.55 64.00 M 575.91 M 13.63 GiB 21.53 135.45 7 21 0.29 5.34 0.42 12.77

mono-130 0.32 0.38 30.47K 272.05K 4.83 MiB 0.01 0.06 155 899 0.29 0.52 0.44 1.17

mono-260 0.31 0.62 121.88K 1.07 M 20.27 MiB 0.03 0.26 315 1841 0.32 0.54 0.49 1.09

mono-540 0.35 0.90 506.25K 4.44 M 90.33 MiB 0.16 1.01 460 2766 0.30 0.78 0.51 1.52

mono-1080 0.40 5.00 1.98 M 17.78 M 384.28 MiB 0.62 4.08 945 6965 0.32 1.57 0.57 2.75

mono-2160 0.57 43.87 7.91 M 71.16 M 1.55 GiB 2.45 16.74 945 6965 0.33 4.14 0.64 6.48

mono-4320 1.58 30.72 31.64 M 284.70 M 6.65 GiB 9.88 67.52 945 6965 0.72 14.96 0.65 22.87

6 Conclusions and Future Work

A practical minimisation method has been proposed for CoPa-bisimilarity for
finite quasi-discrete closure models. The latter are a convenient theoretical foun-
dation for spatial model checking. The method relies on an encoding of closure
models onto LTSs such that an existing efficient algorithm for branching bisim-
ilarity can be used to obtain a minimal model. The encoding has been proven
correct, in the sense that two points in the CM are CoPa-bisimilar if and only
if the states they are mapped into by the encoding are branching bisimilar.
Spatial model checking can be performed exploiting the logical characterisation
of CoPa-bisimilarity by the ICRL logic. A feasibility study has been performed
to provide insight in the potential of the minimisation method for its use in
the analysis of, possibly large, 2D images, in preparation of its envisioned use
in spatial model checking in the medical domain. First results confirm that a
very promising speed-up of spatial model checking can be obtained for single
formulas, also for images of huge, but realistic, size. Minimisation also clearly
pays off when multiple formulas are checked on the same model, which is com-
mon in formal verification. In such scenario, the model checking time for the
full model is substantially longer than the sum of the conversion, minimisation,
backwards conversion, and model checking of the minimal model, even in the
current prototype setting.

Future work aims at further optimisations of the representations of the mod-
els, an integration of the toolchain and the visualisation of the results of checking
the minimised model by mapping them back to the original image. The basic
ingredients for such a mapping, i.e. the sets of states in the equivalence classes
of the bisimulation, are readily available using the mCRL2 tool suite [10].
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