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Abstract: Remote sensing technologies have been widely studied for the estimation of crop biometric
and physiological parameters. The number of sensors and data acquisition methods have been
increasing, and their evaluation is becoming a necessity. The aim of this study was to assess the
performance of two remote sensing data for describing the variations of biometric and physiological
parameters of durum wheat grown under different water regimes (rainfed, 50% and 100% of
irrigation requirements). The experimentation was carried out in Policoro (Southern Italy) for
two growing seasons. The Landsat 8 and Sentinel-2 images and radiometric ground-based data
were acquired regularly during the growing season with plant biometric (leaf area index and dry
aboveground biomass) and physiological (stomatal conductance, net assimilation, and transpiration
rate) parameters. Water deficit index was closely related to plant water status and crop physiological
parameters. The enhanced vegetation index showed slightly better performance than the normalized
difference vegetation index when plotted against the leaf area index with R2 = 0.73. The overall results
indicated that the ground-based vegetation indices were in good agreement with the satellite-based
indices. The main constraint for effective application of satellite-based indices remains the presence of
clouds during the acquisition time, which is particularly relevant for winter–spring crops. Therefore,
the integration of remote sensing and field data might be needed to optimize plant response under
specific growing conditions and to enhance agricultural production.

Keywords: vegetation indices; water deficit index; enhanced vegetation index; irrigation

1. Introduction

In the last decade, the development of earth observation technology, especially satellite remote
sensing, has made massive remotely sensed data available for research and various applications [1,2].
Agricultural remote sensing is a highly specialized field to generate images and spectral data in volume
and complexity to drive decisions for agricultural development. Agricultural systems can be made
resource-efficient by integrating tools, technologies, and information management systems that come
under Precision Agriculture (PA). Such a concept implies observation, measurement, and response
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to inter- and intra-field variability in crops employing information technology [3]. Remote sensing
is the cornerstone of modern precision agriculture [4]. It aims to optimize farm inputs, to improve
efficiency of water/nutrient application, and to realize site-specific crop field management strategies
that account for within-field variability of soil, early detection of plant abiotic/biotic stresses, and the
effects of applied treatments. This is done by focusing on the best management practice at the right
rate and time and in the right place [5].

Remote sensing technology has been developed for earth observation from different sensors
and platforms. Sensors are mainly used for imaging and non-imaging broadband multispectral or
narrow-band hyper-spectral data acquisition. Platforms are space-borne for satellite-based sensors,
airborne for sensors on manned and unmanned airplanes, and ground-based for field and laboratory
sensors [5].

Remote sensing-based indices are an effective tool for water/nutrient requirement monitoring [6],
crop growth and yield investigation through various phenological stages [7] and vegetation health
status, and monitoring of abiotic stresses. Vegetation indices (VIs) have been developed by combining
the remote sensing data and the reflectance of monitored surfaces within different wavebands, mainly
visible and Near Infrared (NIR). VIs provide consistent spatial and temporal comparisons of global
vegetation conditions [8].

The indices frequently used in the agricultural sector are Normalized Difference Vegetation
Index (NDVI) [9–13], Soil Adjusted Vegetation Index (SAVI) [14–17], and Enhanced Vegetation Index
(EVI) [18,19].

Normalized Difference Vegetation Index (NDVI) is one of the most common spectral indices used in
the crop canopy studies. It is defined in terms of the Near Infrared (NIR) and Red (R) satellite bands as
(NIR−R)/(NIR + R). Satellite-derived NDVI time-series data characterize the annual greenness
changes on land surfaces, the radiance reflected in the R band related to the amount of chlorophyll,
and the radiance in the NIR band related to the density of green leaves [20]. The index is an important
data source for many applications, such as the estimation of vegetation photosynthetic activity [21],
detection of vegetation phenology [22,23], and classification of land cover [24]. NDVI has also been used
with land-surface models for quantitative prediction of vegetation health [25]. Despite the usefulness
of NDVI data in vegetation studies, its application has been limited mainly to the issue of interaction of
soil reflectance with overlying vegetation. To overcome this limitation, the alternatives to NDVI such
as the Soil Adjusted Vegetation Index (SAVI) [26], Generalized SAVI (GESAVI) [27], and Enhanced
Vegetation Index (EVI) [28] have been yielded. Huete [26] proposed using a soil-adjustment factor “L”
to account for first-order soil background variations and obtained a soil-adjusted vegetation index
(SAVI). Soil-adjusted indices such as the Transformed Soil-Adjusted Vegetation Index (TSAVI) [29],
the Modified Soil-Adjusted Vegetation Index (MSAVI) [30], the Optimized Soil-Adjusted Vegetation
Index (OSAVI) [31], and the Generalized Soil-Adjusted Vegetation Index (GESAVI) [27] have attempted
to minimize brightness-related soil effects. The EVI was proposed based on a feedback-based approach
that incorporates both background adjustment and atmospheric resistance concepts into the NDVI [32].
Thus, the EVI has been considered a modified NDVI with improved sensitivity to high biomass regions
and improved vegetation-monitoring capability through decoupling of the canopy background signal
and a reduction in atmospheric influences [33].

Along with the spectral indices, thermal remote sensing indices are very useful for crop stress
monitoring. For this purpose, surface temperature is considered a rapid response variable that can indicate
crop stress prior to their visual symptoms. By measuring estimates of surface temperature, Thermal
Remote Sensing (TRS) has been indicated as a promising tool for precision agriculture [34]. Thus, a series
of satellite and airborne thermal sensors have been developed and used directly or indirectly for many
agricultural applications. Surface temperature detected by thermal sensors is found to be a rapid response
variable for crop and soil monitoring in the agricultural sector [35,36], including estimating soil moisture
and crop water stress for irrigation scheduling [3,37,38], determining disease and pathogen infected
crops [39], mapping soil texture, estimating residue cover, locating tiles in fields, monitoring crop maturity
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for harvesting [40], and mapping crop yield [41,42]. Crop water demand for growth and cooling purposes
is directly related to leaf or canopy temperature and soil moisture [43]. Thermal remote sensing has
been suggested as a potential tool to determine the irrigation needs and crop’s water status in a variety
of studies [44–46]. These studies assume that soil surface is completely covered by vegetation and not
viewed by sensors, so that canopy temperature is obtained by thermal infrared measurements. However,
soil background causes a false indication of water stress in the early stage of crop growth or in the case of
low plant population because dry soil temperature is often higher than air temperature. To overcome
this limitation, Moran et al. [47] developed the Water Deficit Index (WDI) to take into account vegetation
cover using the difference between canopy temperature (Tc) and air temperature (TA) against an NDVI
scatter plot. This “trapezoid method” appears to have potential for evaluating the evapotranspiration rate
and relative field water deficit for both full-cover and partially vegetated sites.

It is frequently desirable to compare the same vegetation indices over time and space using
data from different sensors. Verhoelst et al. [48] reported that the comparisons with ground-based
correlative measurements constitute a key component in the validation of satellite data on atmospheric
composition. Satellite remote sensing along with ground-based remote sensing offer immense potentialities
and advantages in performing useful geospatial operation and functionalities addressing various
geo-disciplinary problems [49]. Based on Zhang [50], remote sensing data fusion, as one of the most
commonly used techniques, aims to integrate the information acquired with different spatial and spectral
resolutions from sensors mounted on satellites, aircraft, and ground platforms to produce fused data
that contain more detailed information than each of the sources. Due to the development of multi-view
and multi-resolution earth observation systems, data fusion of satellite, aerial, and close-range images is
necessary for precision agriculture and environmental monitoring application. Care must be exercised in
making such comparisons because the band-response functions for each instrument are different.

Despite the successful application of high spatial and spectral resolution sensors in agricultural
studies, there are challenges related to high acquisition costs, small area coverage, and limited
availability [51]. The abovementioned limitations have therefore seen a shift toward the use of free
and readily available broadband multispectral sensors with a large swath width such as Landsat and
Sentinel datasets. The free availability of Landsat 8 Operational Land Imager (OLI) and Sentinel-2A
Multi Spectral Instrument (MSI) data significantly advances the virtual constellation paradigm for
mid-resolution land imaging [52,53]. The spatial resolution of 10 m in four visible and NIR bands lies
directly between the Landsat 8 multispectral bands at 30 m.

In this study, we hypothesize that there is a correspondence between satellite imagery and
ground-based vegetation indices. In order to verify this hypothesis, the objectives of the study are
as follows:

• to assess the relationships between remote sensing vegetative indices, and biometric and
physiological parameters of wheat grown under different water regimes;

• to compare the ground-based remote sensing indices with the same indices derived from satellite
imagery; and

• to evaluate the estimation of the Vegetation Index/Temperature (VIT) trapezoid from the
ground-based and satellite temperature data.

2. Materials and Methods

2.1. Experimental Site and Design

The experimental study has been conducted at the experimental farm “E. Pantanelli” of
Bari University “Aldo Moro”, located in Policoro, Southern Italy (MT). The climate is subhumid
Mediterranean according to the De Martonne climate classification [54] with an annual rainfall of
600 mm, while the average annual temperature ranges around 16–17 ◦C. The soil is defined as fine,
mixed, sub-active, and thermic Chromic Haploxererts [55].
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Durum wheat (Triticum durum Desf.) was cultivated in two growing seasons (February–June 2015
and December 2015–July 2016) in nine experimental plots, each covering a surface of 0.185 ha
(43 × 43 m2). Three water regimes were adopted, i.e., rainfed (RF), deficit (I50), and full (I100) irrigation;
where I50 and I100 corresponded to 50% and 100% of irrigation requirements, respectively. Each
treatment was replicated three times.

The climatic data over the study period were recorded by an agrometeorological station located
a few hundred meters away from the wheat field. Air temperature was increasing from sowing to
harvesting in both years. In particular, in the first cropping season, the minimum daily temperature
(Tmin) ranged between 2.3 (March 10 and 17) and 18.5 ◦C (June 4), while the maximum temperature
(Tmax) was between 8.5 (March 10) and 32.1 ◦C (June 10 and 12). In the second cropping season,
Tmin ranged between −1.0 ◦C (December 26) and 15.2 ◦C (May 14), while Tmax was between 5.8 ◦C
(January 27) and 28.8 ◦C (May 22). Total precipitation during the crop growing cycle was 355 and
264 mm in 2015 and 2016, respectively. The cumulative reference evapotranspiration values during the
crop cycle, calculated by the Food and Agriculture Organization (FAO) Penman–Monteith equation [56],
were 504 and 590 mm in 2015 and 2016, respectively. Crop water balance and irrigation scheduling
were managed using an Excel-based model [57] that estimates crop evapotranspiration and irrigation
water requirements through the standard procedure proposed by FAO [56].

In both years, irrigation was applied three times, starting at flowering, with the total amount
of I100 treatments corresponding to 1050 and 960 m3/ha in 2015 and 2016, respectively. Half of these
volumes was applied in I50 treatments.

2.2. Ground-Based Remote Sensing Measurements

2.2.1. Canopy Reflectance and Vegetation Indices Calculation

A high spectral resolution ASD FieldSpec Hand-Held 2 spectro-radiometer (Analytical Spectral
Devices Inc, Boulder, CO, USA) was used to measure in situ canopy spectral reflectance. The instrument
recorded reflectance between 325 and 1075 nm, with an accuracy of ±1 nm and a resolution of <3 nm at
700 nm. The readings were conducted around noon time (11:00 to 13:00) in all wheat plots. The sensor,
with a field of view 25◦, was placed approximately 1.2 m above durum wheat canopy (the height of the
wheat at maturity stage was 89 ± 2 cm). Two replicates of spectral measurements were obtained in
each plot. Measurements were taken under clear sky conditions, once a week from the beginning of the
experimentation. Averages by treatment were calculated to serve after in the elaboration of vegetation
indices. Appropriate spectral bands (visible and near infrared) were selected from the reflectance
measurements, using the central value of each Landsat 8 and Sentinel 2 waveband, to compute specific
VIs (as the Sentinel 2 spatial resolution of 10 m lies directly within the Landsat 8 multispectral bands at
30 m).

2.2.2. Canopy Temperature and WDI

A portable thermal imaging camera (FLIR B335, FLIR Systems, Inc., Wilsonville, OR, USA) was
used for the measurement of wheat canopy temperature. The handheld thermal imager range is
7.5–1.3 µm, allowing accurate temperature measurement with an infrared resolution of 320 × 240 pixels
and lens with an angular field of view of 25◦ (H) × 19◦ (V). Imagery was taken across the experimental
field on clear sky days’ conditions at solar noon, once a week from the beginning of the experimentation.
Image acquisition was preceded by taking the image at 1 m above the wheat canopy level. Thermal
images of three water treatments were individually recorded twice by plot. Digital imageries were
analyzed with ThermaCam Researcher Professional software.

Starting from the collected data, the theoretical Vegetation Index/Temperature (VIT) trapezoid
approach, developed by Moran et al. [48], was used. The vertices of the trapezoid (Figure 1) constitute
four extreme states of vegetation cover and water status.
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Figure 1. Flowchart of the methodology adopted for the estimation of land surface temperature and
Water Deficit Index (WDI).

Hence, WDI was estimated as follows:

WDI =
[(Ts − TA)r − (Ts − TA)min]

[(Ts − TA)max − (Ts − TA)min]
(1)

where Ts is the surface temperature (◦C); TA is the air temperature (◦C); and r, min, and max referred
to the measured, minimum, and maximum values.

(Ts − TA)min and (Ts − TA)max represented the wet and dry references, respectively, of WDI.
These temperature references depend on vegetation indices (NDVI and/or SAVI). For each vertex
of trapezoid, the (Ts − TA)i value (the subscript “i” referred to vertices 1 to 4) was based on the
physical-based energy balance equations and can be computed for well-watered dense vegetation
as follows:

(Ts − TA)1 =
ra(Rn −G)

Cv

γ
(
1 +

rcp
ra

)
∆ + γ

(
1 +

rcp
ra

) −  VPD

∆ + γ
(
1 +

rcp
ra

)  (2)

where ra is the aerodynamic resistance (s/m), Rn is the net radiation (W/m2), G is the soil heat flux
density (W/m2), Cv is the volumetric heat capacity of air (J/◦C m3), γ is the psychrometric constant
(kPa/◦C), rcp is the canopy resistances to vapor transfer for fully transpiring cover (s/m), VPD is
the air vapor pressure deficit (kPa), and ∆ is the slope of the saturated vapor pressure–temperature
relationship (kPa/◦C).

For water-stressed dense vegetation, the (Ts − TA) value was as follows:

(Ts − TA)2 =
ra(Rn −G)

Cv

γ
(
1 + rcx

ra

)
∆ + γ

(
1 + rcx

ra

) −  VPD

∆ + γ
(
1 + rcx

ra

)  (3)

where rcx is canopy resistance to vapor transfer for fully stressed cover (s/m).
For water-saturated bare soil, where canopy resistance rc = 0, the (Ts − TA) was computed

as follows:

(Ts − TA)3 =
ra(Rn −G)

Cv

γ

∆ + γ
−

(
VPD
∆ + γ

)
(4)
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For dry bare soil, where rc =∞, it was estimated as follows:

(Ts − TA)4 =
ra(Rn −G)

Cv
(5)

The soil heat flux density G was computed from Rn, with G equal to 0.15 Rn for vegetation, 0.3 Rn

for saturated bare soil, and 0.5 Rn for dry bare soil.
The WDI considers two important assumptions associated to the relationship between VIs and

the difference (Ts–TA). The variations in (Ts–TA) would be associated to evapotranspiration (ET). Thus,
for a partially vegetated area, WDI is as follows:

WDI = 1−
ET

Epot
(6)

where ET
Epot

is the relative evapotranspiration, the ratio of effective to potential ET.

2.2.3. Leaf Gas Exchange Measurements

The net photosynthetic CO2 assimilation rate (An, µmol/m2/s) at saturating light, stomatal
conductance to water vapor (gs, mol/m2/s), and transpiration was determined by using a portable
open-system gas-exchange Li-6400 (Li-Cor Biosciences, Lincoln, NE, USA), with CO2 inside the leaf
chamber set to 400 µmol/mol air by means of an external bottled CO2 source. An LED light source
provided a photosynthetic photon flux density (PPFD) equal to 2000 µmol/m2/s. Measurements were
taken around noon time (from 11:00 to 13:00). Each measurement was replicated on six leaves per plot
for each treatment.

2.2.4. Biometric Measurements: Leaf Area Index and Dry Aboveground Biomass

Leaf Area Index (LAI) of durum wheat was measured every 10–12 days. Plants from an area of
0.25 m2 per plot were collected on several sampling dates throughout the growing seasons. Then, they were
subdivided in leaves and stems. From a subsample of leaves, leaf area was determined using the leaf area
meter (Li-Cor, 3100 Lincoln, NE, USA). On the same sampling dates, the Dry Aboveground Biomass (DAGB)
was measured after drying it in the oven at 70 ◦C until a constant weight was reached.

2.3. Space-Borne Remote Sensing Measurements

2.3.1. Image Acquisition and Analysis

Landsat 8 images were downloaded free of charge from the United States Geological Survey (USGS)
Earth Resources Observation and Science (EROS) Centre archive website (http://earthexplorer.usgs.gov/).
The images consisted of the Operational Land Imager (OLI) sensor and the Thermal Infrared Sensor
(TIRS). The study area was covered by two Landsat 8 paths/rows: 188/32 and 187/32. For the first year,
the satellite images were acquired from 07 April 2015 to 19 June 2015 using both Operational Land
Imager and Thermal InfraRed sensors. Regarding the second year, imagery was downloaded from
09 April 2016 to 07 July 2016. It was not possible to use more images due to weather constraints (dense
cloud presence).

Sentinel-2A image was collected on 30 April 2016. The imagery was downloaded from the
Sentinels Scientific Data Hub, which provides unlimited open access to the Sentinel-2 Level-1C (L1C)
user products. The L1C pixel values refer to the Top of Atmosphere (TOA) reflectance. The combination
of data from these two sun-synchronous polar orbiting systems provided a global median average
revisit interval of 4.6 days [58].

The Landsat 8 and Sentinel-2 imagery were analyzed through ENVI 5.1 software. As the Landsat
8 downloaded data are already geo-referred, no geometric calibration was performed. The alternative
process was the radiometric calibration. Standard Landsat 8 L1T products are distributed by USGS

http://earthexplorer.usgs.gov/
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EROS in 16 bits unsigned integer format and can be rescaled to top of atmosphere spectral reflectance
and top of atmosphere spectral radiance using the radiometric rescaling coefficients provided in the
product metadata (MTL) file. Landsat 8 operational land imager files were converted from Digital
Number (DN) to Top of the Atmosphere (TOA) spectral data in terms of gains, offsets, solar irradiance,
and sun elevation defined in the metadata. The brightness temperature option is available only for
thermal imagery. The Landsat 8′s two thermal bands were designed to allow the retrieval of surface
temperature values, using the split-window algorithm. Subsequently, representative vegetation indices
(VIs) were selected and derived.

The selected Sentinel-2 scene (30/04/2016) was cloud free; therefore, there was no requirement for
performing cloud masking.

2.3.2. Vegetation Indices Mapping

A preliminary assessment of optical vegetation indices was carried out in order to study their
potential as indicators of crop water status and to assess structural changes potentially caused by the
irrigation regime.

The band sets used in each vegetation index, at pixel-based scale, included those centered at 654.5
and 865 nm for the NDVI, SAVI, and EVI calculations as well as for the LAI estimation. An overview
of the spectral indices used in this study is presented in Table 1.

Table 1. Satellite-derived vegetation indices used in the study.

Spectral Index Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI (NIR−R)

(NIR+R) Rouse and Haas [59]

Soil Adjusted Vegetation Index SAVI (1 + L) ∗
(

NIR−R
NIR+R+L

)
Huete [26]

Enhanced Vegetation Index EVI 2.5 ∗
(

NIR−R
NIR+2.4R+1

)
Huete et al. [28]

Leaf Area Index LAI 3.618∗EVI− 0.118 Boegh et al. [60]

L: SAVI adjustment factor, fixed at a standard value of 0.5, as suggested by Huete [26].

2.3.3. Land Surface Temperature Estimation—WDI Assessment

The methodology adopted for the estimation of Land Surface Temperature (LST) and WDI is
synthetized in a flowchart given in Figure 1.

Land surface temperature was retrieved from Landsat 8 thermal infrared sensor bands using the
Split Window (SW) algorithm proposed by Jimenez-Munoz and Sobrino [61]:

Ts = T10 + c1(T10 − T11) + c2(T10 − T11)
2 + c0 + (c3 + c4w)(1− ε) + (c5 + c6w)∆ε (7)

where ε is the mean emissivity ε = 0.5(εi + εj. ), ∆ε is the emissivity difference ∆ε = (εi − εj. ), W is the
total atmospheric water vapor content (g/cm2), and c0–c6 are the Split Window coefficients.

Thermal infrared sensor data of both bands (10 and 11) of all the Landsat images were converted
into spectral radiance as mentioned above. The retrieved radiance was converted into brightness
temperature (TB) using the thermal constants provided in the Landsat metadata.

Brightness temperature (in Kelvin), for each pixel within the extracted region, was applied as follows:

TB =
K2

ln
(K1

Lλ
+ 1

) (8)

where TB is the at-satellite brightness temperature (K); Lλ is the TOA spectral radiance (W/m2/srad/µm);
and K1 and K2 are the band-specific thermal conversion constants (Table 2).
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Table 2. Specific thermal conversion constants for bands 10 and 11 of Landsat 8.

Specific Thermal Conversion Constants

K1 K2

Band 10 774.89 1321.08

Band 11 480.89 1201.14

Source: The metadata file delivered with the Landsat 8 image.

The split-window coefficients c0 to c6 (Table 3) were extracted from simulated data reported by
Skokovic et al. [62].

Table 3. Split window coefficient values.

c0 −0.268

c1 1.378

c2 0.183

c3 54.30

c4 −2.238

c5 −129.2

c6 16.40

In this study, the land surface temperature retrieval method was used with previously known Land
Surface Emissivity (LSE), since the simultaneous methods need specific requirements and sophisticated
algorithms, while the previously known land surface emissivity methods appear to be more practical with
reasonable accuracy for land surface temperature retrieval from Landsat imagery. Emissivity (ε) is estimated
following NDVI thresholds method retrieved using Sobrino et al. [63,64] and Wang et al. [65].

εi =


aiρred + bi ; NDVI < 0.2
εv,iPv + εs,i(1− Pv) + Ci; 0.2 < NDVI < 0.5
εv,i + Ci; NDVI > 0.5

(9)

The emissivity of vegetation (εv) and soil (εs) was calculated from the Moderate Resolution
Imaging Spectroradiometer (MODIS) UCSB (University of California, Santa Barbara) emissivity library,
using the following equation:

εi =

∫ λ2,i
λ1,i fi(λ) − εi(λ)dλ∫ λ2,i

λ1,i fi(λ)dλ
(10)

where εi is the emissivity for channel I, εi(λ) is the spectral emissivity, λi is the effective band wavelength
for band I, and fi(λ). is the spectral response function for correspondent band.

Soil and vegetation emissivity’s values for Landsat 8 TIRS are reported in Table 4.

Table 4. Emissivity of soil and vegetation for Landsat 8 thermal infrared sensor bands 10 and 11.

Emissivity

Soil Vegetation

Band 10 0.9668 0.9863

Band 11 0.9747 0.9896
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The vegetation fraction (Pv) is derived from NDVI [63,66]:

Pv =

(
NDVI−NDVImin

NDVImax −NDVImin

)2

(11)

where NDVImin = 0.2 and NDVImax = 0.5.
Ci is a term which considers the cavity effect due to the surface roughness (C = 0 for flat surfaces).

Sobrino et al. [67] suggested that Ci can be estimated as follows:

Ci = (1− εs,i)εv,i F′(1− Pv) (12)

where F′ is the geometrical factor ranging between 0 and 1, depending on the geometrical distribution
of the surface (usually 0.55).

When NDVI < 0.2 (never occurred in this experiment), the pixel was considered as bare soil
(Pv = 0). For this circumstance, the emissivity was estimated from an empirical relationship with
the red band reflectance (R), which is also derived from MODIS UCSB emissivity library [64,68,69].
The relationships for band 10 and 11 were ε10 = 0.973–0.047 R and ε11 = 0.984−0.026 R.

Different vegetation indices such as NDVI, MSAVI, and SAVI may have different linkages with
land surface temperature providing the design basis of the vegetation index/temperature trapezoid.
In this research, the NDVI was utilized since it shows more sensitivity to partial covers in early stages
of the crop. The corners of the vegetation index/temperature trapezoid were determined using the
measured values of wheat NDVI during several crop stages under conditions of rainfed and full
irrigation and the difference between surface and air temperature. For a given pixel, we combined
visible, infrared, and thermal datasets. The correlation between three bands has proven to be useful
for appropriate monitoring of vegetation and water stress. Then, the vertices were defined and the
empirical vegetation index/temperature trapezoid was built. It led to the definition of the WDI.

The WDI is developed to combine the NDVI and land surface temperature data to detect changes
in moisture conditions. In this study, the Landsat 8 land surface temperature vs. NDVI relationship in
terms of irrigation regimes is interpreted via the vegetation index/temperature trapezoid, which is a
simplification of the WDI model.

2.4. Statistical Analysis

Linear regression analysis was applied to assess the relationship between crop physiological and
biometric data and vegetation indices, whereas the exponential regression analysis was used to evaluate
the relationship between the ground-based and satellite-based vegetation indices. The coefficient of
determination (R2) was considered to judge the strength of relationships.

All statistical analyses were carried out using SAS University Edition (Cary, NC, USA).

3. Results and Discussion

3.1. Ground-Based Sensing Results

3.1.1. Leaf Gas Exchange Parameters Versus VIs Measured at Canopy Scale

The parameters of the linear regressions linking the measured gas exchange variables (stomatal
conductance, net assimilation. and transpiration rate), with thermal (WDI) and spectral (NDVI, SAVI,
and EVI) VIs are presented in Figures 2 and 3, respectively. The linear regression function was chosen
since it was applied successfully in several other studies [70–73].
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Figure 2. The parameters of linear regression (R2—correlation coefficient) between leaf gas exchange
variables (gs—stomatal conductance, An—net assimilation, and Tr—transpiration rate) and the thermal
index (WDI—Water Deficit Index)).
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Figure 3. Linear regression parameters between net assimilation (a–c), stomatal conductance (d–f) and
transpiration rate (g–i) leaf exchange parameters and spectral (Normalized Difference Vegetation Index
(NDVI), Soil Adjusted Vegetation Index (SAVI), and Enhanced Vegetation Index (EVI)) vegetation
indices, respectively.

Overall, the optical-based Leaf Gas Exchanges (LGE) models performed consistently well.
A positive correlation between leaf gas exchanges and NDVI, SAVI, and EVI was observed. Nevertheless,
a negative correlation between leaf gas exchanges and WDI was apparent. The R2 of VI-based leaf
gas exchange estimation ranged from 0.52 to 0.75. EVI demonstrated slightly better performance
than SAVI and NDVI (Figure 3). Under these circumstances, WDI was found to perform strongly
with the abovementioned parameters, since surface temperature (Ts) measurements were reliable in
determining the four corners of the vegetation index/temperature trapezoid data-range. It was shown
that the thermal information had a stronger capacity of estimating leaf gas exchanges than optical data.

The ability of optical-based and thermal-based data to estimate leaf gas exchanges was evaluated.
Land surface temperature provided valuable information to quantify surface energy balance, and
it is theoretically linked with leaf gas exchanges in the form of WDI [74,75]. NDVI, SAVI, and EVI
were the indicators of the trend term, whereas WDI was the indicator describing environmental stress.
Zhang [76] and Yang et al. [77] used temperature information to measure the influence of drought
stress on stomatal conductance. Therefore, employing thermal information as a vital proxy for drought
stress is a good alternative. Overall, the presented results demonstrated that the application of optical
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VIs to estimate leaf gas exchanges is a promising methodology. In particular, good results were
observed when WDI was correlated with stomatal conductance (R2 = 0.93) and other LGE parameters
(Figure 2). If the thermal information is missing, single optical VIs is also recommended to quantify
leaf gas exchanges.

There is not a clear differentiation of results among different water regimes (Figure 3). It might be
explained by the relatively low irrigation amount (1050 and 960 m3/ha in 2015 and 2016, respectively)
which was applied mainly at the flowering and yield formation phases. Therefore, there was enough
precipitation during the booting and stem elongation phase which impeded the occurrence of water
stress during crop vegetative development. Accordingly, the VIs could not be suitable to discern
among different water regimes.

3.1.2. Biometric Crop Parameters Versus VIs Measured at Canopy Scale

The regressions derived from the relationships between canopy scale vegetative indices (i.e., NDVI,
SAVI, and EVI) versus biometric crop parameters (leaf area index and dry aboveground biomass) are
summarized in Figure 4. A linear regression function was chosen to show the general trend of the
above-cited relationships.

The results (Figure 4) indicated that the measured vegetation indices are correlated with LAI to a
certain level of agreement. Hence, in the case of LAI, R2 ranges between 0.63 (for NDVI) and 0.73 (for
both SAVI and EVI).

Up to the initiation of flowering, the averaged LAI increased in all plots, but it started to decrease
at the beginning of yield formation and maturity. In this study, both ground-based and satellite mean
hyperspectral reflectance of wheat canopy increased at the beginning of the season and then started
to decrease, which is consistent with the field measurements of LAI. The present results suggest that
LAI can be accurately estimated using spectral vegetation indices. Inasmuch as EVI was significantly
affected by soil background, it was strongly correlated with leaf area index (R2 = 0.73). This result is in
agreement with Fensholt et al. [78], who reported similar findings on grassland.

The results of regression analysis between winter wheat biomass and spectral vegetative indices
showed that all measured vegetation indices are correlated with biomass to a certain level of agreement
(Figure 4). The correlation of Dry Aboveground Biomass (DAGB) was better with EVI (R2 = 0.65) than
with SAVI (R2 = 0.60) and with NDVI (R2 = 0.56).

Previous studies have shown that near infrared and red band vegetation indices are effective
for estimating DAGB [79–81]. Nevertheless, in this research, the correlation between DAGB, and red
and near infrared band vegetation indices is not particularly strong. This can be explained by the
fact that, during the reproductive stage, photosynthesis and near infrared reflectance both clearly
decrease. This result is consistent with the results of Humbeck et al. [82]. Sun et al. [83] reported that,
during the middle and late stages of crop growth, wheat reproductive growth was enhanced when the
vegetative growth was weakened [84] and that, consequently, the winter wheat Dry Aboveground
Biomass (DAGB) continued to increase. However, the chlorophyll content of winter wheat leaves
decreased, leading to a decrease in the near infrared reflectance. The relation between near infrared
spectral reflectance and crop biomass was then decreased because of the incoming senescence.

Yue et al. [85] reported that red-, green-, and blue-band spectral indices are effective in estimating
Dry Aboveground Biomass (DAGB) of winter wheat during vegetative growth and reproductive
growth stages.

3.2. Satellite Sensing Results

Mapping Leaf Area Index

The LAI maps are shown in Figure 5 for two days (around flowering and maturity) in the first
agricultural year. For 16 April 2015, the satellite-based LAI data showed that the LAI was high in all
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plots. However, the LAI decreased near maturation (03 June 2015). These results are consistent with
field observations and data reported by Yue et al. [85].Water 2020, 12, x FOR PEER REVIEW 14 of 25 
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Figure 4. Linear regression parameters between the crop biometric parameters leaf area index and dry
aboveground biomass and the spectral vegetation indices (NDVI, SAVI, and EVI).
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3.3. Satellite vs. Ground-Based VIs Comparison

The type of relationships between LAI, NDVI, SAVI, and EVI measured from satellite and the
same parameters measured from ground-based sensing method are given in Figure 6 for both years.Water 2020, 12, x FOR PEER REVIEW 5 of 6 
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Figure 6. The relationship between satellite (Landsat 8) and ground-based LAI (a) and vegetative
indices (NDVI (b), SAVI (c), and EVI (d)).

The exponential regression function was chosen to show the general trend of the LAI, NDVI,
SAVI, and EVI VIs. High correlations appeared to be evident for LAI, NDVI, SAVI, and EVI regressions,
with R2 values close to or higher than 0.70. The highest determination coefficient (R2 = 0.83) was
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obtained in the case of EVI. Again, there is no clear differentiation among different water regimes due
to the facts explained previously in Section 3.1.1.

Biudes et al. [86] reported that LAI estimated on ground-based and satellite-derived extinction
were positively correlated with crop growth. The NDVI correlation was relatively high, in agreement
with other studies [87–89].

This study has confirmed the applicability of both ground-based and satellite remote sensing
techniques to evaluate crop growth and plant physiological parameters of winter wheat. The VIs obtained
on the ground-based measurements performed slightly better than those acquired by the satellite sensors.

Landsat and Sentinel 2 remote sensing data could be particularly useful for the regional assessments
and field crops grown on large plots since these data cover greater areas and are available free of charge.
Inasmuch as the limitations are related to the spatial resolution and revisiting frequency, the Landsat
data offered a valuable input to assess winter wheat biometric and physiological parameters. Moreover,
Landsat and Sentinel 2 data can be used in a complementary way. The limitation of use of satellite
data under cloud conditions does not represent a serious drawback in the arid and semiarid areas
of the Mediterranean region despite the cloud presence and precipitation. Therefore, the availability
of Landsat and Sentinel 2 data provides the opportunity to develop specific operational tools, based
on the historical earth observation sensing data and wheat management practices on the ground,
to analyze the pros and cons of adopted agronomic practices in the past and to identify the best crop
management for the future. Although a new generation of satellites with improved spatial resolution
and reduced return frequency is available, the use of Landsat data remains essential due to the longest
continuously running global data archive and the possibility to analyze the crop performance for a
long period in the past.

Figure 7 shows the VIT trapezoid formed for winter wheat from ground-based and satellite data
obtained for the first experimental year (2014–2015). The circles within the trapezoid correspond to
measurements of (Ts − TA) and NDVI from the area planted with wheat. Both sensing methods were
used to verify that all samples fell within the limits of the empirical trapezoid. The data showed either
high or low values of NDVI and (Ts − TA); some intermediate values were also recorded.
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Figure 7. Vegetation Index/Temperature (VIT) trapezoid estimated for winter wheat from ground-based
and satellite data.

The surface temperature values, measured to define the trapezoidal method for winter wheat, agree
with those reported by Jackson [90], Moran et al. [47], and Mendez-Barroso et al. [91]. They mentioned
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that the temperature of dry bare soil is always several degrees above the air temperature, generally by
more than 10–15 ◦C, because the soil thermal inertia is relatively low [92] and soil moisture is one of the
factors affecting the thermal properties of the soil.

The empirical trapezoid model proposed in this study can be a useful tool to estimate the spatial
and temporal extent of WDI, which is applied to identify the degree of water stress. The development
of this remote sensing method is a priority in arid and semiarid zones where water is a scarce resource.
Moreover, it requires a reduced number of inputs, which are relatively easy to obtain, such as NDVI,
air, and surface temperatures. Generally, WDI produced a good estimation of surface temperature and,
thus, evapotranspiration because it was able to capture the growth process of leaves and to describe
the temporal variation trend of stomatal conductance.

4. Conclusions

In this study, ground-based and satellite remote sensing techniques were used to evaluate and to
compare crop growth and crop water status of winter wheat under three water regimes. The results of
elaborations of data from two growing seasons indicated the following:

• A strong correlation between the spectral vegetative indices (NDVI, SAVI, and EVI) and LAI at
the canopy scale. However, the relationship with dry aboveground biomass was less convincing.
As related to leaf gas exchange parameters, WDI responded well to the increasing level of water
stress. Data in the thermal infrared spectrum were the most promising source to monitor water
stress, showing better correlations than the spectral vegetative indices.

• Despite the challenges posed by moderate satellite spatial resolution, the correlations between the
satellite and ground-based results were satisfactory and consistent with other studies.

• The Vegetation Index/Temperature (VIT) trapezoid concept, based on Landsat 8 thermal bands
and surface temperature data, constitutes a relevant approach to estimate the spatial and temporal
extent of water stress. Nevertheless, it is more suitable for summer than for winter–spring crops.

Agricultural sector requires continuous monitoring systems able to provide timely data on crop
growth, water/nutrient/health status, and biomass/yield in a standardized and regular manner at different
scales (farm, regional, and national). The estimates should be provided as early as possible during
the growing season(s), compared with the previous seasons, and updated periodically throughout the
season until harvesting. The availability of remote sensing data should enable the agricultural engineers
and water managers to identify the areas with the large variation of crop biometric and physiological
parameters and to make adequate management decisions in order to stabilize and to improve yield and
water productivity.
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