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A Bayesian nonparametric model for density and

cluster estimation: the ε-NGG process mixture model
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1CNR-IMATI and 2Politecnico di Milano

Abstract

We define a new class of random probability measures, approximating the well-known

normalized generalized gamma (NGG) process. Our new process is defined from the

representation of NGG processes as discrete measures where the weights are obtained by

normalization of the jumps of a Poisson process, and the support consists of independent

identically distributed location points, however considering only jumps larger than a

threshold ε. Therefore, the number of jumps of the new process, called ε-NGG process, is

a.s. finite. A prior distribution for ε can be elicited. We will assume such a process as the

mixing measure in a mixture model for density and cluster estimation. We also build an

efficient Gibbs sampler scheme to simulate from the posterior. Finally, the performance

of our model on two popular datasets will be illustrated.

Keywords: Bayesian nonparametric mixture models, normalized generalized gamma

process, blocked Gibbs sampler, finite dimensional approximation, a priori truncation

method.

1 Introduction

The first goal of this work is the definition of a new class of nonparametric priors, which can

be considered as an approximation of the distribution of a homogeneous normalized random

measure with independent increments, namely the normalized generalized gamma process.

Any homogeneous normalized random measure with independent increments (NRMI) can be

represented as a discrete random probability measure: the weights are obtained by normal-

ization of the jumps (a countable set) of a Poisson process, while the support consists of a

countable number of random points from some distribution. In this case, posterior inference

is made difficult by the presence of infinite unknown parameters. NRMIs are a popular tool in

a mixture context, where they are usually considered as mixing measures of parametric den-

sities for continuous data, and therefore NRMI mixtures include infinite parameters. There
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ε-NGG mixtures 2

are two main approaches to deal with this computational problem, namely marginal and

conditional Gibbs sampler algorithms for sampling from the posterior. The former integrate

out the infinite dimensional parameter (i.e. the random probability), resorting to generalized

Polya urn schemes (MacEachern, 1998); see Neal (2000) for a review on the subject. Recently,

Favaro and Teh (2013) developed algorithms of both types for mixture models with NRMI

mixing measures.

On the other hand, by a conditional algorithm we mean a Gibbs sampler imputing the

nonparametric mixing measure and updating it as a component of the algorithm itself. The

reference papers on conditional algorithms for Dirichlet process mixture models are Pa-

paspiliopoulos and Roberts (2008) and Walker (2007). The former builds a retrospective

algorithm, while the latter proposes a slice sampler algorithm. The slice sampler has been

extended to NRMI mixtures in Griffin and Walker (2011). See also Favaro and Walker (2013).

Conditional algorithms are called truncation methods here if the infinite parameter (i.e.

the mixing measure) is approximated by truncation of the infinite sum defining the process.

Truncation can be achieved a posteriori, when one approximates the infinite parameter P

given the data, as described in Gelfand and Kottas (2002) for the DPM model. On the

other hand, truncation can be applied a priori to approximate the nonparametric mixing

distribution with a finite dimensional random probability measure. In this case, a simpler

mixture model has to be fitted. In the latter framework, pioneer papers for DPM models

are Ishwaran and James (2001) and Ishwaran and Zarepour (2000, 2002). For instance,

Ishwaran and James (2001) consider a (blocked) Gibbs sampler for a finite approximation

of the stick-breaking prior in order to deal with a finite number of random variables, which

are updated in “blocks”. Barrios et al. (2013) propose an a posteriori truncation algorithm

for NMRI mixtures using the Ferguson-Klass representation of completely random measures

(Ferguson and Klass, 1972). Of course, when using truncation algorithms, the key-point is

the choice of the truncation level; Argiento et al. (2010) propose a simple adaptive truncation

method evaluating an upper bound in probability for the jumps excluded from the summation.

Recently, an a priori truncation method has been introduced by Griffin (2013), who proposes

an adaptive truncation algorithm for posterior inference with priors either of stick-breaking

or NRMI type.

If we needed a motivation for conditional algorithms, with or without truncation, we

should keep in mind that they are able to provide a full Bayesian analysis. On the other

hand, as pointed out in Griffin (2013), there are two motivations for truncation: the study

of the properties of the prior distribution, which is not our primary goal, and simpler calcu-

lation of posterior inference using these priors. Instead, with regard to theoretical results on

approximation of Dirichlet processes based on the distributional equation for a DP given in
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Sethuraman (1994), we refer here to Muliere and Tardella (1998) and Favaro et al. (2012).

In this work we introduce a new truncation prior by defining a random probability measure

which depends (among the others) on a parameter ε, controlling the degree of approximation

of the truncation method. In particular, our prior is a truncated version of a normalized

generalized gamma (NGG) process (Lijoi et al., 2007), where this new random probability

measure is built from the representation of the weights of a NGG process as normalized points

of a Poisson process; however, in this representation, we consider only points larger than the

threshold ε. We refer to this random probability measure as ε-NGG process. Conditionally

on ε, our process is finite dimensional either a priori and a posteriori. To justify our proposal,

we show that, for ε going to zero, the finite dimensional ε-NGG prior converges to its infinite

dimensional counterpart. As often done in Bayesian Nonparametrics, we will consider this

new discrete random probability as the mixing measure in a Gaussian mixture model, which

is a very flexible tool for density and cluster estimation problems. A prior distribution for ε

can be given, as well as for all the other potential parameters defining the new process. As

a second goal of this paper, we design a blocked Gibbs sampler algorithm to simulate from

the posterior.

For illustration purposes, we fitted our mixture model to two popular datasets: the Galaxy

data, and the Yeast cell cycle data, which is an interesting multivariate dataset consisting of

gene expression profiles measured at 9 different times. Density estimates are shown for the

two applications, together with a thorough robustness analysis of the estimates with respect

to prior choice, in particular to investigate the effect of the approximation parameter ε.

In Section 2 we introduce notation on homogeneous NRMIs, while in Section 3 we define

the new ε-NGG process, show convergence in distribution to a NGG process and describe

its posterior, given a sample from it. Section 4 introduces ε-NGG mixtures and describes

the MCMC algorithm for computing its posterior. Section 5 (Galaxy data) and 6 (Yeast cell

cycle data) discuss the two applications. The article ends up with wrap-up of the proposed

model as well as with possible future developments in Section 7.

2 Homogeneous normalized random measures

In this section we sketch the basic ingredients to construct homogeneous NRMIs in order to

smooth the introduction of our new prior. Further details can be found in James et al. (2009)

and Regazzini et al. (2003) and the references therein.

Let Θ ⊂ R
m for some positive integer m. A random measure µ on Θ is completely random

if for any finite sequence B1, B2, . . . , Bk of disjoint sets in B(Θ), µ(B1), µ(B2), . . . , µ(Bk) are

independent. A purely atomic completely random measure is defined (see Kingman, 1993,
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Section 8.2) by µ(·) =
∑

j≥1 Jjδτj (·), where the {(Jj , τj)}j≥1 are the points of a Poisson

process on R
+ × Θ. We denote by ν(ds, dτ) the intensity of the mean measure of such a

Poisson process. A completely random measure is homogeneous if ν(ds, dτ) = ρ(s)dsP0(dτ),

where ρ(s) is the density of a non-negative measure on R
+, while P0 is a probability measure

on Θ. If µ is homogeneous, the support points, that is {τj}, and the jumps of µ, {Jj}, are

independent, and the τj ’s are independent identically distributed (iid) random variables from

P0, while {Jj} are the points of a Poisson process on R
+ with mean intensity ρ. Furthermore,

we assume that ρ satisfies the following regularity conditions:

(1)

∫ +∞

0
min{1, s}ρ(s)ds < ∞ and

∫ +∞

0
ρ(s)ds = +∞.

If T := µ(Θ) =
∑

j>1 Jj , the former condition in (1) guarantees that P (T < +∞) = 1, while

the latter yields P (T = 0) = 0. Therefore, a random probability measure (r.p.m.) P can be

defined through normalization of µ:

(2) P :=
µ

µ(Θ)
=

∞∑

j=1

Jj
T

δτj =
∞∑

j=1

Piδτj .

Following James et al. (2009) we refer to P in (2) as a homogeneous normalized random

measure with independent increments (HNRMI). The definition of HNRMIs appeared in

Regazzini et al. (2003) first. An alternative construction of HNRMI can be given in terms of

Poisson-Kingman models as in Pitman (2003).

In particular, in this paper we are going to propose a new r.p.m. on the ground of

a HNRMI, namely the normalized generalized gamma process, introduced in Lijoi et al.

(2007). We use the same notation as in Argiento et al. (2010). By a NGG(σ, κ, ω, P0)

process P we denote the HNRMI as in (2) where the mean intensity of the Poisson process

defining the jumps is ρ(s) = (κ/Γ(1 − σ)) s−1−σe−sω
I(0,+∞)(s), and 0 ≤ σ ≤ 1, κ, ω ≥ 0.

This parametrization is not unique, as the scaling property in Pitman (2003) shows, since

(σ, κ, ω, P0) and (σ, sσκ, ω/s, P0), for any s > 0, give the same distribution for P . When

ω = 1 and σ = 0, the Dirichlet process (DP) is recovered.

One of the main reasons in favour of NGG process, instead of DP, is its higher flexibility

in clustering. For instance, when considering a sample of size n from a NGG process, the

distribution of the numberKn of distinct values in the sample has a further degree of freedom,

σ, which tunes its variance, contrary to the DP case, where the distribution of Kn can

be highly peaked. The parameter σ also drives a richer reinforcement mechanism in the

predictive distributions of the sample. Moreover, NGG processes are of Gibbs-type, a class

of r.p.m.’s which stands out for their mathematical tractability (see Lijoi et al., 2008).

Recent works that include NGG processes as an ingredient in their models are Caron

(2012) and Caron and Fox (2014), both on statistical networks: the former for bipartite
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random graphs, while the latter for sparse and exchangeable random graphs. Griffin et al.

(2013) and Lijoi et al. (2014) propose a vector of dependent NGG processes for comparing

distributions. See also Chen et al. (2012) for an application of such multivariate priors in a

dynamic topic modeling context.

3 ε-NGG processes

The goal of this section is the definition of a finite dimensional random probability measure

that is an approximation of the NGG process with parameters (σ, κ, ω, P0), introduced above.

The idea is the following: it is straightforward to show that, for any ε > 0, all the jumps

{Jj} of µ larger then a threshold ε are still a Poisson process, with mean intensity ρ̃ε(s) :=

ρ(s)I(ε,+∞)(s). Moreover, the total number of these points is Poisson distributed, i.e. Nε ∼

P0(Λε) where

Λε :=

∫ +∞

ε
ρ(x)dx =

κωσ

Γ(1− σ)
Γ(−σ, ωε),

where Γ(a, x) =
∫ +∞
x ta−1e−tdt is the incomplete gamma function. Since Λε < +∞ for any

ε > 0, Nε is almost surely finite. In addition, conditionally to Nε, the points {J1, . . . , JNε}

are iid from the density

ρε(s) =
1

ωσΓ(−σ, ωε)
s−σ−1e−ωs

I(ε,∞)(s).

This is the well-known relationship between Poisson and Bernoulli processes; see, for instance,

Kingman (1993), Section 2.4. However, in this case, while P(
∑Nε

j=1 Jj < ∞) = 1, the condition

on the right of (1) is not satisfied, so that P(
∑Nε

j=1 Jj = 0) > 0, or, in other terms, P(Nε = 0) >

0 for any ε > 0. To overcome this problem, we add one more point J0, independent on the

previous Jjs, but identically distributed, so that we considerNε+1 iid points {J0, J1, . . . , JNε}.

We are ready to define an ε−NGG process as:

(3) Pε =

Nε∑

j=0

Pjδτj =
1

Tε

Nε∑

j=0

Jjδτj ,

where Tε =
∑Nε

j=0 Jj , τj
iid
∼ P0, {τj} and {Jj} independent. We denote Pε in (3) by

ε−NGG(σ, κ, ω, P0) process.

Observe that Pε is a proper species sampling model (Pitman, 1996) with a random number

Nε+1 of different species. In particular we observe that if θ := (θ1, . . . , θn) is a finite sample

from a species sampling model P , its marginal law has unique characterization in term of its

unique distinct values θ∗ := (θ∗1, . . . , θ
∗
k) and its exchangeable partition pn as follows:

L(pn, θ
∗
1, . . . , θ

∗
k) = p(n1, . . . , nk)

k∏

j=1

L(θ∗j ),
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where p is the exchangeable partition probability function (eppf) associated to P and ni is

the number of elements of θ equal to θ∗i for 1 ≤ i ≤ k. See Pitman (1996).

Coming back to Pε defined in (3), by formula (30) in Pitman (1996), we have that the

eppf corresponding to Pε is such that

(4) pε(n1, . . . , nk) =
∑

j1,...,jk

E

(
k∏

i=1

Pni

ji

)
,

where (j1, . . . , jk) ranges over all permutations of k positive integers. It is useful to introduce

the following notation: the random vector (θ1, . . . , θn) induces a random partition pn :=

{C1, . . . , Ck} on the set Nn := {1, . . . , n} where Cj = {i : θi = θ∗j} for j = 1, . . . , k. In

particular #Ci = ni for 1 ≤ i ≤ k, and the eppf p can be viewed as a probability law on the

set of the partitions of Nn.

The following proposition provides an expression for the eppf of the ε−NGG process.

Proposition 1. Let (n1, . . . , nk) be a vector of positive integers such that
∑k

i=1 ni = n.Then

the eppf associated with a Pε ∼ ε−NGG(σ, κ, ω, P0) is

pε(n1, . . . , nk) =

∫ +∞

0

1

Γ(n)
un−1(u+ ω)kσ−n

k∏

i=1

Γ(ni − σ, (u+ ω)ε)

×
κk−1

Γ(1− σ)k−1

Λε,u + k

ωσΓ(−σ, ωε)
exp {Λε,u − Λε} du,

(5)

where

(6) Λε,u :=

∫ ∞

ε
ρε,u(x)dx =

κ(u+ ω)σ

Γ(1− σ)
Γ(−σ, (u + ω)ε)

with

(7) ρε,u(x) =
κ

Γ(1− σ)
x−1−σe−(ω+u)x

I(0,∞)(x).

Proof. First observe that, since Nε has a Poisson distribution with parameter Λε, we have

pε(n1, . . . , nk) =
+∞∑

Nε=0

pε(n1, . . . , nk|Nε)
ΛNε
ε

Nε!
e−Λε .(8)

Then, (4) yields

pε(n1, . . . , nk|Nε) = I{1,...,Nε+1}(k)
∑

j1,...,jk

E

(
k∏

i=1

Pni

ji

)
,
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where the vector (j1, . . . , jk) ranges over all permutations of k elements in {0, . . . , Nε}. Then,

using the gamma function identity,

(9)
1

T n
ε

=

∫ +∞

0

1

Γ(n)
un−1e−uTεdu,

we have:

pε(n1, .., nk|Nε) = I{1,...,Nε+1}(k)
∑

j1,...,jk

∫ k∏

i=1

Jni

ji

T ni
ε

L(dJ0, . . . , dJNε)

= I{1,...,Nε+1}(k)
∑

j1,...,jk

∫ ∫ +∞

0

1

Γ(n)
un−1e−uTεdu

k∏

i=1

Jni

ji
L(dJ0, . . . , dJNε)

= I{1,...,Nε+1}(k)
∑

j1,...,jk

∫ +∞

0
du

(
1

Γ(n)
un−1

k∏

i=1

∫ +∞

0
Jni

ji
e−Jjiuρε(Jji)dJji

×
∏

j /∈{j1,...,jk}

∫ +∞

0
e−Jjuρε(Jj)dJj




= I{1,...,Nε+1}(k)
∑

j1,...,jk

∫ +∞

0
du

(
1

Γ(n)
un−1

k∏

i=1

∫ +∞

ε

Jji
ωσΓ(−σ, ωε)

J−σ−1
ji

e−(ω+u)JjidJji

×
∏

j /∈{j1,...,jk}

∫ +∞

0

1

ωσΓ(−σ, ωε)
J−σ−1
j e−(ω+u)JjdJj




= I{1,...,Nε+1}(k)
∑

j1,...,jk

∫ +∞

0
du

(
1

Γ(n)
un−1

k∏

i=1

(u+ ω)σ−niΓ(ni − σ, (u+ ω)ε)

ωσΓ(−σ, ωε)

×

(
(u+ ω)σΓ(−σ, (u+ ω)ε)

ωσΓ(−σ, ωε)

)Nε+1−k
)
.

If we switch the finite sum and the integral, since the integrand function does not depend

on the position of the clusters ji’s, i = 1, . . . , k, but only on the sizes ni, and there are

(Nε+1)(Nε) . . . (Nε+1−k) =
(Nε + 1)!

(Nε + 1− k)!
sequences of k distinct elements from {0, . . . , Nε},

we get:

pε(n1, . . . , nk|Nε) = I{1,...,Nε+1}(k)

∫ +∞

0
du

(
1

Γ(n)
un−1 (Nε + 1)!

(Nε + 1− k)!

×
k∏

i=1

(u+ ω)σ−niΓ(ni − σ, (u+ ω)ε)

ωσΓ(−σ, ωε)

(
(u+ ω)σΓ(−σ; (u+ ω)ε)

ωσΓ(−σ, ωε)

)Nε+1−k
)
.

Observe that, because of the indicator function in the above formula, summation in (8) has

to be taken for Nε from k − 1 to +∞. Then, by the change of variable Nna = Nε + 1− k in
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the summation (Nε + 1− k is the number of non-allocated jumps), simple calculations give

pε(n1, . . . , nk) =
+∞∑

Nna=0

∫ +∞

0
du

(
1

Γ(n)
un−1(u+ ω)kσ−n

k∏

i=1

Γ(ni − σ, (u+ ω)ε)

×
1

ωσΓ(−σ, ωε)

κk−1

Γ(1− σ)k−1

Nna + k

Nna!

(
κ(u+ ω)σ

Γ(1− σ)
Γ(−σ, (u+ ω)ε)

)Nna

e−Λε

)
.

By Fubini’s theorem, we can switch integration and summation, and introduce Λε,u as defined

in (7), so that

pε(n1, . . . , nk) =

∫ +∞

0
du

(
un−1

Γ(n)
(u+ ω)kσ−n

k∏

i=1

Γ(ni − σ, (u+ ω)ε)
1

ωσΓ(−σ, ωε)

κk−1

Γ(1− σ)k−1

×
+∞∑

Nna=0

Nna + k

Nna!
(ΛNna

ε,u )e−Λε

)
,

that is (5), since
+∞∑

Nna=0

Nna + k

Nna!
ΛNna
ε,u = eΛε,u (Λε,u + k) .

Lemma 1. Let (an) and (bn) be two sequences of real numbers, such that

lim
n→+∞

(an + bn) = l, lim inf
n→+∞

an = a0, lim inf
n→+∞

bn = b0,

where l, a0, b0 are finite, and a0 + b0 = l. Then

lim
n→∞

an = a0, lim
n→∞

bn = b0.

Proof. By definition of lim inf and lim sup we have:

lim inf an + lim inf bn ≤ lim inf(an + bn) ≤ lim inf an + lim sup bn ≤ lim sup(an + bn)

≤ lim sup an + lim sup bn.

From the hypothesis we have

a0 + b0 = l = lim inf(an + bn) ≤ a0 + lim sup bn ≤ lim sup(an + bn) = l = a0 + b0,

so that lim sup bn = b0, but by hypothesis b0 = lim inf bn, and consequently

lim
n→+∞

bn = b0.

We prove similarly that limn→∞ an = a0.



ε-NGG mixtures 9

Of course, this lemma can be generalized to any finite number of sequences. Now we are

ready to show that the eppf of an ε−NGG process converges pointwise to that of an NGG

process when ε → 0.

Proposition 2. Let pε(·) be the eppf of a ε−NGG(σ, κ, ω, P0) process. Then for each

n1, . . . , nk ∈ N with k>0 and
∑k

i=1 ni = n

(10) lim
ε→0

pε(n1, . . . , nk) = p0(n1, . . . , nk),

where p0(·) is the eppf of a NGG(σ, κ, ω, P0) process.

Proof. By Proposition 1

pε(n1, . . . , nk) =

∫ +∞

0
fε(u;n1, . . . , nk)du

where fε is the integrand in equation (5). Moreover the eppf of a NGG(σ, κ, ω, P0) process

can be written as

p0(n1, . . . , nk) =

∫ +∞

0
f0(u;n1, . . . , nk)du

where

f0(u;n1, . . . , nk) =
un−1

Γ(n)
(u+ ω)kσ−n

k∏

i=1

Γ(ni − σ)

(
κ

Γ(1− σ)

)k−1

×
κ

Γ(1− σ)
exp

{
−κ

(ω + u)σ − ωσ

σ

}
;

see, for instance, Lijoi et al. (2007). We first show that

lim
ε→0

fε(u;n1, . . . , nk) = f0(u;n1, . . . , nk) for any u > 0.

This is straightforward by the following remarks:

1. limε→0 Γ(ni − σ, (u + ω)ε) = Γ(ni − σ), for any i = 1, 2, . . . , k, by the Dominated

Convergence Theorem, since ni − σ ≥ 1− σ > 0;

2. since limε→0 Γ(−σ, ωε) = +∞ and

Γ(1− σ, x) = −σΓ(−σ, x) + x−σe−x

(Gradshteyn and Ryzhik, 2000), we have:

lim
ε→0

Λε,u + k

ωσΓ(−σ, ωε)
=

κ

Γ(1− σ)
, lim

ε→0
(Λε,u − Λε) = −κ

(ω + u)σ − ωσ

σ
.
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Now let C = {C1, . . . , Ck} be a partition of {1, . . . , n} with group sizes (n1, . . . , nk), and

let Πn be the set of all the possible partitions of {1, . . . , n}, of any size k = 1, . . . , n. Of

course, by definition of eppf, ∑

C∈Πn

p(n1, . . . , nk) = 1

and, in particular this holds for either pε and p0. Moreover, by Fatou’s Lemma we have

p0(n1, . . . , nk) =

∫ +∞

0
lim
ε→0

fε(u;n1, . . . , nk)du =

∫ +∞

0
lim inf
ε→0

fε(u;n1, . . . , nk)du

≤ lim inf
ε→0

∫ +∞

0
fε(u;n1, . . . , nk)du = lim inf

ε→0
pε(n1, . . . , nk).

Suppose now that for a particular sequence C ∈ Πn, we had p0(n1, . . . , nk) < lim inf
ε→0

pε(n1, . . . , nk).

In this case

1 =
∑

C∈Πn

p0(n1, .., nk) <
∑

C∈Πn

lim inf
ε→0

pε(n1, .., nk) ≤ lim inf
ε→0

∑

C∈Πn

pε(n1, . . . , nk) = 1,

that is a contradiction. Therefore we can conclude that

p0(n1, . . . , nk) = lim inf
ε→0

pε(n1, . . . , nk), for all n1, . . . , nk, all k.

Summing up, we have proved so far that:

lim
ε→0

∑

C∈Πn

pε(n1, . . . , nk) = 1,

lim inf
ε→0

(n1, . . . , nk) = p0(n1, . . . , nk) for all C = (C1, . . . , Ck) ∈ Πn,
∑

C∈Πn

p0(n1, . . . , nk) = 1.

By Lemma 1, equation (10) follows.

Convergence of the sequence of eppfs yield convergence of the sequences of ε-NGG pro-

cesses. The main distributional result on Pε is the following:

Proposition 3. Let Pε be a ε-NGG(σ, κ, ω, P0) process, for any ε > 0. Then

Pε
d
→ P as ε → 0,

where P is a NGG(σ, κ, ω, P0) process. Moreover, as ε → +∞, Pε
d
→ δτ0 , where τ0 ∼ P0.

Proof. As mentioned before, Pε is a proper species sampling model, so that pε defines a

probability law on the sets of all partitions of Nn := {1, . . . , n}, once that we have set a

positive integer n. Therefore, we introduce (N ε
1 , . . . , N

ε
k), the sizes of the blocks (in order

of appearance, of the random partition Cε,n defined by pε, for any ε ≥ 0. The probability
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distributions of {(N ε
1 , . . . , N

ε
k), ε ≥ 0} are proportional to the values of pε (for any ε ≥ 0) in

(2.6) in Pitman (2006). Hence, by Proposition 2, for any k = 1, . . . , n and any n,

(N ε
1 , . . . , N

ε
k)

d
→ (N0

1 , . . . , N
0
k ) as ε → 0.

Here (N0
1 , . . . , N

0
k ) denote the sizes of the blocks (in order of appearance, of the random

partition Cε,n defined by p0, the eppf of a NGG(σ, κ, ω, P0) process. By formula (2.30) in

Pitman (2006), we have (
Nε

j

n

)
d

−−−−−→
n→+∞

(P̃ ε
j )

ε→0

yd

(
N0

j

n

)
d

−−−−−→
n→+∞

(P̃j)

where P ε
j and P̃j are the j-th weights of a ε-NGG and a NGG process (with parameters

(σ, κ, ω, P0)), respectively. Note that the sequences depending on n have only a finite number

of positive weights.

Recall that the weak convergence of a sequence of random probability measures is equiv-

alent to the pointwise convergence of the Laplace transforms (see Kallenberg, 1983, Theo-

rem 4.2). Let f(·) be a continuous and bounded function on Θ. If we can invert the order of

the limit operations below, then we have:

lim
ε→0

E

(
e−

∫
Θ
fdµε

)
= lim

ε→0
lim
n→∞

E

(
e−

∫
Θ
fdµε

n

)
= lim

n→∞
lim
ε→0

E

(
e−

∫
Θ
fdµε

n

)

= lim
n→∞

E

(
e−

∫
fdµ0

n

)
= E

(
e−

∫
fdµ0

)
.

(11)

Here we have denoted by

µε
n :=

∑

j

N ε
j

n
δτj and µε :=

∑

j

P̃ ε
j δτj for any ε ≥ 0;

thus (11) proves the stated convergence, conditioning on {τ0, τ1, τ2, . . .}, which are iid from

P0. To justify the interchange of the two limits above, we must prove that the sequence{
E

(
e−

∫
fdµε

n

)
, n ≥ 1

}
converges uniformly. To this end, it is sufficient to show that differ-

ence between two next terms in the sequence does not depend on ε; in fact, for any M > 0,

since

|e−x − e−y| ≤ eM |x− y| for any x, y ∈ [−M,M ],

we have

∣∣∣E
(
e−

∫
fdµε

n+1

)
− E

(
e−

∫
fdµε

n

)∣∣∣ ≤ E

(∣∣∣e−
∫
fdµε

n+1 − e−
∫
fdµε

n

∣∣∣
)

≤ eME

(∣∣∣∣
∫

fdµε
n+1 −

∫
fdµε

n

∣∣∣∣
)
,
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where M ≥ sup f . Let now Cε,n+1 be a random partition on {1, . . . , n + 1} such that its

restriction to {1, . . . , n} corresponds to Cε,n. We can distinguish two cases

1. Cε,n+1 has the same number of clusters of Cε,n, one of that, say the one with index j∗,

with nj∗+1 elements;

2. Cε,n+1 has one more cluster of numerosity one than Cε,n.

In both cases, it is not difficult to prove that

E

(∣∣∣∣
∫

Θ
fdµε

n+1 −

∫

Θ
fdµε

n

∣∣∣∣
)

≤
2MeM

n+ 1
.

Finally, it is straightforward to show that the stated convergence follows from the convergence

in distribution conditioning on {τ0, τ1, τ2, . . .}, with an argument on Laplace transforms as

before. Convergence as ε → +∞ is straightforward.

Let θ = (θ1, . . . , θn) be a sample from Pε, a ε-NGG(σ, κ, ω, P0) process as defined in (3),

and let θ∗ = (θ∗1, . . . , θ
∗
k) be the (observed) distinct values in θ. The following proposition

gives a “finite dimensional” version of the characterization of the posterior law of a NGG

process in James et al. (2009). We will denote by allocated jumps of the process the values

Pl∗
1
, Pl∗

2
, . . . , Pl∗

k
in (3) such that there exists a corresponding location for which τl∗i = θ∗i ,

i = 1, . . . , k. The remaining values are non-allocated jumps. We use the superscript (na) for

random variables related to non-allocated jumps.

Proposition 4. If Pε is an ε−NGG(σ, κ, ω, P0) process, then the conditional distribution of

Pε, given θ∗ and a latent scalar variable U = u, coincides with that of the random measure

P ∗
ε (·)

d
= wP (na)

ε,u (·) + (1−w)

k∑

j=1

P
(a)
j δθ∗

k
(·)

where

1. P
(na)
ε,u (·), the process of non-allocated jumps, is distributed according to an ε−NGG(σ, κ, ω+

u, P0) process, given that exactly Nna jumps of the process were obtained, where the pos-

terior law of Nna is
Λε,u

k +Λε,u
P1(Λε,u) +

k

k + Λε,u
P0(Λε,u),

being Λε,u as defined in (6), and denoting Pi(λ) the shifted Poisson distribution on

{i, i+ 1, i + 2, . . .} with mean i+ λ, i = 0, 1.

2. The jumps {P
(a)
1 , . . . , P

(a)
k } assigned to the fixed points of discontinuity θ∗ = (θ∗1, . . . , θ

∗
k)

of P ∗
ε are obtained by normalization of J

(a)
j

ind
∼ gamma(nj − σ, u + ω)I(ε,+∞), for j =

1 . . . , k.
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3. Pε,u(·) and {J
(a)
1 , · · · , J

(a)
k } are independent, conditionally to l∗ = (l∗1, . . . , l

∗
k), the vector

of locations of the allocated jumps.

4. when Nna = 0, w is defined to be equal to 0, while if Nna is different from 0, then

w = Tε,u/(Tε,u +
∑k

j=1 J
(a)
j ), where Tε,u is the total sum of the jumps in representation

of P
(na)
ε,u (·) as in (3).

5. the posterior law of U given θ∗ has density on the positive real given by

fU |θ∗(u|θ∗) ∝ un−1(u+ ω)kσ−n(Λε,u + k)eΛε,u

k∏

i=1

Γ(ni − σ, (u+ ω)ε).

Observe that this proposition is just way of describing (characterizing) the posterior of

an ε-NGG process. As in the infinite dimensional case, the posterior distribution of an ε-

NGG(σ, κ, ω, P0) process, conditionally on U and θ, can be expressed as the law of a random

probability measure, which is a mixture between an ε-NGG process and a discrete probability

measure with support given by the (observed) distinct values θ∗.

Proof. The conditional distribution of θ is:

L(θ1, .., θn|Pε) =
n∏

i=1

Pε(θi) =
n∏

i=1

Nε∑

j=0

(
Pjδτj (θi)

)

=

Nε∑

l1=0

Pl1δτl1 (θ1)

Nε∑

l2=0

Pl2δτl2 (θ2) · · ·
Nε∑

ln=0

Plnδτln (θn)

= I{1,...,Nε+1}(k)
1

(Tε)n

∑

l∗
1
,...,l∗

k

Jn1

l∗
1
. . . Jnk

l∗
k
δτl∗

1

(θ∗1) . . . δτl∗
k

(θ∗k)

where (θ∗1, θ
∗
2, . . . , θ

∗
k) is the vector of the unique values in the sample. We will omit the

indicator I{1,...,Nε+1}(k) till we need it. We introduce the latent variable U in the statement

of this proposition as already done in the proof of Proposition 1, i.e. U = Γn/Tε, where

Γn ∼ gamma(n, 1), Γn and Tε being independent, so that (9) holds. Therefore,

L(θ, u|Pε) =
1

Γ(n)
un−1e−uTε

∑

l∗
1
,..,l∗

k

(
Jn1

l∗
1
δτ∗

l∗
1

(θ∗1) . . . J
nk

l∗
k
δτ∗

l∗
k

(θ∗k)

)
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Therefore, by Bayes’ theorem, we have:

L(θ, u, Pε) = L(θ, u|Pε)L(Pε)

=
1

Γ(n)
un−1e−uTε

∑

l∗
1
,..,l∗

k

(
Jn1

l∗
1
δτ∗

l∗
1

(θ∗1) . . . J
nk

l∗
k
δτ∗

l∗
k

(θ∗k)
)
L(Pε)

=
1

Γ(n)
un−1

Nε∏

j=0

(e−uJj )
∑

l∗
1
,...,l∗

k

(
Jn1

l∗
1
δτ∗

l∗
1

(θ∗1) . . . J
nk

l∗
k
δτ∗

l∗
k

(θ∗k)
)

×
Nε∏

j=0

(
ρε(Jj)P0(τj)

)
P0(Nε; Λε)

=
1

Γ(n)
un−1

Nε∏

j=0

(
e−uJjρε(Jj)P0(τj)

) ∑

l∗
1
,...,l∗

k

(
Jn1

l∗
1
δτ∗

l∗
1

(θ∗1) . . . J
nk

l∗
k
δτ∗

l∗
k

(θ∗k)
)
P0(Nε; Λε)

(12)

where, in this proof, P0(Nε; Λε) is the density of the Poisson distribution with parameter Λε,

evaluated in Nε and P0(τ) is the density of P0 evaluated in τ .

The conditional distribution of Pε, given U = u and θ, is as follows:

(13) L(Pε|u,θ) = L(τ ,J , Nε|u,θ) = L(τ ,J |Nε, u,θ)L(Nε|u,θ).

The second factor in the right handside is proportional to

L(Nε, u,θ) =

∫
dJ0 . . . dJNεdτ0 . . . dτNεL(τ ,J , Nε, u,θ)

=
∑

l∗
1
,...,l∗

k

{[ k∏

i=1

∫
Jni

l∗
i
δτl∗

i

(θ∗i )e
−uJl∗

i ρε(Jl∗i )P0(τl∗i )dJl∗i dτl∗i

]

×

[ ∏

j 6={l∗
1
,..,l∗

k
}

∫
e−uJjρε(Jj)P0(τj)dJjdτj

]}
1

Γ(n)
un−1P0(Nε; Λε).

Observe that, for any j 6= {l∗1, .., l
∗
k},

∫
e−uJjρε(Jj)P0(τj)dJjdτj =

∫ +∞

0
e−uJjρε(Jj)dJj

=
1

ωσΓ(−σ, ωε)

∫ +∞

0
x−σ−1e(u+ω)x

I(ε,+∞)(x)dx

=
(ω + u)σ

ωσΓ(−σ, ωε)

∫ +∞

(ω+u)ε
e−yy−σ−1dy

=
(ω + u)σΓ(−σ, (ω + u)ε)

ωσΓ(−σ, ωε)
.

(14)

The integrand function in the second line of the formula above is the kernel of the mean

intensity of a ε-NGG(σ, κ, ω + u, P0) process. On the other hand, for i = 1, . . . , k:
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∫
Jni

l∗i
δτl∗

i

(θ∗i )e
−uJl∗

i ρε(Jl∗i )P0(τl∗i )dJl∗i dτl∗i

=

(∫
Jl∗i e

−uJl∗
i ρε(Jl∗i )dJl∗i

)(∫
δτl∗

i

(θ∗i )P0(θ
∗
i )dθ

∗
i

)

=
P0(θ

∗
i )

ωσΓ(−σ, ωε)

∫ +∞

0
xnie−uxx−1−σe−ωx

I(ε,+∞)(x)dx(15)

=
(ω + u)σ−ni

ωσ

Γ(ni − σ, (u+ ω)ε)

Γ(−σ, ωε)
P0(θ

∗
i ).

The integrand function in (15) is the kernel of a gamma density with parameters (ni−σ, u+ω),

restricted to (ε,+∞). Summing up, we have

L(Nε|u,θ) ∝ L(Nε, u,θ) =
1

Γ(n)
un−1

∑

l∗
1
,..,l∗

k

{(
(ω + u)kσ−n

∏k
i=1 Γ(ni − σ, (ω + u)ε)P0(θ

∗
i )

ωσkΓ(−σ, ωε)k

)

×

(
(ω + u)σ(Nε+1−k)Γ(−σ, (u+ ω)ε)Nε+1−k

ωσ(Nε+1−k)Γ(−σ, ωε)Nε+1−k

)}
P0(Nε; Λε)

=
un−1

Γ(n)
P0(Nε; Λε)

(Nε + 1)!

(Nε + 1− k)!

k∏

i=1

(
P0(θ

∗
i )Γ(ni − σ, ε(ω + u))

)
(16)

×
(ω + u)σk−n

ωσkΓ(−σ, ωε)k
(ω + u)σNnaΓ(−σ, ε(ω + u))Nna

ωσNnaΓ(−σ, ωε)Nna
I{(Nε+1)≥k}.

As in the proof of Proposition 1, Nna = Nε + 1 − k is the number of non-allocated jumps.

Therefore, since k is given, the conditional distribution L(Nε|u,θ) is identified by L(Nna|u,θ);

we have

L(Nna|u,θ) ∝ I(Nna≥0)
(ω + u)σk−n

ωσΓ(−σ, ωε)

(Nna + k)

Nna!

(
κ(u+ ω)σ

Γ(1− σ)
Γ(−σ, (u+ ω)ε)

)Nna

.

Let Λε,u be as in (6); it easily follows that

L(Nna|ε, u,θ) ∝
Nna + k

Nna!
e−Λε,uΛNna

ε,u =

(
Nna

Nna!
+

k

Nna!

)
e−Λε,uΛNna

ε,u

=
Λε,u

(Nna − 1)!
Λ(Nna−1)
ε,u e−Λε,u +

k

Nna!
ΛNna
ε,u e−Λε,u

=
Λε,u

Λε,u + k
P1(Nna; Λε,u) +

k

Λε,u + k
P0(Nna; Λε,u).

(17)

The first factor in the right handside of (13) can be computed by the following comment.

Denote by l∗ = (l∗1, . . . , l
∗
k) the vector of locations of the allocated jumps. From (12) it is clear

that, since

L(J , τ , l∗|Nna, u,θ) = Jn1

l∗
1
δτ∗

l∗
1

(θ∗1) . . . J
nk

l∗
k
δτ∗

l∗
k

(θ∗k)

Nna+k−1∏

j=0

ρε(Jj)P0(τj)e
−uJj

=

(
k∏

i=1

Jni

l∗i
δτ∗

l∗
i

(θ∗i )e
−uJl∗

i ρε(Jl∗i )P0(Jl∗i )

)
×


 ∏

j 6={l∗
1
,..,l∗

k
}

e−uJjρε(Jj)P0(τj)


 .

(18)
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The first factor in the last expression refers to the unnormalized allocated process: the support

is θ∗, while the jumps follow independent restricted gamma densities, as clearly observed after

(15). This shows point 2. of the Proposition.

By the remark made after (14), we have that L(J , τ , l∗|Nna, u,θ), describing the law of the

non-allocated process, is a ε-NGG process with Nna jumps, and the conditional distribution

of Nna is described in (17). This shows point 1. of the Proposition.

Point 3 follows straightforwardly from (18). Normalization of the jumps (allocated and

non-allocated) gives 4.

With regard to 5., we need to integrate out Nε in L(Nε, u,θ) displayed in (16). We

have already made these computations in the proof of Proposition 1, and thus fU |θ∗(u|θ∗) is

proportional to the integrand in (5).

4 ε-NGG process mixtures

Often, in Bayesian nonparametric problems, it happens that discrete random probabilities,

as our ε-NGG process, appear as mixing measures in a mixture context. Indeed, we are going

to consider a mixture of Gaussian kernels as the distribution of the i-th observation, where

the mixing measure is the ε-NGG(σ, κ, ω, P0) process. In the rest of paper we set ω = 1 (since

the original parametrization is not unique) and fix P0 (see Sections 5 and 6 for details), and

change notation accordingly, i.e. ε-NGG(σ, κ, P0). The model we assume is the following:

Xi|θi
ind
∼ k(·; θi), i = 1, . . . , n

θ1, . . . , θn|Pε
iid
∼ Pε(19)

Pε ∼ ε−NGG(σ, κ, P0) process prior,

ε, σ, κ ∼ π(ε)× π(σ) × π(κ),

where k(·; θi) is a parametric family of densities on X ⊂ R
p, for all θ ∈ Θ ⊂ R

m. In the rest

of the paper, we assume the Gaussian kernel, where θi denotes the means and the covariance

matrix. Remember that P0 is a non-atomic probability measure on Θ; it is straightforward

to see that E(Pε(A)) = P0(A) for all A ∈ B(θ) and all ε ≥ 0. Model (19) will be addressed

here as ε−NGG hierarchical mixture model. It is well known that this model is equivalent

to assume that the Xi’s, conditionally on Pε, are independently distributed according to the

random density

(20) f(x) =

∫

Θ
k(x; θ)Pε(dθ) =

Nε∑

j=0

Pj k(x; τj).

In general, computation of posterior inference for (19), when Pε is substituted by a NGG

process P , is not straightforward, since this model assumes an infinite number of parame-
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ters. As we mentioned in the Introduction, different approaches have been proposed in the

literature. Here we exploit a prior truncation approach; in fact, from the algorithmic point

of view, the finite dimensionality of the ε − NGG process is a key point since it allows us

to express our r.p.m. in terms of a finite number of random variables. In particular, we are

able to build a blocked Gibbs sampler to update blocks of parameters, which are drawn from

multivariate distributions. The parameter is (Pε, ε, σ, κ,θ), and the posterior is proportional

to the product of the conditional distribution of the data, given the parameter, times the

prior, i.e.

L(X|θ)L(θ|Pε)L(Pε, ε, σ, κ) = L(X,θ|Pε)L(Pε|ε)L(ε, σ, κ).(21)

The conditional law L(X,θ|Pε) can be expressed as follows:

L(X,θ|Pε) =

n∏

i=1

(
Pε(θi)k(Xi; θi)

)

=
( ∏

i∈C1

k(Xi; θ
∗
1) . . .

∏

i∈Ck

k(Xi; θ
∗
k)
)( ∑

l∗
1
,..,l∗

k

Pn1

l∗
1
..Pnk

l∗
k
δτl∗

1

(θ∗1)..δτl∗
k

(θ∗k)
)

=
1

T n
ε

∑

l∗
1
,..,l∗

k

(
Jn1

l∗
1

∏

i∈C1

k(Xi; θ
∗
1)J

n2

l∗
2

∏

i∈C2

k(Xi; θ
∗
2)..J

nk

l∗
k

∏

i∈Ck

k(Xi; θ
∗
k)
)
,

(22)

while L(Pε|ε) is the finite dimentional distribution of Pε in Section 3, and the joint law

L(ε, σ, κ) = π(ε)π(σ)π(κ) will be elicited in Sections 5 and 6. We use the same notation as in

the proof of Proposition 4. We augment the stace space and apply Proposition 4, considering

also the random variable U . Therefore, the sample space of the Gibbs sampler is the set of all

values of the parameter (θ, Pε, ε, u, σ, κ). Details of the blocked Gibbs sampler can be found

in the Appendix; however, in the following steps, we describe all the full-conditionals:

1. Sampling from L(u|X,θ, Pε, ε, σ, κ): since the joint law of data and parameters (see

(23) in the Appendix) depends on u only through its prior density, this conditional

distribution is equal to the prior of U , that is the gamma distribution with parameters

(n, Tε).

2. Sampling from L(θ|u,X, Pε, ε, σ, κ): by (23), each θi, for i = 1, . . . , n, has discrete law

with support {τ0, τ1, . . . , τNε}, and probabilities P(θi = τj) ∝ Jjk(Xi; τj).

3. Sampling from L(Pε, ε, σ, κ|u,θ,X): this step is not straigthforward. In the Appendix

we show that it can be split into two consecutive substeps:

3.a Sampling from L(ε, σ, κ|u,θ,X): a Gibbs sampler strategy will achieve it. For a

detailed description of the full conditionals (i) L(ε|σ, κ, u,θ,X), (ii) L(σ|ε, κ, u,θ,X)

and (iii) L(κ|ε, σ, u,θ,X), we refer to the Appendix (see formulas (24), (25), (26)).
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3.b Sampling from L(Pε|ε, σ, κ, u,θ,X): via characterization of the posterior in Propo-

sition 4, since this distribution is equal to L(Pε|ε, σ, κ, u,θ). To put in practice

we have to sample (i) the number Nna of non-allocated jumps, (ii) the vector of

the unnormalized non-allocated jumps J (na), (iii) the vector of the unnormalized

allocated jumps J (a), the support of the allocated (iv) and non-allocated (v) jumps.

Summing up, our algorithm is outlined in Figure 1. With regard to 3.b.v, we do not

directly apply Proposition 4, but add an acceleration step (see for instance Argiento et al.,

2010) for sampling from the distribution in Figure 1. As a final remark in this section, when

sampling from non-standard distributions, Accept-Reject or Metropolis-Hastings algorithms

have been exploited.

Repeat for g in 1...G:

1. Sample u(g) from a Gamma(n, Tε).

2. For i=1,..,n sample θ
(g)
i

from a discrete distribution s.t. P(θi = τj) ∝ Jjk(Xi; τj), j = 0, .., Nε.

3.a.i Sample ε(g) from L(ε) ∝
∏k

i=1 Γ(ni − σ, ε(u + ω))eΛεu−Λε
Λεu + k

Γ(−σ, ωε)
π(ε).

3.a.ii Sample σ(g) from L(σ) ∝
(u+ ω)kσ

ωσ

Λεu + k

Γ(−σ, ωε)
eΛεu−Λε

∏k
i=1 Γ(ni−σ, ε(u+ω))Γ(1−σ)1−kπ(σ).

3.a.iii If the prior for κ is a gamma(α, β), sample κ(g) from a mixture of gamma densities:

p1gamma(α + k,R+ β) + (1− p1)gamma(α + k − 1, R + β).

3.b.i Sample N
(g)
na from

Λεu

Λεu + k
P1(Λεu) +

k

Λεu + k
P0(Λεu), then set N

(g)
ε + 1 = N

(g)
na + k.

3.b.ii Non-allocated jumps: sample independently from

L(Jj) ∝ e−uJjρε(Jj).

3.b.iii Allocated jumps: sample independently from

L(Jl∗i ) ∝gamma(ni − σ, u+ ω)1(ε,∞).

3.b..iv Non-allocated points of support:

sample independently from P0.

3.b.v Allocated points of support: sample independently

from L(τ∗i ) ∝ {
∏

j∈Ci
k(Xj ; τi)}P0(τi).

Figure 1: Blocked Gibbs sampler scheme; the conditioning arguments of all full conditionals

have been cut out to simplify notation.
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5 Galaxy data

This super-popular dataset contains n = 82 measured velocities of different galaxies from

six well-separated conic sections of space. Values are expressed in Km/s, scaled by a factor

of 10−3. We report posterior estimates for different sets of hyperparameters of the ε−NGG

mixture model (19) when k(·; θ) is the Gaussian density on R and θ = (µ, σ2) stands for

its mean and variance, and P0(dµ, dσ
2) = N (dµ;m0, σ

2/κ0) × inv − gamma(dσ2; a, b); here

N (m0, σ
2/κ0) is the Gaussian distribution with m0 mean and σ2/κ0 variance, and inv −

gamma(a, b) is the inverse-gamma distribution with mean b/(a − 1) (if a > 1). We set

m0 = x̄n = 20.8315, κ0 = 0.01, a = 2, b = 1 as proposed first in Escobar and West (1995).

We did an extensive robustness analysis with respect to ε, σ, κ; see Bianchini (2014).

Here we shed light on four sets of hyperparameters only, to understand sensitivity of the

estimates (A) when ε varies, but it is not random, (B) when σ varies (but it is not random),

then (C) when ε is assumed random and σ and κ are fixed, and finally (D) when both σ and

κ are random and ε is fixed.

We have implemented our Gibbs sampler in C++. Tests were made on a laptop with

Intel Core i7 2670QM processor, with 6 GB of RAM. Every run produced a final sample size

of 10,000 iterations, after a thinning of 10 and an initial burn-in of 10,000 iterations. Every

time the convergence was checked by standard R package CODA tools.

With reference to (A), we set σ = 0.4 and κ = 0.45, and ε = 10−6, 10−3, 10−1, 1. Figure 2

shows the predictive density estimates under different values of ε: all the estimates are similar

and they fit well the data. Observe that, when ε increases, more jumps Jj ’s are cut out from

the sum defining the process Pε (see (3)) and, consequently, less components in the mixture

(20) are considered. Therefore the posterior estimate of the number Kn of components will

be concentrated on smaller integer values as ε increases (see Figure 3).

It is worth underlining that, as another consequence of the smaller number of components

in the mixture (20) when ε increases, we have observed a huge gain in run-time: for instance,

with our machine, the run-time ranges from approximately 7 minutes (ε = 10−6) to less than

1 minute (ε = 1).

The second set (B) of hyperparameters is specified by ε = 10−6 and κ = 0.45, while

σ ranges in {0.001, 0.1, 0.2, . . . , 0.8}. The posterior density estimates are similar to those

obtained before, and for this reason they are not reported here. On the other hand, we

are interested to understand the effect of σ on the posterior distribution of Kn, as shown

in Table 1. Note that we are also including the Dirichlet process mixture model here (for

σ = 0.001 ≃ 0 and ε small). As expected, the posterior mean of Kn, as well as its variance,

increases with σ.
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Figure 2: Density estimates for different values of ε, while σ = 0.4 and κ = 0.45, case (A).

The shaded region denotes 90% CI around the density estimates for ε = 10−6.
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Figure 3: Posterior distributions of the number Kn of components in the ε−NGG mixture

with hyperparameter set (A).
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σ Prior

mean

Posterior

mean

Posterior

variance

0.001 3 6.13 1.73

0.1 4.06 7.18 2.39

0.2 5.6 8.74 4.25

0.3 7.8 10.49 6.39

0.4 10.9 12.36 9.30

0.5 15.3 14.06 11.49

0.6 21.5 15.90 14.61

0.7 30.2 17.67 17.66

0.8 42.3 19.05 20.16

Table 1: Posterior (and prior) summaries of Kn under case (B).

For set (C) of hyperparameters, we have considered σ ∈ {0.001, 0.1, 0.2, . . . , 0.9}, κ = 0.45

and ε random, uniformly distributed on the interval (0, δ), with δ = min(0.1, E(Tε)) (non-

informative prior) or with a scaled beta distribution on the same interval with mean equal

to 0.25δ and variance 0.05δ2 (a more informative prior). When ε is random, the model is

expected to be more flexible, since it would ”adjust” for the number of jumps of the process

Pε that must be considered. Furthermore, on one hand, if ε increases, the process will be

significantly different from the NGG process (indeed, Pε
d
→ δτ0), since, in this case, many

small jumps will not be included in (3). As in the previous cases, density estimates are pretty

good and we do not include them here. Figure 4 shows the posterior mean of Kn as a function

0.0 0.2 0.4 0.6 0.8

5
10

15

σ

M
ea

n 
k

Figure 4: Posterior mean of Kn as a function of σ, under different priors for ε in experiment

(C): degenerate on 10−6 (green dots), uniform (blue diamonds) and scaled beta (red stars).

of σ for three different priors on ε. The linear increase in E(Kn|data) is smaller when ε is
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beta (red stars) or uniform distributed (blue diamonds) than when ε is equal to 10−6 (green

dots). In this case, even run-times are shorter than in (B), since the posterior number of

allocated jumps is usually smaller.

As far as robustness with respect to σ is concerned, we should acknowledge that, as σ

increases, more computational problems come up, because of the incomplete gamma function,

appearing in the expression of ρε given in Section 3, that is harder to be numerically evaluated.

Looking at the posterior distribution of ε in Figure 5, data suggest that small values

of ε are the “best” fit, when the prior of ε is uniform. In particular, increasing σ, and

consequently increasing the prior expected number of components in the ε−NGG mixture,

we get that the posterior of ε is concentrated on smaller values, which implies larger values

for Kn a posteriori.
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Figure 5: Posterior distribution of ε for experiment (C), together with U(0, δ) prior (dashed).

Finally, we have considered case (D), when both σ and κ are random, and ε is small (ε =

10−4). In particular, we set four different priors π(σ) × π(κ) = Beta(a1, b1)gamma(c1, d1),

with (a1, b1, c1, d1) ∈ {(2, 5, 2, 2), (10, 23, 1.1, 8), (1.1, 30, 1.1, 8), (10, 23, 100, 50)}; the prior in-

formation on (σ, κ), and consequently on Kn, is quite different among these four cases: diffuse
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prior marginals first, then two conflicting prior marginal beliefs, and last prior marginal be-

liefs in agreement. For all priors we have got density estimates similar to those reported in

Figure 2, while the posterior distribution of Kn is in accordance to the prior information. In

particular, σ influences the posterior variance of Nna, the number of non-allocated jumps: in

fact, if a priori σ is concentrated on large values, then the tail of the posterior distribution

of Nna is heavy. Figure 6 shows the scatterplots of posterior values of (σ, κ); contour plots

of the priors are superimposed. Note that, in panels (b) and (c), the posterior is in strong

disagreement with the prior, since the prior on (σ, κ) has been assigned too restrictive in

these two cases.
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Figure 6: Scatterplots of posterior values of (σ, κ) with contour levels of the prior, case (D).

6 Yeast cell cycle data

We fitted our model to a multivariate dataset used in the literature for clustering gene ex-

pression profiles, usually called Yeast cell cycle data (see Cho et al., 1998). A gene ex-

pression data set from a microarray experiment can be represented by a real-valued matrix

[Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p], where the rows (X1, . . . ,Xn) contain the expression pat-

terns of genes and are our data points. Each cell Xij is the measured expression level of

gene i at time j. The Yeast cell cycle dataset contains n = 389 gene expression profiles,

observed at 17 different time values, one every 10 minutes from time zero. We consider
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only a part of the data, and filter them: the final dataset (n = 389, p = 9) is the same

as in Argiento et al. (2013). We assume the Gaussian kernel k(·; θi) = Np(·; θi) where

θi = (µi,Σi) and Σi, the covariance matrix, is assumed diagonal with entries (σ2
1,i, . . . , σ

2
p,i).

Here P0(dµ, dΣ) = Np

(
dµ|m0,

1
s0
Σ
)
×
∏p

k=1 inv − gamma(dσ2
k|a, b).

We made a thorough robustness analysis, with respect to the choice of P0 and (ε, σ, κ)-

prior. We were able to compute the log-pseudo marginal likelihood (LPML) for every set of

hyperparameters; however, here we report posterior inference for the set of hyperparameters

which is most in agreement with the prior information given by the reference partition of Cho

et al. (1998): m0 = 0, s0 = 1, a = 3, b = 2, so that Var(µ) = Ip and E(Σ) = Ip. To understand

the effect of ε, σ, κ, first we set σ = 0.001 and κ = 0.7, so that E(Kn) = 5 as in the reference

partition, and let ε vary in {10−6, 10−5, 10−4, 10−3} (case (E)), then ε ∼ U(0, 0.01) and

σ ∈ {0.01, 01, 0.2, . . . , 0.5} and κ = 0.7 (case (F )). Finally, we set ε = 10−4, σ ∼ Beta(2, 15)

and κ ∼ gamma(2, 0.1) (case (G)).

The posterior inference was computed via MCMC chains as before, with a final sample

size of 5,000, after a thinning of 20 and a burn-in of 5,000. As far as case (E) is concerned,

we do not report the inference, but make only one comment: a priori, we have to assume ε on

rather small values, otherwise the model would get stuck into a parametric one (remember

that for ε → +∞ our model is parametric). From a computational point of view, what

happens in pratice is that, if ε is fairly large, the jumps Jj ’s are approximately independent

sampled from a degenerate distribution on ε, and therefore, they assume the same value;

consequently, the full-conditional of θ, as in Step 2. of the algorithm (see Figure 1), depends

only on the parametric kernel, evaluated at data points, yielding that Nε+1 and Kn coincide.

For experiment (F ), Figure 7 illustrates the posterior of ε with σ = 0.001 (left) and

σ = 0.5 (right). It is clear that ε assumes pretty “large” values: data do not fancy the

nonparametric model (ε = 0). In all the experiments, the density estimates seem to fit well

the data. Figure 8 shows the marginal predictive densities for case (F ). We have not observed

substantial differences in the rest of the cases.

For experiment (G), we set a vague prior for κ, and a more informative prior on σ to

speed up and improve the mixing; the posterior of (σ, κ) is displayed in Figure 9, showing a

noteworthy update of the prior to the posterior.

The reference partition into five groups in Cho et al. (1998) was obtained by visual

inspection. In order to provide cluster estimates with our model (19), we adopt a standard

approach in the Bayesian framework. First of all, remind that (19) induces a prior for

the random partition pn = {C1, . . . , Ck} of the data labels (see notation in Section 3), so

that the cluster estimates are based on its posterior. As such an estimate we consider p̂n

minimizing the so-called Binder loss function with equal misclassification costs, using the
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Figure 7: Posterior distribution of ε for case (F ): σ = 0.001 (left) and σ = 0.5 (right). The

prior is U(0, 0.01) (dashed).

same approach as in Argiento et al. (2013). To compare different cluster estimates, we

evaluate the posterior expectation E(H(πn)|data) where the function H is a standard tool

as the silhouette coefficient or the adjusted Rand index. We compared cluster estimates for

more sets of hyperparameters than those reported here; see Bianchini (2014). In Figure 10

we report one of the best cluster estimate, which was obtained when hyperparameters are

those of case (G). The Silhouette coefficient in any group can be computed, obtaining

(a) (b) (c) (d) (e) (f)

0.22 0.23 0.22 0.04 0.18 0.14

Compared to other experiments we did, these figures indicate a good clustering. Note that

there is only one group (d), with a coefficient near to 0: indeed, it has a large empirical

variance with respect to the other clusters. On the other hand, while the first two clusters

are very similar to first two in the reference partition in Cho et al. (1998), in the rest of

the groups we seem to tide up their partition. The posterior mean of the overall Silhouette

coefficient is 0.2.

As a final remark, we would like to point out that all the cluster estimates, here and in

Bianchini (2014), were robust with respect to the choice of the prior of (ε, σ, κ), while, on the

contrary, they are very sensible with respect to P0.

7 Conclusions

We have proposed a new model for density and cluster estimates in the Bayesian nonpara-

metric framework. In particular, a finite dimensional process, the ε-NGG process, has been

defined, which converges in distribution to the well-known NGG process, when ε tends to 0.

Here, the ε-NGG process is the mixing measure in a mixture model.
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Figure 8: Marginal density estimates for experiment (F ) when σ = 0.001, κ = 0.7, ε ∼

U(0, 0.01). The shaded regions denote 90% CI’s around the density estimates.
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Figure 9: Posteriors of σ (left), κ (center), and (σ, κ) (right). The priors are superimposed

as gray lines.
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Figure 10: Bayesian cluster estimates for experiment (G).

An interesting achievement is that, as ε varies, a large range of models can be obtained:

from a nonparametric NGG mixture model, when ε decreases to 0, to a parametric model,

when ε assumes large values. Hence, on one hand, the model can be used as an approximation

of a NGG mixture model on which many theoretical results are available in the literature. On

the other hand, our process can be viewed as a model different from the NGG process, with
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a new prior: since it is finite dimensional, the inference will be quite simple. Furthermore,

the precision parameter ε can be considered as a random variable, once we have elicited

a prior for it: in this case, the data and the prior, via the posterior, drive the degree of

approximation. Of course, under this model, the posterior distribution must be computed

via simulation methods: a Gibbs sampler algorithm has been built to reach this goal. All the

updating steps are as easy to implement as in the popular DPM model, but the new model

is more flexible. In addition, thanks to the finite approximation, there is no need to integrate

out the mixing component (i.e. the infinite dimensional parameter) itself, thus pursuing a

full nonparametric Bayesian inference, in order to get posterior estimates of linear and non

linear functionals of the population distribution.

We have illustrated our proposal through a density estimation problem: thanks to an

extensive robustness analysis, the role and the influence of the parameters ε, σ and κ of our

prior on the mixing of the chain and on posterior estimates have been clarified; moreover,

the robustness of the model with respect to the choice of the hyperparameters has been

checked. In addition to density estimation, a clustering problem has also been tackled in the

multivariate case; the cluster estimates are pretty satisfactory.

As far as the drawbacks of the model are concerned, the first issue consists in the choice

of the mean distribution P0. As in each Bayesian nonparametric mixture model, especially

when the dimension of data is large, P0 strongly affects the estimates and the mixing of the

MCMC chains. A second problem concerns the parameter σ: when it assumes values close to

1, on one hand the computation becomes difficult because of the presence of the incomplete

gamma functions in the algorithm, which are very unstable in this case, while, on the other,

correlation between U and ε heavily increases. Moreover, the number of components in the

mixture grows very fast with σ, slowing down the run-time of the algorithm.

APPENDIX: DETAILS ON THE BLOCKED GIBBS SAMPLER

First of all, the joint law of data and parameters can be written as follows:

L(X,θ, u, Pε, ε, σ, κ) = L(X|θ, u, Pε, ε, σ, κ)L(θ, u, Pε|ε, σ, κ)L(ε, σ, κ)

=

n∏

i=1

k(Xi; θi)L(θ, u, Pε|ε, σ, κ)π(ε)π(σ)π(κ)

=
un−1

Γ(n)

Nε∏

j=0

(
e−uJjρε(Jj)P0(τj)

) ∑

l∗
1
,..,l∗

k

(
Jn1

l∗
1

∏

i∈C1

k(Xi; θ
∗
1)δτl∗

1

(θ∗1)..

..Jnk

l∗
k

∏

i∈Ck

k(Xi; θ
∗
k)δτl∗

k

(θ∗k)
)ΛNε

ε e−Λε

Nε!
π(ε)π(σ)π(κ),

(23)
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where we used the hierarchical structure in (19). Note that L(θ, u, Pε|ε, σ, κ) has been com-

puted in (12). Now we derive every step of the Gibbs sampler in Figure 1.

1. The first step is straightforward, since

L(u|X,θ, Pε, ε, σ, κ) ∝ L(u,X,θ, Pε, ε, σ, κ).

2. Thanks to the hierarchical structure of the model, the following relation holds true:

L(θ|X, Pε, ε, σ, κ, u) ∝
n∏

i=1

k(Xi; θi)

Nε∑

j=0

Jjδτj (θi)

=
n∏

i=1

Nε∑

j=0

Jjk(Xi; θi)δτj (θi) =
n∏

i=1

Jik(Xi; τi),

therefore the second step is recovered.

3. As far as L(Pε, ε, σ, κ|u,θ,X) is concerned, we have

L(Pε, ε, σ, κ|u,θ,X) = L(Pε, ε, σ, κ|u,θ) = L(Pε|ε, σ, κ, u,θ)L(ε, σ, κ|u,θ),

so that step 3. can be split into two consecutive substeps. First we simulate from

L(ε, σ, κ|u,θ) as follows: we integrate out Nε (or equivalently Nna) from (16) and

obtain

L(ε, σ, κ|u,θ,X) ∝
+∞∑

Nna=0

L(Nna, ε, σ, κ|u,θ,X)

=
un−1

Γ(n)

(
κ

Γ(1− σ)

)k−1 k∏

i=1

[
Γ(ni − σ, ε(u + ω))

]
π(ε)π(σ)π(κ)

×
(ω + u)σk−n

ωσΓ(−σ, ωε)
eΛε,u−Λε (Λε,u + k) .

In practice step 3.a can be obtained in three substeps:

(24) L(ε|u,θ,X) ∝
k∏

i=1

Γ(ni − σ, ε(u + ω))e(Λε,u−Λε) Λε,u + k

Γ(−σ, ωε)
π(ε),

L(σ|u,θ,X) ∝
(u+ ω)kσ

ωσ

Λε,u + k

Γ(−σ, ωε)

k∏

i=1

Γ(ni − σ, ε(u + ω))

× e(Λε,u−Λε)Γ(1− σ)1−kπ(σ),

(25)

(26) L(κ|u,θ,X) = p1gamma(α + k,R + β) + (1− p1)gamma(α+ k − 1, R+ β),
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where

R =
ωσΓ(−σ, εω)

Γ(1− σ)
−

(ω + u)σΓ(−σ, ε(ω + u))

Γ(1− σ)

and

p1 =
(α+ k − 1)(u + ω)σΓ(−σ, ε(ω + u))

(α+ k − 1)(u+ ω)σΓ(−σ, ε(ω + u)) + k(R + β)Γ(1− σ)
.

Here we assume that π(κ) is gamma(α, β). Step 3.b consists in sampling from L(Pε|ε, σ, κ, u,θ)

and has already been described in Section 4.
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