Consiglio Nazionale delleRicetche

=
i
%
v
]

ISTITUTO DI'ELABORAZIONE
DELLA INFORMAZIONE

PISA

|
TESTING GLOBAL AUTOMATIC QUADRATURE
PROGRAMS '
P. Favali, G. Lotti, F. Romani

Nota interna B4-32 .
Luglio 1990 ‘
j 1

' 8
a i

TESTING GLOBAL AUTOMATIC QUADRATURE PROGRAMS

Paola FAVATIO), Grazia LOTTI® and Francesco ROMANI®

(DIEI-CNR Via S. Maria 46, 56100 Pisa, Italy
Dipartimento di Matematica ed Informatica, University of Udine, Udine, Italy
®Dipartimento di Informatica, University of Pisa, Corso Italia 40, 56100 Pisa, Italy

Abstract - A new method for testing global automatic quadrature programs is
introduced. This method, with only one run, gives complete information on the
behaviour of the integration program for a single function and any user
tolerance, and is well suited to statistic and parametric studies with a large
number of integrands. The method is applied to study the behaviour of some well
known global automatic quadrature routines (QAG, QAGS, QXG, QXGS).

1. Introduction

In a paper of 1977 [13] Lyness and Kaganove introduced a statistical
technique for evaluating and comparing automatic quadrature routines. In order
to produce their statistics, a quadrature program has to be run on several
functions with several different user tolerances. The technique presented in the
following allows performing a more accurate analysis for global automatic
quadrature programs [2,14] with only one run for each test integrand, thus highly
reducing the computational costs.

The basic idea is that, in a global automatic quadrature program, an
approximation of the integral, together with an estimate of the error, is available
at any time. Hence, by observing the evolution of the approximation to the
integral and of the error estimate during a single run, carried out as long as
possible, the behaviour of the program on a given integrand for any user
tolerance becomes clear.

In section 2 the tests on a single integrand are introduced and some
performance measures are discussed. In section 3 the analysis is extended to
groups of integrands and the resulting statistical measures are presented for some
well known global quadrature programs. Finally, in section 4 some techniques to
regularize the performance of programs on a group of integrand are
investigated. In this way, the comparison among different programs is made
possible.

Favatietal. Testing global automatic quadrature programs 2

In the following we often use the negative base-10 logarithms of the
quantities denoting errors; this convention will make easier plotting and printing
data, but it should be remarked that, in these cases, inequalities are reversed.

2. Testing a quadrature program on a single integrand

A generic global automatic quadrature routine can be outlined as in the
following algorithm.

Algorithm 2.1.

procedure quadrature(a,b,epquad: real; var: abserrresult: real; var ier: integer);

{ on input: }

{a, b are the exiremes of the integration interval)

{ epquad is the absolute error tolerance, specified by the user}

{ on ouiput: }

{ abserr is the absolute error tolerance, estimated by the program }
{ result is the integral value, estimated by the program }

{ ier is the error condition: ier = 0 means no error detected }

var lIres,lestlres1,lestt lres2,lest2,tol,middle: real;

begin
ier:=0;
local(a,b,result,abserr); { integrate on the first interval }
put_interval(a,b,result,abserr); { put the interval in the queue }
while abserr > epquad do begin "
get_interval{(a,b,lres,lest); { get the interval with the largest error }
middle:=(a+b)/2 { perform bisection }

local(a,middle,lres1,lest1);

local(middle,b,lres2,lest2);
put_interval(a,middle,lres1,lest1);
put_interval(middle,b,lres2,lest2);
result:=result-lres+ires1+lres2; { update estimates }

{If any error condition is reported, set the appropriate value for ier and exit}

abserr:=abserr-lest+lestt+lest2;
{If the program uses extrapolation, the values of result and abserr can be altered here;}

end;
end;

When the program stops, one has:

abserr < epquad, ier =0,
or

abserr > epquad, ier #0.

The latter circumstance is called quit. We assume that the program is enough
clever to avoid looping forever with too small tolerances; typically the program
stops when the data structure which retains the list of active subintervals is full or
some roundoff or other numerical troubles are detected. We define epquad_stop

Favati et al. Testing global automatic quadrature programs 3

the minimal value of epquad for which the program stops without any etror
condition. Note that, when running the program with epquad < epquad_stop, we get
abserr=epquad_stop and no further improvement on abserr can be achieved.

The program can be slightly altered in order to communicate to the outer
world the pair of values abserr, result each time the termination test is performed.
This can be obtained by inserting a call to a test routine.

Algorithm 2.2,

procedure quadrature(a,b,epqu’éd : real; var : abserr,result :real; var ier:integer);
while abserr > epquad do begin

TEST_CALL(abserr,resuit);
end;
end;

procedure TEST_CALL(abserrresult : real);
{ es is a global real variable containing the exact integral }
{ old_estimate is a global real variable initialized to the value -maxint }
{ neval is a global integer variable containing the actual number of functional
evaluations}
{ ord{x) is a real function which computes -Logj1o X }
var err,est: real;
begin
err:=ord(Abs(es-result)); { compute the true error}
est :=ord(abserr); '
if est > old_estimate then begin
write(est,err,neval);
old_estimate:= est
end
end;

The routine TEST_CALL uses the true value of the integral es (clearly this is
possible only in experimental environments) to compute a sequence of triples
(estj, errj, neval;) with estj < estj+1. The main property of this sequence of

values is that, if the program is called with an absolute tolerance epquad = 10-t,
such that

esti-1 <t <estj,

the program will stop with a true error 10°°™ and neval; evaluations. This
consideration can be expressed as follows:

a) the function which associates the true error to the requested tolerance is the
piecewise constant (left continuous) function

erry, t < esty
err(t) =
erri, esti-1 < t < estj, i>1

defined in the range (-o°, tstop], tstop = -Logio(epquad_stop);

Favati et al. Testing global automatic quadrature programs 4

b) the function which associates the number of functional evaluations to the
requested tolerance is the piecewise constant (left continuous) function:

-

neval;, t <esty
neval(t) =< neval;, esti-1 <t < estj, i>1

neval(tstop), t 2 tsiop
"

defined in the range (-co,), since the program performs functional evaluations
even if the computation is not successful.

When running the program with a user tolerance so small to cause the
integration process to quit, we get, with only one run, the value of tstop and the
complete plot of neval(t) and err(t).

Example 2.1. Evaluating the integral fl x - n/41%%dx with the automatic
| g ,,

quadrature routine QAG from QUADPACK ([15], with requested absolute
tolerance epquad = 10-13, we get the following plots for err(t) and neval(t).

15

13

11+

arr

Favati et al. Testing global automatic quadrature programs 5

2000

neval

Fig. 2

Q

Clearly the function err(t) can be computed only in test environments
where the exact integral is known. In order to decide whether the program works
correctly, err(t) may be compared either with the error estimate abserr given by
the program or with the requested user tolerance epquad = 10-t.

In the first case a measure Ir1(t) can be defined, such that

les - resultl _ 1q1r1p)
abserr

It is easy to see that Ir1(t) can be expressed as
erry - esty, t < esty

Ir1(t)= {

errj - estj, estj-1 <t < estj, i>1
In the second case the corresponding logarithmic measure is

Ir2(t) = err(t) - t.

Example 2.2. For the same test of example 2.1 we get the following plots for
Ir1(t) and Ir2(t).

Favati et al. Testing global automatic quadrature programs 6

Iri

Ir2
1

Fig. 4
o

It is remarkable that 1r1(t) < Ir2(t) and the three possible pair of signs of
the two measures have the following meaning:

Ir1(t)>0, Ir2(t)>0 the program integrates correctly at the requested
tolerance 10-t and the given estimate is correct.

Favati et al. Testing global automatic quadrature programs 7

Ir1(t)<0, Ir2(t)>0 the program integrates correctly at the requested
tolerance 10-t but the given estimate is not correct.

Ir1(t)<0, 1r2(t)<0 the program fails to integrate correctly at the
requested tolerance 10-t and, clearly, the given
estimate is not correct.

The choice of Ir1(t) or Ir2(t) as a measure of error implies a different
opinion on the duties of a quadrature program. If we are interested in the error
estimate given by the program we can choose Ir1(t), but this choice can lead to
misleading conclusion. Consider the following isolated set of results:

epquad = 10-3; les - resultl = 10-12; abserr = 10-13,

The result produced by the program is very good for any user which requires 3
digits of accuracy and it is hard to consider this event a failure. If the goal is to
integrate correctly at the given tolerance then the measure Ir2(t) has to be used,
which is independent of the program error estimate abserr. This latter choice will
be adopted in the following.

3. Testing on a group of integrands

In literature both battery experiments and parametric studies of problem
families are used to test automatic quadrature routines [1,3,5,9,10,11,12,16].
Typically a battery test consists in performing several integrations on a group of
functions with widespread characteristics, (e.g. well behaved, peak, singular,
oscillating, step functions). A serious drawback of this technique is that only few
elements of a family of functions are tested and, possibly, there exist functions
very close to the elements of the sample for which the quadrature routine exhibits
a very different behaviour. The other approach uses a problem family, each of
whose members can be selected by specifying a parameter A. The whole family is
tested by varying the parameter in a given interval either with a deterministic or
a random selection.

Both approaches can be unified by considering a test set formed by few
families of parametric functions, for which the parameter can assume both
deterministic and random values. However it is unlikely that the use of a single
test set will give complete information on the behaviour of a quadrature routine.
One can build his own test set which presents the characteristics of the functions
he has to integrate. On the other hand people writing or exploring numerical
quadrature routines will prefer to use several general test sets looking for
common characteristics of the program. In the Appendix, two test sets are
presented which contain few families of functions with different characteristics,
each depending on a real parameter A. Any test set may be built by using an

Favati et al. Testing global automatic quadrature programs 8

arbitrarily large number of values of A, a fixed proportion of which is
deterministically chosen and the other ones are random numbers. For each
function the analytical exact integral is computed. Moreover we force each exact
integral to lie in the interval [1,2] by properly scaling the function, so that we are
allowed to deal with homogeneous values of the absolute errors; this approach is
somewhat equivalent to use relative errors.

If the experiments of the previous section are carried out on a test set

T = {fs(x), s=1,2,...,m},
some statistics are needed to interpret the results. Let

nevalX0, 120, $=12um, te (oo, (]

be the results of the test. We define the following statistical estimators:

(s

quit(t) = #{s: tseop <t };
quitay(® = 90 guig(o);

succay() = 100 #{s: I2(1) 20, t< G} / #(s: t <t) =

stop stop
= ﬁ?}?t_(ﬁ #{s: Ir20)(t) >0, t < t(sstz)p}?
,
nevalay() = — > neval(s)(t).

1

@
i

Once given a quadrature program quadrature and a test set T, the plots of
the estimators quitay(t), succay(t), nevalay(t) can give complete information on
the mean behaviour of the program on T.

Another statistical measure, in some sense equivalent to the percentage of
successes but homogeneous with err(S)(t), is the following:

$
perco(t) = max {y : 5%1%1%5 #{s, e®M) 2y, t< tit?)p } = a}
we can observe that
percolt) = t => succay(t)=a.

This measure will be used in the next section.
It is easy to see that quitay(t), succay(t), nevalay(t), percy(t) are piecewise
constant (left continuous) functions, moreover quitay(t) and nevalyy(t) are not

Favati et al. Testing global automatic quadrature programs 9

decreasing. Using the techniques of section 2 it is possible to keep track of all the
points of discontinuity of the statistical measures (i.e. the set of the points estj(s)
for any i and s). However, in such a way, for large test sets the amount of
information becomes intractable; a more practical solution is to compute and to
plot discrete approximations of the above defined measures. In particular the
interval [1,14] is splitted into n intervals of equal length, Ji, i=1,2,....,n, and the
values
min {succay(t): t € J;}, i=1,2,...,n,

are computed, thus guaranteeing that no points with small percentage of successes
escape the analysis. In this sense our analysis is more accurate than the classical
method of sampling on a discrete set of values of t.

As an example of application of this technique, we have tested four of the
most efficient global automatic quadrature programs (QAG, QAGS, [15] and
their improvements QXG, QXGS [8]).

QAG is a simple globally adaptive integrator that uses, as local quadrature
module a pair of Gauss-Kronrod integration formulas (in our test we use the
option key=2, i.e. a 10-21 Gauss-Kronrod pair is selected). The adaptive strategy
attempts to reduce the error by subdividing the interval with the largest error
estimate; all subdivisions are bisections.

QAGS is an integrator based on globally adaptive interval subdivision in
connection with extrapolation. The local quadrature module uses a pair of Gauss-
Kronrod integration formulas with 10 and 21 points. The extrapolation is carried
out by means of the €-algorithm [17]. The FORTRAN code of QAG and QAGS
has been received via electronic mail [4].

QXG and QXGS are obtained by replacing, in QAG and QAGS, the
Gauss-Kronrod formulas with symmetric, closed, interpolatory integration
formulas with positive weights and increasing degree of precision called
recursive monotone stable (RMS) formulas. These formulas allow applying
higher order or compound rules without wasting previously computed functional
values and are well suited for automatic adaptive quadrature [7].

The programs were run, in the double precision version, on an Apple
Macintosh® SE/30 with MC68882 numeric coprocessor. Two test sets, T1 and
T2, consisting of 56000 and 40000 integrands, respectively, were used. More
information on T1 and T2 is given in the Appendix.

The plots of quitay(t), succay(t), nevalay(t), are presented in pairs, to allow
direct comparison of routines of the same kind (QAG and QXG, QAGS and
QXGS).

Favati et al. Testing global automatic quadrature programs

QUIT

succ

100

Test set T1

80 -

60

100

98

96 ¢

94 -

92

90

O

—O0— QAG
—e— QXG

2 3 4 5 6 7 8 9 1011 12 13 14
t

Fig. 5

Test set Ti

—O0— QAG
QxG

LN B SIS A B BN B M
1 2 3 45 6 7 8 9 1011 12 13 14

t
Fig. 6

Test set T1

YT

T T T YT
2 3 45 6 7 8 9 1011 12 13 14

10

Favati et al. Testing global automatic quadrature programs

QUIT

succ

Test Set Ti
100

god —O— oAGS
——— QXGS

1 2 3 45 6 7 8 9 1011 12 13 14
t

Fig. 8
Test set T1
100
08
96
g)

94 -
92 4 —O0— QAGS

QXGS
) . S—

T T
7 8 9 1011 12 13 14
t

TTTTTTTTTY
1t 2 3 4 5 8

Fig. 9
Test set T1

2000

] —O— QAGS
1500 - — QXGS
1000)
500:

.. M

LD A B S s

3
10 11 12 13 14

-
n o
©
2 o
o]
o J
~ o
®
©

11

Favati etal. Testing global automatic quadrature programs 2

Test set T2
100
80 -
60
=
=2
o 40 -
20
0
£
Fig. 11
Test set T2
1001?’@%
98
96
[&]
[8]
e J
w 94 -
92 - ~—QO—— OAG
] — QXG
90 '|'l'l'l'l'l'l'!'l'l‘l'l
1 2 3 45 6 7 8 9 1011 12 13 14
t
Fig. 12
Test set T2
2000
w—d
g
b3
[33
=

YT TrTTY

T
9 1011 12 13 14

Favati et al. Testing global automatic quadrature programs

QUIT

suce

Test set T2
100

1 2 3 45 6 7 8 9 1011 12 13 14
t

Fig. 14

Test set T2
100

98 ~

96

94 A

92 -

vrrrT rrryiri

O o
© -
e
(=]
b
pe
—
N
-
I
-
F-9

Fig. 15
Test set T2
2000
] —O0— o0AGS
1500 A —— QXGS

0 T 1T T T T T

T T T T T T
1 2 3 45 6 7 8 9 1011 12 13 14

13

Favati et al. Testing global automatic quadrature programs H“

From the analysis of these plots becomes clear that the behaviour of the
error is similar in all routines. For what concerns the number of evaluations and
quits, the extrapolated routines are much better than the not extrapolated ones
and the improved routines of [8] are better than the older ones.

4. Improving and comparing quadrature programs

A good quadrature program should present, on any test set, the same high
reliability for a range of required tolerances as large as possible (e.g.
succay()=99%, 1<t<14). This property, as one can see from the above examples,
is typically not satisfied, and techniques to alter the performance of the
quadrature program have to be investigated.

A typical trick is to call the program with a internal tolerance (say 10-9)
different from the requested user tolerance 10-t. Lyness and Kaganove [13] apply
this device by testing with a pair of values (€req, Equad) = (10-t, 10-9)
independently varying in a rectangle. They introduce some statistical quantities
which can be easily related to other ones used in our work.

Another approach can be to consider q as a monotonic increasing function
of t, i.e. the quadrature program is run with an actual tolerance 10-4 which is a
decreasing function of the user tolerancelOQ-t. In this case we obtain a different
quadrature program (called in the following the modified program) which can be
tested with the techniques explained above; q(t) is called the associated function to
the modified program. The quantities err(t) and neval(t), estimating the
performance on a single function of the modified program, can be obtained from
the corresponding quantities err(t) and neval(t) as follows:

@.11(0 = err(q(t))9 Q(t) S tStOp’
and
neval(t) = neval(q(t)), q(t) <tstop.

The statistical measures on a test set are subject to similar changes, as well:

quitay(t) = quitay(q(D));
nevalay(t) = nevalay(q(t));
perce(t) = perco(q(t)).

Now we try to regularize the plot of percy(t) for a fixed o looking for a

suitable function q(t); in order to obtain a ratio of about /100 successes, we need
to find 2 monotonic increasing function q(t) such that:

perco(q(t)) =t

Favati et al. Testing global automatic quadrature programs 15

If the function perco(u) would be strictly increasing we could solve exactly
the previous equation with q(t) = perce-1(t). Since percg(u) is a piecewise
constant function, we consider a continuous (possibly not monotonic) function
p(u) approximating it in some sense on a given interval [ug,u,;].

Let us introduce the not decreasing function

mp(u) = max {p(x): up<x <u}

and define the set:
I ={u: mp(x) < mp(u), up< x < u).

Since p(u) is continuous, the set I can be written as a finite union of intervals:
I'=(x0, yol U (x1, yi] U ... U (xk, yk], X0 =up, yk <1y

and the restriction of p(u) on I (say n(u)) is a monotonic increasing function
whose inverse q(t) has the property

p@®) =t, te (pug), p(y)l.

Typically, one has a finite set of values of percq(t); the following example
shows a possible choice for p(u) in this case.

Example 4.1. Given the sequence p; = perca(ui), i=1,2,..k, u; <uy ...< ug, let
p(u) be the piecewise linear function joining the points (vj, py), i=1,2,..k, and

N(u) be defined as above. It is easy to see that the resulting q(t) is defined in the
interval (p;, max {pj, i=1,2,..k}]. a

REMARK. A modified quadrature program with associated function q(t) =
N-1(t), can be tested with the technique of section 2, by simply applying the
transformation esti = n(est;), estj € I and neglecting the values est; ¢1; thus the
main consequence of using q(t) is to skip the intervals where perco(t) does not
increase.

Example 4.2. From the test of QAGS on the set Tl (m=56000), using the
technique of Example 4.1, a function Ngags(u) has been derived. The quadrature
program modified by the associated function gqags = (Mgacs)™! has been applied
on test set T1. The plots of succay(t), nevalay(t),in the standard and modified
cases are presented in the following.

Favati et al. Testing global automatic quadrature programs 16

QAGS, test set T1

100
99
o 98 -
(8}
>
@ 97
96 ¢ . . —0O— standard
o m——— modified
95 AL SN LD B AR A BN B AN LI M SR GRS g
1 2 3 4 5 6 7 8 9 1011 12 13 14
t
Fig. 17
QAGS, Test Set T1
1200
1000 A O standard .
——a— modified
) 800
o
=
w
= 600 -
400 ~
200 LIN SELEN B e e ne ma

Y
1011 12 13 14

-t
N =
W =
£l
o]
o]
~N o
o I
O «f

a

We note that this technique allows a good regularization only on a given
test set. It cannot be viewed as a practical method to improve an integration
program unless the user is sure to integrate only functions in that test set. On the
other hand, if the plots of succay(t) are regularized on a given test set, the
corresponding plots of nevalay(t) and quitay(t) allow a fair comparison of the
performances of different routines (this fact was pointed out in [13], as well).

Example 4.3. Using the technique of Example 4.1, we have derived the
functions mMqacs(u) and Mgxgs(u) which regularize succ,y(t) on the set T1
(m=56000). The plots of succay(t), quitay(t), nevalyy(t), after applying the proper
modified quadrature programs are presented in the following. It is apparent how
the improved routine QXGS outperforms the older one.

Favati et al. Testing global automatic quadrature programs

succ

QuUIT

Test set T1, modified quadrature
100 -y

99 4
98 3
97 -
96 . —o0— QAGS
. ———— Qoxes
95 —

TPV U T YTT YT YTTYTIYTY 1]

1 2 3 45 6 7 8 9 10111213 14
t

Fig. 19

Test set T1, modified quadrature

100

80 A

60 -

40

1 2 3 45 6 7 8 9 1011 12 13 14
t

Fig. 20

Test set T1, modified quadrature
2000

] —O— QAGS
1500 - —— QXGS

LAND (LIS SN I s G tan 4

ML S B SN B B |
1 2 3 45 6 7 8 9 1011 12 13 14

17

Favati et al. ~Testing global automatic quadrature programs 18

Appendix. Test sets used in the numerical experiments.

Let fi(x,A), i=l,....k, be k real functions defined for all xe [a;,b;], Ae [0,1].
The test set is:

Th= {fi(x,\), i=1,...k, A=j/2P, j=0,1,....2P} U
{fi(x’l)y i=1 a---’ky- kqu,,lh-] } s

where p = Llogz hl- 1, q=2P +1 and the Ai are random values in [0,1]. The set
contains m = h k functions; h has to be enough large in order to get significant
results. We used the following values of h.

h # deterministic A # random A ratio
250 64 186 0.344
1000 256 744 0344
4000 1024 2976 0.344

Since the seeds of the pseudorandom generator are independent of h it is easy to
see
T2s0 < T1000 < Tao00.

The following plot, shows the values of succay(t) for QAGS on test set T1
with h=250,1000,4000.

QAGS, test set Tt
100

succ

LI B R

vy T
1011 12 13 14

T T T T T Y
1 2 3 4 5 6 7 8 9

Now the two test sets used in our computations are described.

Favatietal. Testing global automatic quadrature programs 19

Test Set T1. Fourteen families of functions are used, each family depends on a
parameter A and the integration interval depends on a parameter B. For each
family if A has a deterministic value then B assumes the fixed value 1/2,
otherwise also [is randomly chosen in [0,1].

1)
2
3)
D
3)
6)
7
8)
9
10)
11)
12)
13)
14)

The functions and the integration intervals are the following:

(x-1/2)(x+A3-1/2)(x+A5-1/2)(x+A6/4-1 /2) [0,B+1/2]
e-27x Sin (160X +20)nx [0,8+1/2]
x1/(8A+2) - [0,3+1/2]

x -1/(8A+2) [0,8+1/2]

x -(4A+1.5) [10-5+B/2000,8+1/2]
x4A+1.5 [0,8+1/2]

x 2A2 Sin x 2A%+1 [0,(B+2)n]

(1- Cx2)-1 C=9/10000A+999/1000 [B/2,1]

(C2+ (1-x)2)-1 - (2C2 + (1.1-x)2)-1, C=0.05+A2/10 [0.9-B/2,1.2+pB/2]
xA Log x [0,B+1/2]
x-0.81 Log x [0,B8+1/2]

-eX, x<A; eX, x>A [-B-1/2,8+1/3]
LoglA-xI [0,B+9/8]
Ix-1/31 8A [0,8+1/2].

Q

Test Set T2. Ten families of functions are used, each family depends on a
parameter A and the integration interval depends on a parameter . For each
family if A has a deterministic value then B assumes the fixed value 1/2,
otherwise also B is randomly chosen in [0,1]. Most functions are taken, with
modifications, from the test set of [6]

1)
2)
3)
4)
)
6)
7
8)
9
10)

The functions and the integration intervals are the following:

Ix - A1-1/2 [0,B+1/2]
0, x<A; eX¥2 x>\ [0,B+1/2+A]
e-21x-M [0,8+1/2]
10/(1+100(x-1)2, [0,B+1/2]

100/Cosh(C(-1 - A +x)), C=100 Log(2 +3172) [1,2+B/2]
Co/(1+Cq Sin x), Cop=1/(2+8)\), C1=(1-Cq2)1/2 [0,2r+f3/2-1/4]

Cos (1+Cx), C = 101+A [0,8+1/2]
x2 Sin (14+Cx), C = 101+A [0,8+1/2]
e-4x Sin (1+Cx), C = 101+2 [0,B+1/2]
-AT+A6x+A3x30+05x30-12x 3124311 x604x61 [0,B+1/2].

Favati et al. ~Testing global automatic quadrature programs 20

References

(1]
[2]

[3]

[4]
[5]
(6]
[7]

8]

9

(10

(1]
[12]
[13]
[14]

[15]

[16]

[17]

J. CASALETTO, M. PICKET, J.R. RICE, A comparison of some numerical
integration programs. Signum Newsletter 4 (1969), 30-40.

P.DAVIS AND P. RABINOWITZ, Methods of Numerical Integration (1984).
Academic Press, New York. .

C. DEBOOR, CADRE: an Algorithm for Numerical Quadrature. In:
Mathematical Software (1971), (J.R. Rice, ed.), Academic Press, New
York, 417-449.

J.J. DONGARRA, E. GROSSE, Distribution of Mathematical Software via
Electronic Mail. Signum Newsletter 20 (1985), 45-47.

H. ENGELS, Numerical Quadrature and Cubature (1980). Academic Press,
New York.

T.O. ESPELID AND T.S@REVIK, A Discussion of a New Error Estimate for
Adaptive Quadrature. BIT 29 (1989), 283-294.

P. FAVATI, G. LOTTI, F. ROMANI, Interpolatory Integration Formulas for
Optimal Composition. To appear in ACM Trans. Math. Software.

P. FAVATI, G. LOTTI, F. ROMANI, ALGORITHM xxx: Improving
QUADPACK Automatic Integration Routines. To appear in ACM Trans.
Math. Software.

G.M. GENTLEMAN, Implementing the Clenshaw-Curtis Quadrature, I
Methodology and Experience, Comm. ACM 15 (1972), 337-360.

D.K. KAHANER, Comparison of Numerical Quadrature Formulas. In:
Mathematical Software (1971), (J.R. Rice, ed.), Academic Press, New
York, 229-259.

J.N. LYNESS, When not to Use an Automatic Quadrature Routine. SIAM
Rev. 25 (1983), 63-87.

J.N. LYNESS, J.J. KAGANOVE, Comments on the Nature of Automatic
Quadrature Routines. ACM Trans. Math. Software 2 (1976), 65-81.

J.N. LYNESS, J.J. KAGANOVE, A Technique for Comparing Automatic
Quadrature Routines. Comp. J. 20 (1977), 170-177.

M.A. MALCOLM, R.B. SIMPSON, Local versus Global Strategies for
Adaptive Quadrature. ACM Trans. Math. Software 1 (1975), 129-146.
R. PIESSENS, E. DE DONCKER-KAPENGA, C. UBERHUBER AND D.X.
KAHANER, QUADPACK: A Subroutine Package for Automatic Integration
(1983). Springer, Berlin.

I. ROBINSON, A Comparison of Numerical Integration Programs. J.
Comput. Appl. Math. 5 (1979), 207-223.

P.WYNN, On a device for computing the e;n(Sn) transformation. Math.
Comp. 10 (1956) 91-96.

