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A novel way for calculating the diffusion-weighted NMR attenuation signal expression in presence of a background
gradient is developed. This method is easily applicable to NMR attenuated signals arising from any pulse field gradient
(PFG) sequence experiments. Here we provide the detailed calculations for the classical pulsed gradient stimulated
echo (PGSTE) and the pulsed gradient spin echo (PGSE), as particular case. Within this general theoretical framework,
devised for Gaussian processes with stationary increments, we recover and extend the previous Stejskal-Tanner results
in case of normal diffusion and furnish a new expression in case of anomalous diffusion.

I. INTRODUCTION

The NMR potential of spin-echo experiments in measuring
the self-diffusion coefficient was firstly indicated by Hahn in
his pioneering work of 19501. After that, the pulse field gra-
dient (PFG) method has become an entrenched non-invasive
technique for the investigation of the molecular motion and
dynamics.
The basic PFG sequence is the so-called pulse-gradient spin-
echo (PGSE)2–5, in which, after a radio-frequency (rf) 90◦

pulse, a short gradient pulse of amplitude g and duration δ
confers phase shifts to the spins. A second equivalent gra-
dient pulse, after an intermediate 180◦ rf-pulse, reverses the
phase shifts to yield an attenuated signal decay, as a conse-
quence of the molecular spins movement during the diffusion
time ∆. The theory developed by Stejskal and Tanner in their
celebrated paper2, furnished the correct formula to analyze the
NMR spin-echo attenuation signal, stemming from the Bloch-
Torrey equation for the spin magnetization in the form intro-
duced by Abragam6. The paper of Hahn1 showed how the use
of three 90◦ rf-pulses create an echo with an attenuation hav-
ing a peculiar dependence on the spin-lattice relaxation time
T1. A such characteristic makes possible to abate the effect
of the spin-spin relaxation T2 on the signal and extend consid-
erably the diffusion time ∆ in the measurements as shown in
the paper of Tanner7. Opposite to the spin-echo of PGSE ex-
periment, in this case the measured echo was named by Hahn
"stimulated-echo"1, so that this kind of PFG sequence goes
under the name of pulse-gradient stimulated-echo (PGSTE).
The theory developed by Tanner to accomplish a final fitting
formula for the PGSTE attenuation signals, was entirely based
on the assumption that the spin stochastic trajectories are de-
scribed by random walks.
Very importantly, in both PGSE and PGSTE theoretical anal-
ysis, the authors assume the presence of a generic time-
dependent gradient and derive analytical results for the case
with a constant imposed gradient g combined with a constant
background gradient of magnitude g0. The contribution of
uncontrollable internal gradients to NMR signal decay is a
delicate and important issue in various contexts. Biological
tissues8–10, porous media11,12, and in general, many hetero-

geneous structures exhibit microscopic variations in magnetic
susceptibility, caused by imperfect shimming, heterogeneous
magnetic susceptibility within the object, for example, near
tissue-air interfaces or in meso- and microscopically hetero-
geneous tissue13. In all these cases, internal field gradients
that are generated may be extraordinarily strong. Depend-
ing on their scale, these background gradients provide im-
age distortion14, increased rates of dephasing (reduced T2-
times)15, unwanted diffusion-weighting16 that can lead to a
wrong interpretation of the diffusion phenomena17. Adopt-
ing a simple PGSE sequence in this type of systems alters
the measure of the apparent diffusion coefficient, if g0 does
not approaches zero, since the g2

0 and g · g0 terms cannot be
neglected2,16,18–20. The same problem arises when a PGSTE
sequence is applied, rather than a PGSE21,22. To overcome
this issue, a large variety of PFG sequences has been opti-
mized in order to mitigate the effect of such a background
gradient and to obtain a more liable estimate of the molecules
self-diffusion inside a sample23–33. A tentative attempt of
grouping this wealth of PFG sequences can be made accord-
ing to the notation introduced in34. Sequences where the spin
echo NMR signal arises due to the phase inversion proper-
ties of 180◦ rf-pulses are called Alternating PFG experiments
(APFG) based on Carr-Purcell-Meiboom-Gill (CPMG). For
these sequences the Bloch-Torrey equation still applies and a
formal solution, such that provided by Stejskall and Tanner
for PGSE, holds25. On the other side, any sequence involv-
ing three 90◦ rf-pulses is named as APFG based on the stim-
ulated spin echo (STE). Unfortunately, the Tanner’s PGSTE
formal solution7 is not easily extended to encompass more
general situations, and no analytical alternative derivation is
provided on the other side. Indeed, the starting point is the
assumption of the validity of the Torrey solution of the Bloch-
Torrey equation, although with a time dependent gradient g34.
Among these, some studies report the more realistic situation
where the background gradient g0 is not constant, exhibiting
an explicit time dependence31,32. In these works, however,
although on one hand the PFG sequences are such that the
influence of the background gradient is canceled out, on the
other the decay signal is significantly reduced, resulting in a
lower sensitivity in the diffusion measurements.

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
48

17
5



Accepted to J. Chem. Phys. 10.1063/5.0148175

2

In Ref.35 we provided a general theoretical framework for
the correct interpretation of NMR attenuation signals com-
ing from PGSE experiments, in the case of Gaussian systems
with stationary increments. In these systems the molecular
propagator is assumed to have a Gaussian shape at any time,
and the velocity as well as the position correlation function,
〈v(t1)v(t2)〉 or 〈x(t1)x(t2)〉 respectively, depends simply on
|t1−t2|. These are the underlying assumptions for many phys-
ical processes, among which, but not only, those satisfying the
Bloch-Torrey equation.
We hereby extend the scheme furnished in Ref.35, providing
an unifying exact theoretical framework that encompasses any
kind of PFG experiment, be APFG CPMG-like or STE-like,
in presence of a constant background gradient. We focus our
analysis on the simplest cases, furnishing the detailed calcula-
tions for PGSE and PGSTE sequences, stressing the fact that
these could be extended to any other PFG sequence, without
any need to resort to the Bloch-Torrey equation or to specific
ansatz. On top of that, our theoretical approach broadens the
PGSE and PGSTE classical expressions to the case of normal-
diffusing systems with general viscous drag.
Most importantly, the universal nature of our framework goes
beyond its formal validity comprehensive of the entire class
of PFG experiments. Indeed, the expressions encompassing
the presence of a background gradient extend to NMR attenu-
ation signals arising from systems displaying anomalous dif-
fusion and satisfying the hypothesis of Gaussianity and sta-
tionarity of the increments. For these systems, the molecular
mean square displacement is characterized by a non-linear law
of the type 〈(x−〈x〉)2〉 ∼ tα , with α ∈ (0,2], rather than the
Brownian case usually treated in literature (〈(x−〈x〉)2〉 ∼ t).

The paper is structured as follows. In Sec.II we recall the
PGSTE sequence and show how it fits into our theoretical
framework. We also develop the general symbolic calculation
which allows deriving the final fitting formula for NMR atten-
uation signals from PGSTE experiments. In Sec.III we spec-
ify the fitting formula to the case of normal diffusion, while
in Sec.IV we extend it to the case of anomalous diffusion. In
Sec.V we present some concluding remarks.

II. NMR SIGNAL DECAY IN PRESENCE OF A
BACKGROUND GRADIENT

Here we derive the diffusional attenuation of the nuclear
magnetization in the plane perpendicular to the applied mag-

netic field B, as a function of the rf-pulse times and of a vari-
able field gradient G(t). In particular, we consider a system
with a steady background gradient g0, and a second gradient
g, with a direction different than g0, which is turned on fol-
lowing a typical PGSTE sequence. The total gradient G that
contributes to the diffusion in a PGSTE experiment is

G(t) =






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


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





























g0 0 ≤ t ≤ t1

g0 + g t1 ≤ t ≤ t1 + δ

g0 t1 + δ ≤ t ≤ τ1

0 τ1 ≤ t ≤ τ2

−g0 τ2 ≤ t ≤ t1 +∆

−g0 − g t1 +∆ t ≤ t1 +∆+ δ

−g0 t1 +∆+ δ ≤ t ≤ te.

(1)

where t1 and t1 +∆ are the times when the gradient g is turned
on, δ is the duration of this gradient and τ1 and τ2 are defined
in Fig.1.

The behavior during the time interval τ1 ≤ t ≤ τ2 is be-
cause in a classical PGSTE experiment the spin angle phases
are stored in the z direction and they are unaffected by the field
gradient.
The transverse magnetization of a spin-bearing particle (or
molecule) can be expressed via the phase built up during the
motion in a magnetic field gradient. The NMR signal attenu-
ation is defined as the ensemble average spin echo amplitude,
properly normalized36:

S(te)

S(0)
= 〈eiγ

∫ te
0 dtv(t)·F(t)〉, (2)

where S(0) is the initial value of the signal, γ is the gyromag-
netic ratio and v(t) represents the stochastic velocity of the
particle/molecule.

The term F(t) is the quantity
∫ t

0 G(t ′)dt ′ corresponding to the
integral of the pulse gradient field. For the gradient in Eq.1
the explicit expression for F(t) is

F(t) =


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




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





















g0t 0 ≤ t ≤ t1

g0t + g(t − t1) t1 ≤ t ≤ t1 + δ

g0t + gδ t1 + δ ≤ t ≤ τ1

g0τ1 + gδ τ1 ≤ t ≤ τ2

−g0(t − τ1 − τ2)+ gδ τ2 ≤ t ≤ t1 +∆

−g0(t − τ1 − τ2)− g(t − t1 −∆− δ ) t1 +∆ ≤ t ≤ t1 +∆+ δ

−g0(t − τ1 − τ2) t1 +∆+ δ ≤ t ≤ te

(3)

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
48

17
5



Accepted to J. Chem. Phys. 10.1063/5.0148175

3

Assuming an isotropic diffusion we can express the former equation as

S(te)

S(0)
= 〈eiγ

∫ te
0 dtvx(t)Fx(t)〉〈eiγ

∫ te
0 dtvy(t)Fy(t)〉〈eiγ

∫ te
0 dtvz(t)Fz(t)〉. (4)

Under the hypothesis of Gaussianity, the former expression
can be expanded into cumulant to the second order, the so-
called Gaussian approximation in cumulant expansion37–44:

ln
S(te)

S(0)
≃−γ2

∫ te

0
dt1

∫ te

0
dt2 C(t1, t2)F(t1) ·F(t2), (5)

where C(t1, t2) represents the stationary velocity autocorrela-
tion function of one of the velocity components:

C(t1, t2) = 〈vx(t1)vx(t2)〉= 〈vy(t1)vy(t2)〉= 〈vz(t1)vz(t2)〉.
(6)

The assumption of stationarity instead assures that the corre-
lation function C(t1, t2) ∝ |t1−t2|. Under these hypothesis, the
NMR attenuation signal becomes35

ln
S(te)

S(0)
≃−γ2

te
∫

0

C(s)ds

te
∫

s

F(t) ·F(t − s)dt. (7)

At first, our analysis will focus on the quantity

Fc(s) =

∫ te

s
F(t) ·F(t − s)dt, (8)

where, in analogy to Eq.(3), we introduce the time-shifted
function

F(t − s) =








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





























g0(t − s) s ≤ t ≤ t1 + s

g0(t − s)t + g(t − t1) t1 + s ≤ t ≤ t1 + s+ δ

g0(t − s)+ gδ t1 + s+ δ ≤ t ≤ τ1 + s

g0τ1 + gδ τ1 + s ≤ t ≤ τ2 + s

−g0(t − s− τ1 − τ2)+ gδ τ2 + s ≤ t ≤ t1 + s+∆

−g0(t − s− τ1 − τ2)− g(t − s− t1−∆− δ ) t1 + s+∆ ≤ t ≤ t1 + s+∆+ δ

−g0(t − s− τ1 − τ2) t1 + s+∆+ δ ≤ t ≤ te + s

(9)

For the sake of clarity and to simplify the calculation of the
quantity Fc(s), we will adopt in the following a symbolic no-
tation.

A. Symbolic calculation

From Eq.(3), given the piecewise nature of F(t), it is use-
ful to consider the set of the interval extremes A = {0, t1, t1 +
δ ,τ1,τ2, t1+∆, t1+∆+δ , te}≡ {a0,a1, · · · ,a7}. Equivalently,
in view of Eq.(3) we can express the function F(t) in a sym-
bolic compact form as

F(t) =

{

Fi−1(t) ai−1 ≤ t ≤ ai

0 t ≥ a7,
(10)

for i ∈ [1,7].
In a similar way we define the set B(s) ≡

{b0(s),b1(s), · · · ,b7(s)}, with bi = ai + s, in reference

of the domain of the shifted function F(t − s) in Eq.(9).
Therefore, the function in Eq.(9) can be expressed as

F(t − s) =

{

0 0 ≤ t ≤ b0(s)

F̃i−1(t − s) bi−1(s)≤ t ≤ bi(s)
(11)

where bi(s) = ai + s.

Let us refer to the Fig.2. Given a set A , there will be values
s and i satisfying the condition bi−1(s) = ai. However, we are
interested in the minimum among these values, i.e.

s
(1)
i,i−1 = min

i∈[1,7]
[ai − ai−1]. (12)

Therefore, for any s ≤ s
(1)
i,i−1, the quantity in (8) is
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FIG. 1. Schematic representation of a single component of the gra-
dient G(t) in Eq.(1) (top) and of F(t) in Eq.(3) (bottom).

Fc(s)≡ A0(s) =

∫ a1

b0(s)
F0(t) · F̃0dt+

∫ b1(s)

a1

F1(t) · F̃0(t − s)dt +

∫ a2

b1(s)
F1(t) · F̃1(t − s)dt+

∫ b2(s)

a2

F2(t) · F̃1(t − s)dt +

∫ a3

b2(s)
F2(t) · F̃2(t − s)dt+

∫ b3(s)

a3

F3(t) · F̃2(t − s)dt +

∫ a4

b3(s)
F3(t) · F̃3(t − s)dt+

∫ b4(s)

a4

F4(t) · F̃3(t − s)dt +

∫ a5

b4(s)
F4(t) · F̃4(t − s)dt+

∫ b5(s)

a5

F5(t) · F̃4(t − s)dt +

∫ a6

b5(s)
F5(t) · F̃5(t − s)dt+

∫ b6(s)

a6

F6(t) · F̃5(t − s)dt +

∫ a7

b6(s)
F6(t) · F̃6(t − s)dt.

(13)

For s ≥ s
(1)
i,i−1, the expression of Fc(s) in Eq.(13) does not hold

anymore and ought to be changed. However, not any integral
appearing in the sum (13) is modified. Indeed, it is easy to
see that the integrals which must be modified are those having
ai and/or bi−1(s) as extremes of integration. Three cases can
arise: i = 1, i = 7, i ∈ [2,6]

• i = 1.

We can express the change as

∫ a1

b0(s)
F0(t) · F̃0(t − s)dt +

∫ b1(s)

a1

F1(t)F̃0(t − s)dt (14)

⇓
∫ b1(s)

b0(s)
F1(t) · F̃0(t − s)dt. (15)

By subtracting the Eq.(14) from Eq.(15), we introduce

the function B
(1)
1,0(s) defined by

B
(1)
1,0(s) =

∫ b0(s)

a1

F0(t) · F̃0(t − s)dt+

∫ a1

b0(s)
F1(t) · F̃0(t − s)dt

(16)

• i = 7.

In this case the change in (13) involves the last two in-
tegrals:

∫ b6(s)

a6

F6(t) · F̃5(t − s)dt +

∫ a7(s)

b6

F6(t)F̃6(t − s)dt (17)

⇓
∫ a7

a6

F6(t) · F̃5(t − s)dt. (18)

The difference between the two is expressed as

B
(1)
7,6(s) =

∫ b6(s)

a7

F6(t) · F̃6(t − s)dt. (19)

• i ∈ [2,6].

The integrals in Eq.(13) interested by the change are, in
this case, those that having as integration extremes ai

and/or bi−i(s). The change can be expressed as
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∫ bi−1(s)

ai−1

F̃i−1(t) · F̃i−2(t − s)dt +

∫ ai

bi−1(s)
Fi−1(t) · F̃i−2(t − s)dt +

∫ bi(s)

ai

Fi(t) · F̃i−1(t − s)dt (20)

⇓
∫ ai

ai−1

Fi−1(t) · F̃i−2(t − s)dt +

∫ bi−1(s)

ai

Fi(t) · F̃i−2(t − s)dt +

∫ bi(s)

bi−1(s)
F̃i(t) · F̃i−1(t − s)dt (21)

FIG. 2. Graphical representation of a single component of the func-

tions F(t) (Eq.(3)) and F(t − s) (Eq.(9)) after a small shift s ≤ s
(1)
i,i−1.

Different intervals in the time domain are defined by the set A ≡
{a0,a1, · · · ,a7} and B(s)≡ {b0(s),b1(s), · · · ,b7(s)}, respectively.

The B
(1)
i,i−1(s) quantity is then defined as

B
(1)
i,i−1(s) =

∫ ai

bi−1(s)
Fi−1(t) · F̃i−2(t − s)dt+

∫ bi−1(s)

ai

[Fi(t) · F̃i−2(t − s)+Fi−1(t) · F̃i−1(t − s)]dt

(22)

Comparing the relations (20)-(22) with (14)-(19), it follows
that the general case i ∈ [2,6] encompasses the limiting cases
i= 1,7 recalling that F7 = F̃−1 = 0, as already explicitly stated

in Eq.(3) and Eq.(9)). Therefore, when s & s
(1)
i,i−1, Fc(s) ≡

A1(s) where

A1(s) = A0(s)+B
(1)
i,i−1(s). (23)

We now proceed to generalize the procedure outlined here

for the first switch, i.e. when s overcomes the value s
(1)
i,i−1 in

Eq.(12). In the following we will omit the explicit t, t − s and
s from the quantities entering the expression of Fc(s), not to
burden the notation.
Let us increase s until one of the term in B, say b j, becomes
equal to one of the elements of A , say ak, with k > j. Hence,

this second switch takes place for s = s
(2)
k, j = ak − a j. Corre-

spondingly, the changes in the integrals are written as

∫ b j

w1

Fk−1 · F̃ j−1dt +

∫ ak

b j

Fk−1 · F̃ jdt +

∫ w2

ak

Fk · F̃ jdt

⇓ (24)
∫ ak

w1

Fk−1 · F̃ j−1dt +

∫ b j

ak

Fk · F̃ j−1dt +

∫ w2

b j

Fk · F̃ jdt

where w1 and w2 are generic integration extremes belonging

to A or B. Therefore the difference B
(2)
k, j is expressed by

B
(2)
k, j =

∫ ak

b j

Fk−1F̃ j−1dt +
∫ b j

ak

(

FkF̃ j−1+

Fk−1F̃ j

)

dt +

∫ ak

b j

FkF̃ jdt,

(25)

which, after straightforward manipulations, becomes

B
(2)
k, j =

∫ ak

b j

(

Fk −Fk−1

)

·
(

F̃ j − F̃ j−1

)

dt. (26)

Thus, the Fc(s) expression for s & s
(2)
k j = ak − a j is therefore

given by the relation

A2(s) = A1(s)+B
(2)
k, j (s). (27)

We can iterate this procedure for 28 steps, i.e. the number
of switches needed for the equality b0 = a7 to hold, i.e. s = te:

Fc(s) =



































A0(s) 0 ≤ s ≤ s
(1)
i,i−1

A1(s) = A0(s)+B
(1)
i,i−1(s) s

(1)
i,i−1 ≤ s ≤ s

(2)
k, j

A2(s) = A1(s)+B
(2)
k, j (s) s

(2)
k, j ≤ s ≤ s

(3)
l,n

...
...

A27(s) = A26(s)+B
(27)
p,q (s) s

(27)
p,q ≤ s ≤ te

(28)

with the constraints that l > n and p > q are the generic in-
dexes relative to the different switches.

Now, by inserting the expression (28) into the definition
Eq.(7), after some simplifications we obtain that the NMR at-
tenuation signal becomes
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−
1
γ2 ln

S(te)

S(0)
≃

∫ te

0
A0(s)C(s)ds+

∫ te

s
(1)
i,i−1

B
(1)
i,i−1(s)C(s)ds+

∫ te

s
(2)
k, j

B
(2)
k, j (s)C(s)ds+ · · ·+

∫ te

s
(27)
p,q

B
(27)
p,q (s)C(s)ds.

(29)

The expression (29) is the central result of our analysis.
Indeed, although it may appear rather obscure, it turns out
to be very useful and easy to handle for the evaluation of
the signal decay. As a matter of fact it makes it possible the
evaluation of the signal decay, without a prior knowledge

of the exact sequence of the s
(n)
i, j = ai − b j(s) switches, with

i > j and n ∈ [1,27]. At the expense of it, all the terms

B
(n)
i, j have to be evaluated for any n and any couple (i, j)

(provided the fulfillment of the aforementioned indexes
constraints). In the following subsections we will adopt the
formula (29) to determine the exact contributions of the terms
proportional to g2, g2

0 and g · g0 for Gaussian processes with
stationary increments. The following sections will be devoted
to the presentation of practical examples, such as normal
(Brownian) and anomalous diffusing processes.

B. Contributions proportional to g2

The A0 term of Eq.(29) is obtainable from Eq.(13) after
straightforward and tedious calculations. It is easy to see that
A0 is proportional to g2

∫ τ1+τ2

0

[

δ 2
(

∆−
δ

3

)

+ s2
( s

3
− δ

)]

C(s)ds. (30)

The g2 contribution due to the B
(n)
i, j (s) terms is obtained in

Appendix (A) (see Eq.(A3)). Summing the term in Eq.(30) to

those relative to B
(n)
i, j (s) as in Eq.(29), the complete g2 compo-

nent of Eq.(7) is given by

∫ τ1+τ2

0

[

δ 2
(

∆−
δ

3

)

+ s2
( s

3
− δ

)]

C(s)ds+

1
3

∫ τ1+τ2

δ
(δ − s)3C(s)ds+

1
6

∫ τ1+τ2

∆−δ
(δ −∆+ s)3C(s)ds+

1
3

∫ τ1+τ2

∆
(∆− s)3C(s)ds+

1
6

∫ τ1+τ2

∆+δ
(s−∆− δ )3C(s)ds.

(31)

C. Contributions proportional to g2
0

Proceeding analogously to the previous subsection we can
firstly calculate the g2

0 contribution due to A0

∫ τ1+τ2

0

[

τ2
1

(

τ2 −
τ1

3

)

+
s3

3
− s2τ1

]

C(s)ds. (32)

The term arising from B
(n)
i, j (s) is calculated in Eq.(A5). There-

fore, the total g2
0 contribution turns out to be

∫ τ1+τ2

0

[

τ2
1

(

τ2 −
τ1

3

)

+
s3

3
− s2τ1

]

C(s)ds+

1
3

∫ τ1+τ2

τ1

(τ1 − s)3C(s)ds+
1
3

∫ τ1+τ2

τ2

(τ2 − s)3C(s)ds+

1
6

∫ τ1+τ2

τ2−τ1

(s+ τ1 − τ2)
3C(s)ds.

(33)

D. Contributions proportional to g ·g0

The coupling term proportional to g · g0 is calculated ac-
cording to the previous subsections. The part of it given by A0
is

−δ

∫ τ1+τ2

0

[

t2
1 + t2

2 + δ (t1 + t2)+
2
3

δ 2 − 2τ1τ2 + 2s2
]

C(s)ds,

(34)
where according to the definition of Tanner furnished in7,

t2 = τ1 + τ2 − (t1 +∆+ δ ). (35)

The B
(n)
i, j (s) additive part is furnished in Eq.(A7). By summa-

tion, we obtain the final result.

− δ

∫ τ1+τ2

0
[t2

1 + t2
2 + δ (t1 + t2)+

2
3

δ 2 − 2τ1τ2 + 2s2]C(s)ds+

1
6

[

∫ τ1+τ2

t1

(s− t1)
3C(s)ds+

∫ τ1+τ2

t1+∆+δ−τ2

(t1 +∆+ δ − τ2 − s)3C(s)ds+

∫ τ1+τ2

t1+∆
(t1 +∆− s)3C(s)ds+

∫ τ1+τ2

τ1−t1

(τ1 − t1 − s)3C(s)ds+

∫ τ1+τ2

t1+∆+δ
(s− t1 −∆− δ )3C(s)ds+

∫ τ1+τ2

τ2−t1

(τ2 − t1 − s)3C(s)ds+

∫ τ1+τ2

τ1−t1−δ
(t1 + δ − τ1 + s)3C(s)ds+

∫ τ1+τ2

τ2−t1−δ
(t1 + δ − τ2 + s)3C(s)ds+

∫ τ1+τ2

t1+∆−τ1

(τ1 − t1 −∆+ s)3C(s)ds+

∫ τ1+τ2

t1+∆−τ2

(τ2 − t1 −∆+ s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1

(t1 − τ1 − τ2 + s)3C(s)ds+
∫ τ1+τ2

t1+δ
(t1 + δ − s)3C(s)ds+

∫ τ1+τ2

t1+∆+δ−τ1

(t1 +∆+ δ − τ1 − s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1−δ
(τ1 + τ2 − t1 − δ − s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1−∆
(τ1 + τ2 − t1 −∆− s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1−∆−δ
(t1 +∆+ δ − τ1 − τ2 + s)3C(s)ds

]

.

(36)
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III. NORMAL DIFFUSION

We now want to specify the above general expression for
the NMR attenuation signal to the specific case of Brownian
diffusion. In this case the spin velocity autocorrelation func-
tion is given by35,41

C(s) = Dζe−ζ s (37)

where D is the diffusion coefficient and ζ is the viscous drag
characteristic of the system.
Inserting this expression into the Eq.s(31), (33) and into
Eq.(36), after explicitly carrying out the integration, we ob-
tain

−
1
γ2 ln

S(te)

S(0)
= g2

{

Dδ 2
(

∆−
δ

3

)

−
2D

ζ 3

[

δζ − 1+ e−ζδ−

e−ζ∆[cosh(ζδ )− 1]
]}

+ g2
0

{

Dτ2
1

(

τ2 −
τ1

3

)

−

2D

ζ 3

[

τ1ζ − 1+ e−ζτ1 − e−ζτ2[cosh(ζτ1)− 1]]
]}

+

g ·g0

{

−Dδ
[

t2
1 + t2

2 + δ (t1 + t2)+
2
3

δ 2 − 2τ1τ2

]

−D
4δ

ζ 2 +

D

ζ 3

[

e−ζ t1 − e−ζ (t1+δ )− e−ζ (t1+∆)+ e−ζ (t1+∆+δ )−

e−ζ (τ1−t1)− e−ζ (τ2−t1)+ e−ζ (τ1−t1−δ )+ e−ζ (τ2−t1−δ )+

e−ζ (t1+∆−τ1)− e−ζ (t1+∆+δ−τ1)+ e−ζ (t1+∆−τ2)−

e−ζ (t1+∆+δ−τ2)+ e−ζ (τ1+τ2−t1)+ e−ζ (τ1+τ2−t1−δ )−

e−ζ (τ1+τ2−t1−∆)+ e−ζ (τ1+τ2−t1−∆−δ )
}

,

(38)

where t2 is given in Eq.(35). This expression constitutes the
extension of the PGSTE Tanner formula7 to the case of diffus-
ing systems with arbitrary ζ . The relation (38) represents the
formal exact analytical expression including all the relevant
time-scales and physical quantities entering the experimen-
tal setup. However, it is of limited practical use if one con-
siders the experimental limits that any NMR apparatus sets.
As a matter of fact, the corrections to the Tanner’s formula
are of the order ∼ δζ−2 or ∼ ζ−3. Now, if we consider that
10−3sec . δ . 4 ·10−2sec in modern NMR devices, the value
of the damping coefficient ζ becomes crucial in order to esti-
mate the order of magnitude of the corrections. Assuming the
validity of the Stoke’s formula for a macromolecule diffusing
in water, ζ = 6πrµ/m, the water viscosity is µ ∼ 10−3Pa · s,
the typical macromolecule size is r ∼ 10−9m and the mass
is m ∼ 105Da, yielding ζ ∼ 1011sec−1. Hence the value
of the corrections are many order of magnitude smaller than
the leading terms furnished by the original Tanner’s formula.
Nevertheless, the general theoretical value of the expression
(38) remains, suggesting that future technological improve-
ments could allow the direct measurements of the drag coeffi-
cient ζ by NMR. On the other side, when τ1 = τ2 and ζ ,→ ∞
the PGSE formula is regained2. Moreover, when g0 = 0 we
recover the expression furnished in35.

IV. ANOMALOUS DIFFUSION

The spin velocity autocorrelation function for an anoma-
lous diffusing system, characterized by the Gaussian approx-
imation in the cumulant expansion and stationarity of the in-
crements, is35

C(s)∼ α(α − 1)Dαsα−2 (39)

where α is the anomalous exponent (α =∈ [0,2]) and Dα is
the generalized diffusion coefficient.
Making use of the expression (39) into the integrals of (31),
(33) and into Eq.(36), it is possible to achieve

−
1
γ2 ln

S(te)

S(0)
= g2 Dα

(α + 2)(α + 1)

[

(∆+ δ )α+2+

(∆− δ )α+2 − 2δ α+2 − 2∆α+2
]

+ g2
0

Dα

(α + 2)(α + 1)
·

[

(τ1 + τ2)
α+2 +(τ2 − τ1)

α+2 − 2τα+2
1 − 2τα+2

2

]

+

g ·g0
Dα

(α + 2)(α + 1)

[

tα+2
1 − (t1 + δ )α+2 − (t1 +∆)α+2+

(t1 +∆+ δ )α+2− (τ1 − t1)
α+2 − (τ2 − t1)

α+2+

(τ1 − t1 − δ )α+2 +(τ2 − t1 − δ )α+2 +(t1 +∆− τ1)
α+2−

(t1 +∆+ δ − τ1)
α+2 +(t1 +∆− τ2)

α+2−

(t1 +∆+ δ − τ2)
α+2 +(τ1 + τ2 − t1)

α+2−

(τ1 + τ2 − t1 − δ )α+2 − (τ1 + τ2 − t1 −∆)α+2+

(τ1 + τ2 − t1 −∆− δ )α+2
]

.

(40)

The above equation is the most general form obtainable and
can be used to fit any NMR echo signals coming from Gaus-
sian systems displaying anomalous diffusion on the score
of stationary increments, when a background gradients is
present. To our knowledge it is the first time that a general for-
mulation like this is provided. As a matter of fact it reduces to
the normal diffusion case setting α = 1. Moreover the PGSE
case can be obtained from Eq.(40) putting τ1 = τ2. A hand-
ful reduction of it can be gained if we set t1 ≈ 0, τ1 ≈ δ and
τ2 ≈ ∆. In this case, the Eq.(40) gets the simplified expression

−
1
γ2 ln

S(te)

S(0)
= (g+ g0)

2 Dα

(α + 2)(α + 1)
·

[

(∆+ δ )α+2 +(∆− δ )α+2 − 2δ α+2− 2∆α+2
]

.

(41)

This formula constitutes the natural generalization of the
anomalous diffusion expression derived by Karger45, reported
in46 and rederived by us by different means35.

V. CONCLUSIONS

We have furnished a comprehensive study of the diffusion
weighted NMR signal attenuation in PGSTE-type of experi-
ments, in the presence of a constant background gradient. Our
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analysis constitutes an alternative approach to the classical
Tanner derivation7. Our theory considerably extends the range
of applicability of the Tanner formula to any systems satisfy-
ing the criteria of Gaussianity and stationarity of the incre-
ments, and it furnishes the correct analytical way of treating
the signals arising from any PFG sequence. In particular we
show how our formula can describe any system diffusing nor-
mally or anomalous at the microscopic level. We conclude by
stressing that the theory developed is valid for any Gaussian
system with stationary increments, such as those governed by
generalized Langevin equation, fractional Langevin equation
or, in general, generalized fractional Langevin equation47, like
single-file systems48,49 or any other physical process display-
ing anomalous diffusion on the score of fractional Brownian
motion50.
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Appendix A: Calculation of B
(n)
i, j terms

To evaluate the quantities in Eq.(29) is convenient to write
the terms Fi and F̃ j as generic linear functions respect to t,
splitting the g0 and g terms in order to point out the different
contributions. To this end, considering the Eq.(3) we can write
the following general relationships

{

Fi = g0(qa,i +ma,it)+ g(pa,i+ ra,it)

F̃ j = g0(qb, j +mb, jt)+ g(pb, j + rb, jt)
(A1)

where the various coefficients are summarized in Table I.

The g2 contributions of the generic B
(n)
i, j term can be ob-

tained inserting Eq.(A1) in Eq.(26) obtaining

∫ ai

b j

(

∆pa,i +∆ra,it
)(

∆pb, j +∆rb, jt
)

dt =

1
6
(ai − b j)

[

6∆pa,i∆pb, j + 3(ai+ b j)(∆pa,i∆rb, j+

∆ra,i∆pb, j)+ 2∆ra,i∆rb, j(a
2
i + aib j + b2

j)
]

(A2)

where ∆pa,i ≡ pa,i− pa,i−1, ∆ra,i ≡ ra,i− ra,i−1 and in an anal-
ogous way we define ∆pb,i and ∆rb,i.
Keeping in mind that i > j and using the parameters in Table
I we obtain that the only terms not vanishing are for (i, j) ∈
{(2,1),(5,1),(5,2),(6,1),(6,2),(6,5)}. Since sn

i j = ai − a j

we can write the B
(n)
i j part as

1
3

∫ τ1+τ2

δ
(δ − s)3C(s)ds+

1
6

∫ τ1+τ2

∆−δ
(δ −∆+ s)3C(s)ds+

1
3

∫ τ1+τ2

∆
(∆− s)3C(s)ds+

1
6

∫ τ1+τ2

∆+δ
(s−∆− δ )3C(s)ds.

(A3)

The total g2 contribution of Fc(s) is obtained summing this re-
sult to those one in Eq.(30).
The equation analogous to Eq.(A2) concerning the g2

0 contri-
bution is

∫ ai

b j

(

∆qa,i +∆ma,it

)(

∆qb, j +∆mb, jt

)

dt =

1
6
(ai − b j)

[

6∆qa,i∆qb, j + 3(ai+ b j)(∆qa,i∆mb, j+

∆ma,i∆qb, j)+ 2∆ma,i∆mb, j(a
2
i + aib j + b2

j)
]

(A4)

where the various ∆-terms are defined similarly as in Eq.(A2).
The terms not vanishing are, in this case, for (i, j) ∈
{(3,0),(4,0),(4,3),(7,3),(7,4)} obtaining the following rel-
ative integrals

1
3

∫ τ1+τ2

τ1

(τ1 − s)3C(s)ds+
1
3

∫ τ1+τ2

τ2

(τ2 − s)3C(s)ds+

1
6

∫ τ1+τ2

τ2−τ1

(s+ τ1 − τ2)
3C(s)ds.

(A5)

In the end the expression to evaluate the Bi j terms for the
g ·g0 is given by

∫ ai

b j

(

∆qa,i +∆ma,it
)(

∆pb, j +∆rb, jt
)

dt+

∫ ai

b j

(

∆pa,i +∆ra,it
)(

∆qb, j +∆mb, jt
)

dt =

1
6
(ai − b j)

[

6(∆qa,i∆pb, j +∆pa,i∆qb, j)+ 3(ai+ b j)·

(∆qa,i∆rb, j +∆ma,i∆pb, j +∆pa,i∆mb, j +∆ra,i∆qb, j)+

2(∆ma,i∆rb, j +∆ra,i∆mb, j)(a
2
i + aib j + b2

j)
]

.

(A6)

From this equation we get that the indexes useful
are (i, j) ∈ {(1,0),(2,0),(5,0),(6,0),(3,1),(4,1),(7,1),(3,2),
(4,2),(7,2),(5,3),(6,3),(5,4),(6,4),(7,5),(7,6)} and the Bi, j

contributions are
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[

∫ τ1+τ2

t1

(s− t1)
3C(s)ds+

∫ τ1+τ2

t1+δ
(t1 + δ − s)3C(s)ds+

∫ τ1+τ2

t1+∆
(t1 +∆− s)3C(s)ds+

∫ τ1+τ2

τ1−t1

(τ1 − t1 − s)3C(s)ds+

∫ τ1+τ2

t1+∆+δ
(s− t1 −∆− δ )3C(s)ds+

∫ τ1+τ2

τ2−t1

(τ2 − t1 − s)3C(s)ds+

∫ τ1+τ2

τ1−t1−δ
(t1 + δ − τ1 + s)3C(s)ds+

∫ τ1+τ2

τ2−t1−δ
(t1 + δ − τ2 + s)3C(s)ds+

∫ τ1+τ2

t1+∆−τ1

(τ1 − t1 −∆+ s)3C(s)ds+

∫ τ1+τ2

t1+∆+δ−τ1

(t1 +∆+ δ − τ1 − s)3C(s)ds+

∫ τ1+τ2

t1+∆−τ2

(τ2 − t1 −∆+ s)3C(s)ds+

∫ τ1+τ2

t1+∆+δ−τ2

(t1 +∆+ δ − τ2 − s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1

(t1 − τ1 − τ2 + s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1−δ
(τ1 + τ2 − t1 − δ − s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1−∆
(τ1 + τ2 − t1 −∆− s)3C(s)ds+

∫ τ1+τ2

τ1+τ2−t1−∆−δ
(t1 +∆+ δ − τ1 − τ2 + s)3C(s)ds

]

.

(A7)

qa,i ma,i pa,i ra,i qb, j mb, j pb, j rb, j

i = 0 0 1 0 0 j = 0 −s 1 0 0
i = 1 0 1 −t1 1 j = 1 −s 1 −t1 − s 1
i = 2 0 1 δ 0 j = 2 −s 1 δ 0
i = 3 τ1 0 δ 0 j = 3 τ1 0 δ 0
i = 4 τ1 + τ2 -1 δ 0 j = 4 τ1 + τ2 + s -1 δ 0
i = 5 τ1 + τ2 -1 t1 +∆+δ -1 j = 5 τ1 + τ2 + s -1 t1 +∆+δ + s -1
i = 6 τ1 + τ2 -1 0 0 j = 6 τ1 + τ2 + s -1 0 0

TABLE I. Coefficients of Eq.(A1)
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