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Abstract

Flow is a precious mental status for achieving high sports performance. It is defined as

an emotional state with high valence and high arousal levels. However, a viable

detection system that could provide information about it in real-time is not yet

recognized. The prospective work presented here aims to the creation of an online flow

detection framework. A supervised machine learning model will be trained to predict

valence and arousal levels, both on already existing databases and freshly collected

physiological data. As final result, the definition of the minimally expensive (both in

terms of sensors and time) amount of data needed to predict a flow status will enable the

creation of a real-time detection interface of flow.

Keywords: Flow, Machine Learning, Emotion Detection, Realtime Detection,

Biosensors, Affective Computing
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1. Introduction

Flow, or the optimal experience [1], is a fundamental status for all the fields relying on

performance. However, one of the main challenges is linked to its very definition: it is a

deeply personal experience, it manifests itself in different ways for each person, and it is

easily interrupted by external interference. Therefore its objective detection and recognition

are fraught with complexities. In the classical questionnaire-based approach, tools like the

Flow State Scale [2], are submitted typically after, or right before, a possible flow situation

(e.g., a sports competition), and in studies linking physiological recordings and flow, data are

analyzed post-hoc [3,4].

Flow is considered to be connected to peak performances because both present the experience

of peak moments [5], which proved to be a condition of particular interest in sports practice.

The capability of recording flow in real-time with a more precise timeline would, as a result,

increase athletes' self-awareness and help coaches and mental trainers.

This article proposes the construction of a Machine Learning (ML) model, allowing real-time

analysis of the subject's physiological data, and providing a live indication of the flow status.

This would allow the development of an application, with the potential of becoming a reliable

instrument to boost sports performances. Flow is defined and will be detected in accordance

with the valence/arousal theory.

The chosen use case refers to athletes involved in low cardio agonistic performance (e.g.,

golf, archery, racing), as training for these sports is not primarily physical, and mental training

is particularly needed. Furthermore, the presence of a very accelerated and stressed cardiac

activity could widen interpersonal variability: this, in turn, would lead to difficulties

in the learning phases of algorithms for the classification of physiological patterns.
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2. State of the Art

Csikszentmihalyi defined Flow as a “holistic sensation that people feel when they act with

total involvement” [6] and as a state balanced between boredom and anxiety [1] (or “Beyond

boredom and anxiety”, as the book with its first description titles [6]). The first formulation of

the construct of flow puts the main focus on the possibility of reaching an intrinsic enjoyment

of the experience when the challenge of the activity meets the level of skills of the person.

Play and autotelic activities, which are perceived as intrinsically rewarding, are natural

examples, but findings in these fields suggest the possibility to shift this kind of experience to

less enjoyable tasks [6]. Variations in the quality of personal experience are tracked through

the experience sampling methods (ESM), consisting of repeated assessments of the subject’s

status and activities timed according to a signaling device. This analysis represents a reliable

methodology in different contexts outside the laboratory but can be intrusive, interrupting the

activity, or disrupting the performance [7].

Further theorizations followed observations about interpersonal differences in the experience

and in the predisposition to flow: autotelic personalities are more prone to experience flow

[1], which shows to be not just a momentary state but a trait of the person [8]. Furthermore,

flow appears to be a multidimensional experience, including, for Csikszentmihalyi [1], these

nine dimensions [2]:

● Challenge-Skill Balance

● Action-Awareness Merging

● Clear Goals

● Unambiguous Feedback

● Concentration on Task at Hand
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● Sense of Control

● Loss of Self-Consciousness Concern

● Transformation of Time

● Autotelic Experience

Major interest in flow arose in sports psychology with the change of paradigms due to the

emergence of positive psychology: the focus moved from the aim of removing negative

thoughts and anxieties to improving the physical and mental abilities of an athlete focusing on

aspects like motivation and flow [5].

To evaluate all the aspects related to the definition of flow and to create a methodology not

interrupting the performance and reliable in a sports context, Jackson et al. proposed the Flow

State Scale (FSS) [2], and the Dispositional Flow Scale (DFS) [9]. FSS focuses on a specific

performance event [2], and evaluates flow as a state, while DFS is focused on a wider

personal disposition to flow [9] and analyzes flow as a trait [8]. FSS-2 and DFS-2 were

deployed with further revisions [10] and translations in different languages are available (e.g.,

Italian [11], French [12], Spanish [13], and Japanese [14]).

These models of analysis are more ecological, they profile the subject both in state and trait

aspects and do not interrupt the performance. Despite this, they still do not manage to return a

flow value right when it is happening. Analysis of biomarkers extracted from the

psychophysiological activation of the subject is already applied to other emotive states: their

use in the detection of flow appears therefore a viable strategy.

Russell’s theory of the Circumplex Model of Affect classifies the whole spectrum of emotions

distributing them in a cartesian space created around two perpendicular axes: pleasantness and

activation, placing emotions such as excitement, relaxation, depression, and distress at the
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four extremities (e.g., excitement: high pleasantness and high activation, depression: low

pleasantness and low activation) [15]. Likewise, Lang organizes emotion around the axes of

affective valence and arousal [16] according to his Self Assessment Manikin, designed to

graphically measure the level of perceived internal valence, arousal, and dominance [17].

Flow was charted in similar bipartite models by Massimini et al. [18] and Delle Fave [19], in

a challenges and skills model, with Flow representing high challenges and high skills, and by

Berger, in a personal experience and performance model, with Flow representing high

experience and high performance [20]. Berger’s model was then implemented by Diana,

applying the theory specifically to the sports context [5].

Arousal and valence models are implemented in numerous studies aiming to classify emotions

via physiological recordings, with positive findings around the use of peripheral physiological

signals. Skin conductance and EMG proved to be reliable indicators of arousal, while ECG

components, such as HR and HRV, and respiration are good indicators for valence [20,21].

Special attention is devoted to the EEG activity: arousal is found to be influenced by slow

alpha, alpha, and theta bands activity [22], especially with negative correlations with theta,

alpha, and gamma bands. Specifically, overall arousal seems inversely related to alpha, while

central alpha correlates negatively with higher arousal [21,23]. Increasing arousal shows

positive correlations with alpha power in frontal areas and delta bands in right posterior areas

[24]. Valence influences are found in beta and gamma bands [22], with a direct correlation

with the power of theta and alpha and effects in all the frequency bands [21,23]. An increase

in positive valence is reported to correlate negatively with theta power in frontal areas, and

asymmetry in power in the lower alpha bands correlates with self-reported valence [24]. Focal
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positions in the International 10–20 system appear to be Fpz for arousal and F3 and F4 for

valence [25].

The physiology of flow is studied in correlation with EMG activations, where muscular

activation is connected to results in questionnaires on flow perception [26] and EEG power

and patterns of frequency bands. EEG data appear to be more reliable data in detecting flow

than peripheral biosignals, [27] and findings correlate flow with the beta band [26].

Corticomuscular coherence (CMC), which correlates EEG (especially beta and gamma bands)

and EMG activations, seems also a valid indicator to study flow [26]. Studies on the neural

correlates of flow showed that changes in brain activity were linked to individual flow

experiences and different flow propensities. In addition, the flow was linked positively to the

putamen and inferior frontal gyrus activity and negatively to the amygdala and medial

prefrontal cortex activity [28].

The interest that the field of computer science has begun to devote to human emotions has

given birth to new opportunities for development and overcoming problems of lack of

consistency in results when analyzing physiological data just with classical statistics [29,30].

Affective Computing is a rising domain defined by Picard as “computing that relates to, arises

from, or deliberately influences emotions” [31,32]. One of its primary goals is to use AI to

create an Affective System capable of understanding human emotion through expressions,

gestures, voice intonation, and, most importantly, biosignals [32]. Machine Learning (ML) in

particular, as a branch of Artificial Intelligence, is found to be a suitable instrument to analyze

physiological activity to both recognize specific emotions and evaluate valence and arousal

levels.
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Machine Learning is typically implemented after data are gathered from biosensors, while the

experimental subjects are presented with tasks, which elicit the emotion or specific levels

of arousal and valence. These moments are then labeled and used to populate a database,

which will train a supervised ML model, through a classification, if the needed results are

classes; through a regression, if the results will be linearly distributed [33].

Affective computer applications open also to the ability to merge different biosignals to

discriminate further multiple complex emotions. For example, in Picard et al. (2001) neutral

feeling, anger, grief, joy, reverence, hate, platonic love, and romantic love were classified with

81% of accuracy, especially thanks to features of HR, skin conductance, and respiration [34].

Arousal and valence were shown, for example, to be better discerned with merged data from

EEG and eye gaze movements, than from EEG, eye gaze, GRS, ECG, respiration pattern, or

skin temperature alone [35]. ML potentialities increase also the possibility to reach significant

results with low cost and less invasive sensors, as in Girardi et al. (2017), where EEG and

skin conductance data together show the best performance [33].

Regarding the performances of the algorithms in arousal and valence classification, literature

reports a wide utilization of Deep Neural Networks learning frameworks [36] and Support

Vector Machine (SVM) [22,27,33,35,36,37,38,39]. The use of Linear Discriminant Analysis

[20,27], Naive Bayes [23,39], Quadratic Discriminant Analysis (QDA) [27], Logistic

Regression [36], K-nearest neighbors (KNN) [36,39], Decision Tree [40], J48 [40], and

Random Forest [39] is also reported.

Few studies also analyzed arousal and valence levels in realtime, without a specific focus on

flow, for example on EEG [37] and ECG patterns [38]. Muller et al. (2015) detect different

8



emotions in developers in real-time, during their daily tasks, focusing also on flow: the

subjects’ physiological activity was recorded, and their emotions were assessed every five

minutes, through a questionnaire. However, the creation of the database was performed by

segmenting data just by task and the elaborated data were available only posthoc [40]. Rissler

et al. (2020) aim to detect, specifically, different intensities of flow (high or low), in real-time

and in the field, in a work environment, with a ML approach based on the analysis of Heart

Rate Variability (HRV) features. Also in this study, the time stream is segmented by task (e.g.,

300 seconds) and data processing is performed after the recording [39].

The aim of reporting flow while it happens may be linked to studies on interruptibility. In

Züger et al. (2017), the objective is the creation of an interface in a work environment, able to

signal to colleagues (with information from one’s computer activity), when a person is in flow

and does not want to be interrupted [41].

3. Methodology

Physiological activation results in an appropriate indicator of emotive and psychological

status, including Flow. Specifically, difficulties affected the design of experimental tests for

elicitation of Flow, which needed tailoring to the subject [27]. The possibility of mapping

Flow in a valence/arousal model as a high valence and high arousal indicator seems indeed

actable and in accordance with the literature. Fig. 1 illustrates the proposed configuration,

merging Lang’s valence and arousal formulation [16] with models including flow as Delle

Fave's, Berger's, and Diana's [18,19,5].
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It is to be noted that high arousal and high valence conditions can be related to different

positive and activating states, such as joy or excitement [16]. For example, flow and

happiness, are strongly correlated even in the first Csikszentmihalyi works [1].

Fig. 1. Flow inserted in an arousal and valence model

In his following works [6] the attention to further characteristics of the flow, such as

emotional, situational, motivational, and cognitive [22], leads to separating and distinguishing

it from other positive emotional states.

To further discriminate Flow from other states, we propose to complement the classical

affective computing arousal valence modality by assessing also the perceived level of

challenge of the task and personal skills. Among the dimensions characterizing Flow, the

challenge-skill balance is considered the more meaningful [18,23,24,25]; as in the quadrant
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described in Massimini et al. (1988) and Delle Fave et al. (2011), flow represents the high

skills and high challenge state, in opposition to anxiety, boredom, and apathy states [18,19].

Since the levels of arousal, valence, challenge, and skill are subjective assessments, we intend

to integrate, as objective dimension, the level of attention of the subject to the task.

ML results in a powerful system to perform physiological analysis, but previous studies

mostly focus on post-hoc processing and long-time frames. A ML model capable of a realtime

elaboration of valence and arousal levels, with the aim of returning an indication of the Flow

moment, is defined in this work. The proposed logic is also scalable on time, depending on

the available computing power and the need for accuracy from the physiological point of

view. A description of the experimental steps is provided hereafter.

2.1 Preliminary analysis of databases

An explorative ML approach will be conducted by exploiting multimodal databases, available

for free for scientific purposes, such as DEAP [21], MAHNOB [26], and DECAF [27], where

multiple physiological registrations are linked to valence and arousal levels of the

participants. As declared inclusion criteria, subjects were healthy, with different cultural and

educational histories, and gender-balanced [21,26,27]. The aim of this phase is the creation of

a supervised learning algorithm able to predict levels of valence and arousal from

physiological recordings. A successive feature selection will be implemented to sort the

significance of specific physiological signals and their subfeatures. The chosen databases will

be merged, creating a new balanced dataset; a selection of classification and regression

algorithms will be validated, through both 10-fold and leave-one-out cross-validations, and

tested. Different models will be additionally created in order to analyze different temporal
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spans (e.g., entire recording, 1 min, 30 sec, 10 sec), which will be considered both

independently and maintaining their sequential linearity.

2.2 Preliminary Study

A within-subjects study design will be planned, and conditions able to elicit different levels of

arousal and valence will be delineated to be presented to the participants while recording their

physiological data. The authorization of the ethics committee will be requested. Around 25/30

subjects will be enrolled (based on the numerosity of the sample of DEAP [21], MAHNOB

[26], and DECAF [27] databases), screened for the exclusion of disorders or pathologies

which could influence physiological data, as psychiatric disorders, or cardiac dysfunctions.

Inclusion criteria will follow the inclusion criteria of the selected databases: healthy subjects,

with different cultural and educational histories, and gender balanced will be enrolled.

New physiological data will be recorded: biosignals and their specific features (e.g.,

HRV detailed components) will be selected according to the findings of the preliminary

analysis. Gold standard instrumentation will be selected; the 32-channel EEG Brain Vision

actiCHamp, or similar, with 512 HZ of sampling or more will be employed for EEG

recording. ProComp Infiniti with a 256 Hz sampling rate will be employed for peripheral

signals like ECG, Skin Conductance, tip-finger Temperature, Respiration, and facial EMG (on

zygomaticus major, orbicularis oculi, and corrugator supercilii). Participants will complete

questionnaires about demographics and their personal flow characteristics will be assessed

through the Flow State Scale-2 and the Dispositional Flow Scale-2. Their valence and arousal

level will be assessed after each trial, using the Self Assessment Manikin (SAM) proposed by
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Lang [16], used in the 9-point version. SAM consists of 5 stylized mannequins creating a

5-point Likert scale, representing a growing level of valence and a growing level of arousal; a

more detailed valuation can be reached by adding points between the Manikins as in

Mehrabian et al. (1974) [28] creating a 9-point Likert scale [29]. Challenge and skill levels of

the subjects will be evaluated via three further 9-point Likert scales as in Engeser et al.

(2008): "Compared to all other activities which I partake in, this one is…" (easy/difficult), "I

think that my competence in this area is… (low/high), "For me personally, the current

demands are..." (too low/just right/too high) [25]. The attention on the task will be assessed

via the analysis of the eye-gaze movements [30–32], using eye-tracking.

Subjects will be exposed to situations that would elicit high and low combinations of valence

and arousal, as to a baseline recording, to set the “ground truth”. Specific focus will be

required in designing trials which would permit flow elicitation. Previous studies suggest, for

instance, listening to music selected by the participant [33], watching video clips [21], playing

video games [34], using social media [35], or performing mental arithmetic tasks [36]. Test

phases will be randomized to prevent order or sequence effects. The implementation of a

video game with different levels, seems a viable methodology to present the subjects with

comparable tasks, which could enhance either boredom (too easy level), anxiety (too hard

level), or a condition balanced with the subject's abilities [25,34,37]. Moreover, the choice of

a video game with multiple levels will allow a more specific alignment with the capabilities of

the individual participant [34].
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2.3 Database and Machine Learning Model Construction

Data collected in the preliminary study will populate a new database and be labeled following

the subject’s Self-Assessment Manikin (SAM) with a 9-point scale and the supposed

emotional state elicited during each experimental situation. The minimum dataset will be

selected following the literature and the results from the previous phase, to reduce

computational costs. Recordings will be divided into different time epochs, as in the entire

experimental class, 1 min, 30 sec, and 10 sec; each different time sampling will be analyzed

separately, and each time epoch will be considered both independently and maintaining their

sequence linearity.

Following the preliminary analysis results, transfer learning techniques will be applied to the

best performing algorithms: the inclusion and exclusion criteria will be the more similar

possible between the first two phases. Nevertheless, transfer learning will permit to adapt

learning model also on slightly different kinds of data. It will be applied in supervised

learning classification and regression models, along with the implementation of new training

models. Data will be validated through both 10-fold and leave-one-out cross-validations and

tested both with hold-out data and with data extracted from the database of the preliminary

phase, in line with previous research [33,38,39].

From the algorithm results, through feature analysis, the most viable biosignals and their

sub-features will be selected; particular attention would be also paid to cost-effectiveness

criteria and the accessibility and existence of wearable systems. Prediction models will be
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compared and evaluated in terms of precision, accuracy, computational costs, and time,

selecting those with the best time/performance ratios.

A further step will be the creation of a python-based application to run the best performer

algorithm in real-time while receiving the selected biosignals from the subject, divided into

the best functional predetermined epochs. Specific feedback will also signal valence and

arousal levels, especially in situations with high arousal and high valence.

4. Discussion

The expected results of this prospective can be summarized in the following points:

● development of a ML model able to predict high arousal+high valence moments in

selected public databases;

● construction of a multimodal database of physiological recording, including biosignals

components and features, related to tasks evaluated by valence and arousal;

● validation of experimental stimuli able to elicit different levels of valence and arousal;

possibility to record proxies of flow status through high valence and high arousal

tasks;

● development of a ML model able to predict different levels of valence and arousal;

● minimal and more economical valid measure to make the person, the experimenter,

and the coach aware of flow status (high valence and high arousal);

● development of a model to record flow in real-time, through the minimum time delta

needed to recognize valence and arousal level, especially high valence and high

arousal.
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5. Conclusion

A prospective approach for the construction of a ML model capable of detecting levels of

arousal and valence in real-time with a special focus on high valence and high arousal

conditions, associated with flow, is described in this work. This aim will be reached in a

4-steps design:

1) a preliminary ML analysis performed on databases of physiological activations recorded

during tasks, evaluated per valence and arousal levels;

2) specific tasks for the elicitation of different levels of arousal and valence will be designed

and tested on subjects while recording their physiological data and their reaction to the task

(on valence/arousal scales);

3) the creation of a database populated with the physiological activation recordings labeled

according to arousal and valence levels, and segmented in different time epochs;

4) a ML model able to classify different levels of arousal and valence, to find the minimal and

more economical (both in terms of sensors and time) amount of data to predict a flow status.

The creation of a system that detects the flow status from biosignals seems a reachable

objective thanks to ML. This instrument would help to create new instruments to assess flow

in an accurate and reliable way, which is reported to be “one of the greatest challenges in flow

research” [40,41]. Moreover, while in much research the state of flow is considered elusive

and infrequent [42], studies on elite-level athletes describe flow as a more controllable event,
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both in duration and quantity [41]. In this view, a system that detects flow can be used to

report when athletes are not in flow, to enable them to implement proper strategies to reach it.

Besides, being aware of the presence of flow may allow the use of specific techniques for

prolonging it [43]. Finally, having the knowledge of the situations, antecedents, and effects

linked to a specific flow moment would facilitate, in a second moment, the replication of the

same conditions, having intuitions about causal dynamics, allowing to better focus their

strategies, and to evaluate the utilized treatments. We also hypothesize that the increase in

one’s level of introspection and abilities to reach the flow will rise the possibility of

improving athletes' performance and their perceived level of well-being. Few or no research

deeply investigates the relationship between awareness of being in flow and its improvement:

we hope that our system would allow for further investigations.

Further development will follow the final findings: a use case will be defined and tested, both

in a laboratory and in a real-life setting, to evaluate the potential of obtained algorithms and to

construct a feedback application, able to interact with wearable sensors. This final device may

also be utilized in different domains, such as work performance or different kinds of sports:

arrangements will be needed to implement such a device also in sports which stimulate high

cardiac and physiological activity.
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