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Abstract 

Metal recovery from wastes is essential for a circular economy and minimising present-day 

society environmental footprint. In this study, we combined electrodialysis with bioleaching 

of fly ashes for enhanced metal recovery from municipal solid waste incineration residues. 

Results showed that the use of low-level direct current with acidophilic bacteria enhanced 

metal recovery in the catholyte when compared to the abiotic experiment supplied with direct 

current and the bioleaching experiment without direct current. The use of electrodialysis with 

bioleaching showed increased performance on the removal and recovery of metals in the 
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catholyte such as Al, Cd, Co, Li, Pb, and Zn. While Co and Ni were selectively mobilised by 

bioleaching, Cu, Cr, Cd and Li showed highly elevated concentrations by combining both 

techniques. These results are proof of concept of combined methods will allow optimising the 

process, especially varying the liquid to solid ratio, mixing, duration of the experiments, and 

pH control in the anolyte. 

 

Keywords: Resource recovery; Circular Economy; Waste Management; Biotechnology; 

Combined technologies 

 

Highlights 

• Proof of concept that bioleaching and electrodialysis can be combined 

• Electrodialysis enhanced bioleaching metal recovery from MSWI fly ashes 

• Substantial amounts of metals were retained in the ion exchange membrane 

 

1. Introduction 

Incineration is one of the prevailing solutions adopted globally for the management of 

municipal solid waste [1]. Municipal solid waste incineration (MSWI) has the advantage of 

recovering energy and reducing waste volume. Nonetheless, it destroys technical value in 

wastes that is no longer available to the circular economy [2], for example, considering the 

butterfly diagram, paper can no longer be re-pulped to produce recycled paper remaining in 

the technosphere, and it can no longer be composted, returning organic matter to the 

biosphere [3]. Fly ash (FA) and bottom ash (BA) of MSWI are low concentration streams of 

metals classed as critical raw materials (both of high economic importance for the European 

Union and vulnerable to supply disruption)[4] and essential to the development of new and 

green technologies, with estimated annual flows of tens of kilograms and a total metal 
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content comparable to low-grade active mines [5]. Circular economy and resource recovery 

must ensure the return of materials and elements from anthropogenic use to natural reserves 

[6]. There is a pressing need for these critical and scarce metals remaining in FA and BA to 

be extracted and recovered using sustainable technologies [7]. 

Bioleaching is a reliable hydrometallurgical technology that reached a technology 

readiness levels (TRL) as high as to be commercially used for the processing of low-grade 

ores (e.g. copper sulphide ores) [8, 9].  It uses the metabolic reactions of certain 

microorganisms to solubilise metals, mainly through the production of acidic substances [10]. 

Acidophile bacteria reduce sulphur species (S8, S2O32-, H2S, or polysulphides) to sulphuric 

acid, and oxidise ferrous (Fe2+) to ferric iron (Fe3+) [11]. Both Fe3+ and H+ (from H2SO4) 

solubilise the metals from secondary wastes through contact and non-contact mechanisms 

(e.g. thiosulphate pathway, polysulphide pathway) [11]. At bench scale, it has been used 

successfully for both municipal solid waste incineration bottom ashes (BA) and fly ashes 

(FA) [12], but also other alkaline wastes such as steel slag [10]. In MSWI residue testing at 

the bench scale, metal bioleaching can be higher than 90% for Mg and Zn, > 85% for Al and 

Mn, and between 65 to 50 % for Cr, Ga, Ce, Nd, Pb, and Co [12]. Other studies show 90% 

removal of Zn, Cu, and only 10% removal of from FA [13]. 

Electrodialytic removal of metals was tested on different types of FA from MSWI 

[14, 15] at bench scale, but further research is needed to reach higher TRL. The main 

transport mechanisms involved in electrodialytic and electrokinetic remediation are 

electromigration, electrophoresis, and electroosmosis [16]. Water electrolysis at the 

electrodes generates H+ in the anode, and subsequently, a flowing acid front (controlled by 

cells geometry) that is responsible for metal solubilisation and electromigration of the metal 

cations. Metal removals from FA by electrodialytic remediation were below 5% for most 

metals, while up to 61% Cd and 53% Zn were removed [14].   
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 Bioleaching and electrodialysis combined (or in sequence) were recently used on 

tungsten mine wastes [17], zinc remediation of soil contaminated by tannery effluent [18], 

and phosphorus recovery from the bioleachate of sewage sludge ash [19], but never to 

recover metals from MSWI fly ashes. The application of direct current could avoid or 

minimise the need to add acids during bioleaching, due to the generation of H+ in the anode. 

However, previous studies with tungsten mine wastes and pure bacterial cultures in a single 

chamber electrochemical cell showed that direct current (up to 1.5 V) inhibited bacterial 

growth in Acidithiobacillus spp., resulting in a detrimental effect on metal extraction 

efficiency [17]. Further research is needed to assess how both techniques can be integrated. 

Chronoamperometry is an electrochemical technique that enables to measure of the 

current flowing over time in a cell at a given cell voltage. In the case of electrolytic cells, like 

MRC, the voltage is applied by an external source. The current is related to the charge, i.e. the 

number of electrons, exchanged between the electrodes through the external circuit over time. 

According to the Faraday law of the electrolysis, the amount of material transformed by the an 

electrochemical reaction is directly proportional to the charge transferred between the 

electrodes. The relation between charge and moles of reactants depends on the cell reaction 

stoichiometry. Therefore, the current is an indication of the cell electrochemical reaction rate. 

Integration of the current over time provides the total charge and, consequently, the total 

amount of material that has reacted by the electrochemical path. In an MRC, different chemical, 

biochemical, and bioelectrochemical reactions take place. Therefore, chronoamperometry 

allows to evaluate the contribution of the bioelectrochemical process over the whole MRC 

processes. Specifically, it can be used to measure the yield of electrochemical metal recovery.  

Chronoamperometry, a fundamental technique in electrochemistry, was successfully 

applied on conducting polymers, ion-selective electrodes, and reverse osmosis [20], and is 

used to demonstrate the utility of the chronoamperometric response during the application 
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and pause times of the external electric potential in determining transport parameters of 

electrodialytic systems. On the other hand, when the cell voltage is imposed to a zero value, 

the chronoamperometric response allows measures of the short circuit current, which informs 

in conventional electrodialysis, as well as in reverse electrodialysis for electric energy 

generation. Chronoamperometry results can thus provide a ground basis on electrochemically 

assisted recovery of metals from incineration FA. 

This work aims to investigate if bioleaching can be coupled with electrodialytic 

remediation (ED) to enhance metal recovery from FA of MSWI, and simultaneously to 

demonstrate proof of concept of a microbial recovery cell (MRC). Bioleaching is deployed 

with a mixed acidophilic bacterial culture as reported elsewhere [9, 16], and we hypothesise 

that it can be used jointly with ED to recover metals from low-grade residues of municipal 

solid waste incineration. Furthermore, we conducted a detailed study of the 

chronoamperometric response of MRC systems under selected bioleaching conditions.  

2. Materials and Methods 

2.1. Chemicals 

Sulphuric and nitric acid (95–97%) were trace metal grade (CARLO ERBA 

Reagents). Following the previous experiences on bioleaching of MSWI residues [12, 13], 

the modified 9K medium was prepared with following chemicals (analytical grade, MERCK) 

according to Silverman and Lundgren, 1957: (NH4)2SO4 3.0 g L-1, K2HPO4 0.5 g L-1, 

MgSO4�7H2O 0.5 g L-1, KCl 0.1 g L-1, Ca(NO3)2 0.01 g L-1, FeSO4�7H2O 22.5 g L-1, and 10.0 

g L-1 S0. The water was deionised with a Milli-Q purifier system (Millipore Corp., Bedford, 

MA, USA). The catholyte used in the experiments was a 0.01 M NaCl (MERCK pro 

analysis) solution. 

 

2.2. Fly ash characterisation 
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The studied fly ash (FA) comes from an Italian Waste-to-Energy plant equipped with 

a grate-furnace system, which burns 90% household waste and 10% special waste (including 

metallurgical slag, automotive shredder residue, and medical wastes). According to the 

company report, the municipal waste processing capacity of the selected incinerator is 

1.4×105 tonnes per year, while the total FA produced is around 3×103 t/a. A representative 

amount of 20 kg of primary sample was taken from a big bag of the dry scrubber after 

blending a large number of increments, as in Funari et al. [5]. The dry scrubber is located 

after the combustion chamber within the air pollution control system (APC) and followed by 

further chemical filters as to allow a multi-step cleaning of the flue gas and the separate 

recovery of other solid residues not considered in this study. The collected sample, hereafter 

called SFA, represents the least cleaned material, so high metal loaded, recovered into the big 

bag during regular operation of the combustor. The SFA is a fine-grained and dusty material 

with colour and grain-size rather homogeneous upon visual inspection; nonetheless, further 

material pre-treatment included drying at 50 °C for 48 h and thorough milling in an agate 

vibratory disk mill. The bulk chemical composition of the starting material after total 

digestion is given in Table 1. The pH of the starting material in normal conditions equals to 

12.  

 

2.3. Microbial culture 

In the bioleaching experiments, we employed a mixed culture of acidophilic bacteria 

isolated from a natural area [13], primarily containing sulphur and iron oxidising bacteria. 

Such microorganisms community was already tested in bioleaching of MSWI residues, and 

the overall efficacy resulted comparatively similar of (abiotic) sulfuric acid leaching [12] and 

better than bioleaching using alkaline strains [21]. The used culture resulted from adaptation 

to MSWI residues [10, 12, 13] and conditioning in 250 mL Erlenmeyer flasks containing 
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90% (v/v) modified 9 K medium on a shaker incubator (Infors HT Multitron Standard). 

Thereby, culture is incubated at 150 rpm and 30 °C and renewed to enhance the cell activity 

by regularly inoculating 10% (v/v) of former cultivations and 90% (v/v) of the modified 9 K 

medium. The pH was maintained below 2.5 using concentrated H2SO4, as required, since 

acidophilic bacteria like At. ferrooxidans and At. thiooxidans thrive at this pH [22]. Sulphur 

and iron cycling are important parameters during bioleaching, closely associated with the 

planktonic microbial community structure and its physiological and biochemical diversity 

[23]. To sustain an active microbial population of iron oxidisers, 1.0 g/L Fe3+ is supplied as 

FeSO4·7H2O, while elemental sulphur (10.0 g/L) fed sulphur-oxidising bacteria to achieve 

sulphuric acid production and further promote leaching via ferrous iron oxidation [24]: 

4Fe2+ + 4H+ + O2  ® 4Fe3+ + 2H2O (iron-oxidizing bacteria participate) [eq. 1] 

2S0 + 3O2 + 2H2O ® 2SO42-+ 4H+ (sulphur-oxidizing bacteria participate) [eq. 2] 

 

2.4 Experimental setup 

We performed three experiments in a two-compartment electrodialytic cell with a 

total volume of 120 mL using a cation exchange membrane (CMI-7000 S; Membranes 

International, Inc.) as a separator. Each compartment measures 5 cm ´ 5 cm ´ 5 cm with an 

internal volume of 60 mL (Figure 1). The experiments were conducted at room temperature 

for 96 h, with constant stirring in an orbital shaker at 150 rpm, to test the effect of low-level 

direct current in abiotic and biotic conditions, being the latter supplied in the anode 

compartment with 10% v/v of bacterial inoculum (Table 2). The metal removal performance 

of bioleaching in presence/absence of direct current was also tested in control experiments. In 

the electrodialytic (ED) setups, a low constant voltage (1.0 V; 0.20 V cm-1) was supplied by a 

DC power supply (KERT KAT 10VD). The FA sample was placed in the anode compartment 



8 

 

in a liquid/solid ratio of 10:1, with modified 9K medium (5 g of fly ash, 5 mL of inoculum, 

45 mL of modified 9K medium, and 0.5 mL concentrated H2SO4) [12]. The catholyte used 

was 0.01 M NaCl, and the electrodes were graphite rods (Alfa Aesar), with 10 cm length and 

6 mm diameter. Samples for analysis were collected at 2, 4, 6, 24, 48, 72, and 96 h.  Samples 

were collected from both the anode and the cathode compartment. Samples from the anode 

compartment are a slurry, as they contain suspended particles of the fly ash, while samples 

from the catholyte are aqueous solutions. Both samples were filtered through a 0.45 µm filter, 

and acidified with high purity HNO3 before ICP analysis. In the same time points, the pH in 

the anolyte and the catholyte was measured at each sampling using a pH meter Eutech 

Instruments. 

 

2.5. Chronoamperometry testing for optimisation in microbial fuel cells 

In the experimental cell monitored through chronoamperometry testing, the same 

cation-exchange membrane (CMI-7000 S; Membranes International, Inc.) was placed 

between two compartments, which were also identical to the previous experiments. As such, 

we studied both biotic and abiotic leaching, where the latter can be considered as control 

experiment. Solution in cell is under natural convection conditions, since under 

chronoamperometry testing stirring with an orbital shaker was unfeasible. Both 

compartments were pre-acidified to a setpoint pH of 3 with conc. H2SO4 and HCl for anolyte 

and catholyte, respectively. The acid pre-treatment of MSWI fly ash is necessary because 

these residues have high starting pH (ca. 13) and buffering capacity that would hinder both 

acidophilic bacteria growth and removal of metals. In normal conditions, moreover, heavy 

metals should exist in oxidizable and reducible states. Contrarily to the experiments without 

chronoamperometry monitoring, the use of mineral acid in the monitored experiments can 

offset these limiting factors including the lack of appropriate stirring which, in turn, impedes 
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good aeration in the bioleaching system. The measurements were carried out at 25 °C using a 

Biologic VSP multichannel potentiostat/galvanostat. In this case, the electric current density 

through the system is measured at a selected cell voltage. 

 Chronoamperometry allowed the measurement of the current under an applied cell 

voltage. By this approach, the oxidative processes are forced at the anolyte compartment 

(positive terminal) and reduction takes places at catholyte (negative terminal). From the 

integral of the current, it is possible to calculate the charge (i.e., number of electrons) that 

have passed throughout the circuit.  

Two channels of the potentiostat/galvanostat were used. One channel was used to 

drive the electrochemical reactions by a 2-electrode setup. Specifically, a difference of 

potentials was applied between the graphite rod in contact with the anolyte (that acted as the 

working electrode) and the rod immersed in the catholyte. The latter was connected to the 

counter electrode, a reference electrode plugs of the instrument. In parallel, a second channel 

of the instrument was used to monitor the potential of each electrode over time vs an Ag / 

AgCl reference electrode by a 3-electrode setup. For this measure, the anolyte rod was 

connected to the working electrode plug, the catholyte rod was connected to the counter 

electrode plug, the Ag/AgCl electrode was connected to the reference. 

 

2.6 Analysis 

A Perkin Elmer ELAN DRC-e Inductively coupled plasma mass spectrometer (ICP-

MS) was used for the determination of the total elemental composition of SFA solid sample 

and process solutions. The solid SFA was analysed using as a method of total digestion for 

MSWI residues, as in [5], the sodium peroxide sintering technique described elsewhere [25]. 

Blank solutions and reference materials were also treated similarly before final measurements 

with ICP-MS to assess accuracy and instrument drift. The precision, based on replicated 
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analyses of samples and standards, is estimated as better than 10% for all elements well 

above the detection limit. Small aliquots of process solutions, resulted from filtration at 0.45 

µm paper filter under vacuum aspiration and pre-acidification with concentrated HNO3, were 

dissolved entirely with aqua regia in closed Falcon 50 mL conical centrifuge tubes until the 

solution was clear. Many blanks and reference samples with known elemental composition 

were quantified for quality control. For the process solution, precision is estimated better than 

10% for all elements, but Al, Fe, and Pb. Determination of Ca and K experienced a 

significantly lower accuracy compared to other analytes. Element quantification for Al, Ca, 

Fe, Mg, K, Na, Mn, Zn, Cu, Pb, As, Ba, Cd, Cr, Co, Li, Mo, Ni, Sr, Ti, and V employed 

calibration curves prepared with diluted standard solutions from ICP multielement standard 

solution XXI (Merckgroup). Also, we probed the elemental impurity of the reagents 

employed throughout the experiments via ICP-MS measurements for accurate assessment of 

the leaching yields. 

 

2.7 Statistical analysis 

Statistical analysis to compare the experimental conditions tested was carried out in RStudio 

[26] perform ANOVA and Tukey test. A two-way repeated measures ANOVA considering 

the totality of data and detailing for experimental conditions (electrodialytic process, 

bioleaching, bioleaching and electrodialysis) and cell compartments (anolyte, anode, 

membrane, cathode, catholyte) was performed. 
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3. Results and Discussion 

3.1 pH variation 

 The pH values (Fig. 2) measured show that the production of H+ in the anode due to 

the oxidation of water (eq. 3) is buffered by the calcium oxides and calcium aluminium 

silicates present in the fly ash, whose dissolution increases alkalinity (eq. 4-6) [27]. The 

values measured are similar in the anolyte and the catholyte in all the experimental conditions 

(pH ~ 5). Only the catholyte in the control electrodialytic experiment (ED) showed values up 

to 8 in the first ten hours, and then decrease until stabilising at pH 5. 

2H2O (l) ⟶ O2 (g) + 4H+(aq) + 4e−        [eq. 3] 

CaΟ(s) +Η2Ο (l) ⇆	Ca(OH)2 (aq)       [eq. 4] 

Ca(OH)2 ⇆ Ca2+(aq)+ 2OH- (aq)      [eq. 5] 

CaAl2Si2O8(s) +4H2O(l)  ⇆ 2SiO2 + Ca2+(aq)+ 2Al3+(aq)+ 8OH-(aq) [eq. 6] 

 The pH values show that the low voltage applied in the experiments does not generate 

enough H+ to provide optimal conditions to the acidophilic bacteria. Both iron and sulphur-

oxidising bacteria can grow at pH 1.0-2.0, with a low pH required for the iron cycle [28]. 

Lower pH values would also increase the dissolution of metals [29]. Further optimisation of 

the combination of the two techniques either will demand acid addition to ensure optimal pH 

values or higher applied voltages. However, the latest can be damaging for the bacteria as the 

application of electric current disrupts bacterial membrane by changing the orientation of 

membrane lipids [30]. There is the likelihood that bioleaching bacteria were not able to thrive 

under these pH conditions, so although the measured concentrations in both catholyte and 

anolyte allow to follow the variation in metal mobility and ionic flows throughout the cell 

compartments, useful information on actual electromigration might derive from the 

monitored experiments where the pH setpoint was manually adjusted. Noteworthy, the ED 
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experiment in the catholyte (Fig. 2b) showed a sharp increase of pH in the first seven hours, 

likely due to buffering from migration of readily soluble metals such as those forming alkali 

salts. After 8 hours the pH curve started to slowly even out due to the production of H+ as a 

consequence of the flowing currents applied. Furthermore, the pH level of the microbial 

leaching cell without energy supply (Exp. 2, Fig. 2b) decreased after fifty hours onwards. 

This phenomenon might relate to bioproduction of sulphuric acid by S-oxidizers bacteria that 

spontaneously, i.e., without external supply of energy, forced reduction at the catholyte under 

the selected experimental configuration. 

 In the experiments powered by the microbial fuel cell in chronoamperometry testing 

mode, similar pH values were recorded in the anode (average pH 2.6) and the cathode 

(average pH 2.7) at the end of the experiments due to acid addition in both anode and cathode 

compartments, showing pH conditions favourable to the thriving of acidophilic bacteria, and 

consequently metal recovery by bioleaching. From the setpoint pH of 3, the pH slightly 

decreased in both anodic and cathodic compartments likely due to the activity of acidophilic 

bacteria and stabilized at the end of the experiment providing clues of electrochemical 

reversibility. 

 

3.2 Metal concentrations in the anolyte 

 Most metal concentrations in the anode compartment show the general trend of 

decreasing exponentially over time when combining bioleaching with electrodialysis [Exp. 3, 

Fig. 3 a) and b)]. Metals such as Co, Zn, Li, Pb, and Ni, present a slightly different behaviour 

with slower decreases over time [Fig. 3 c) and d)]. Cadmium (Cd) is the exception and tends 

to increase over time, accumulating in the anolyte when using electrodialysis and bioleaching 

simultaneously. The highest metal concentrations were always found when combining 

electrodialysis and bioleaching (Exp. 3), showing that more metals were solubilised and 
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mobilised using both techniques. Table 3 shows the concentrations measured in the anolyte 

two hours after the start of the experiments and at the end, as well as the percentage variation 

observed. In the majority of cases, there is a decrease in the metal concentration, except for 

Co in the bioleaching experiment, Sr in the electrodialytic and bioleaching controls, and Cd 

when combining ED and bioleaching. In the MFC powered experiment, all the metals 

increased their concentration due to the initial acid addition. Here the element mobility 

increases or remains constant with time, contrarily to the previous experiments where they 

show an overall decrease after 96 hours. Even if similar experiments on bioelectrochemical 

systems had a longer timeframe [9, 24], long-term behaviour and eventual enhancement of 

leaching concentrations with time cannot be assessed, as we set an experiment duration of 

four days to evaluate the immediate effect of energy supply. 

 

3.3 Metal concentrations in the catholyte 

 Metal concentrations in the cathode compartment are higher when combining the 

electrodialytic treatment (ED) with bioleaching (Exp. 3), and for Cu, Zn, Li, Co, Pb, and Ni, 

there is a sharp increase in the concentration in the last 24 h (Fig. 4). The highest 

concentrations measured in the catholyte correspond to Zn (28.4 mg L-1), Cd (22.6 mg L-1), 

Al (21 mg L-1), Pb, and Sr (10.2 mg L-1) when combining electrodialysis with bioleaching 

(Exp. 3). The metal concentrations are statistically significant higher when combining both 

techniques. The metals solubilised by bioleaching are transported to the cathode compartment 

by electromigration in a synergistic effect, which explains the higher concentrations, when 

compared with the control experiments (Exp. 1 and 2). This synergistic effect can be 

explained by increased solubilisation of metals and high transport rates due to 

electromigration promoted by the low level direct current [18]. Other studies reported an 
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increase in activity and growth rate of iron oxidizing bacteria, which rapidly oxidized more 

Fe2+ to Fe3+, resulting in a faster Cu leaching from e-wastes [31]. 

 Previous studies with electrodialytic treatment of ashes and air pollution control 

residues had longer durations (14 days) [14, 32], and further extended testing would allow to 

assess the increase in metal recovery in the cathode compartment. Another critical factor to 

consider for optimising the combination of both techniques is pH control, so the speciation of 

metals [19] for further recovery can be maximised, to avoid uncontrolled precipitation. 

 

3.4 Statistical analysis 

 A two way repeated measures ANOVA considered the experimental setup and cell 

compartment concentrations as factors for the totality of data. The ANOVA determined that 

there was a statistically significant difference (p < 0.05) between experimental conditions for 

all the parameters considered (Table 3). Also, there was a statistically significant difference 

between the concentrations found in each cell compartment for all the parameters considered, 

except for Sr. The interaction effect – whether there is more impact on metal concentration 

from experimental setup and cell compartment than could be explained by the two influences 

alone – was also significant for all parameters, but the values of η2 are in most cases below 

0.2, meaning that the interaction effect between the two factors explains little of the 

determinants variance. For aluminium, the interaction effect is the most relevant factor, 

explaining 44% of the variance. In general, the experimental setup is the most critical factor, 

with large η2 (> 0.14 according to Cohen’s guidelines). This means that most of the variance 

is due to the different experimental setups. 

Tukey tests show that the combination of bioleaching and electrodialysis is 

statistically significant from both bioleaching and electrodialysis separately for all the metals 

considered. The metal concentrations found in the membranes were also significantly 
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different from the ones in the cathode and the anode compartment for the majority of metals. 

Only Cr and Sr amounts were just statistically different between the membrane and the 

cathode compartment. 

 

3.5 Chronoamperometry 

Two different cell voltages of 0.5 V and 1.0 V were applied between anolyte and 

catholyte, the oxidative processes are forced at the anolyte and reduction takes places at 

catholyte. In these experiments,  the pH values slightly decreased from the setpoint (3 pH), in 

both anode (2.6 pH in 1.0 V experiment) and cathode (2.7 pH in 1.0 V experiment) 

compartments likely due to bacteria activity, and is nearly stabilized at the end of the 

experiment providing clues of electrochemical reversibility. This is consistent with other 

studies which concluded that dissolved ions are continuously being removed during 

electrodialytic treatments, so no equilibrium is obtained between ash and solution [29]. Under 

the application of 0.5 V over 86400 seconds only 3.566 Coulombs were measured. By 

applying a cell voltage equal to 1.0 V over 345600 seconds, the charge is 110.529 Coulomb 

(Fig. 5). According to the Faraday law, this charge corresponds to 1.145 ´ 10-3 mol of 

electrons. Assuming that, at the average, 2 electrons are implied for the transformation of 1 

mol of inorganic compounds, this value results in the electrochemical conversion of 0.72 ´ 

10-3 mol of these compounds. In turn, this latter value can be taken as the total amount of 

metal cations that are released in solution. With further assumption, we do not take into 

account electrolysis of electrolytic components in the system since, like oxidation of oxygen 

from water, can be ruled out at electrode potentials more positive than 0.0±0.2 V vs ref.l in 

the anolyte (Fig. 5), and we hypothesized that the major cations in Table 5 (in decreasing 

order of concentration in solution: Al, Ca, Zn, Ti, Mn, Cu, Cr, Sr, and Pb) are flowing in the 
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circuit and primarily load the process solution. Using their relative atomic masses and the 

measured concentrations by ICP-MS at the end of the experiment, around 0.06 moles can be 

calculated as the total moles of metal species that passed through the system (to the catholyte 

or retained onto the membrane) under the selected conditions. Therefore, the moles of 

electrochemically converted species represent around less than 1.3% of inorganic compounds 

virtually mobilised. This small electrochemical contribution is likely consistent to the slight 

solubility enhancement that can be seen from Fig. 3 and Fig. 4 for the “ED and bioleaching” 

trends. Although the electrochemical contribution is nearly negligible for the purpose of 

metal recovery under the imposed experimental configurations, the combined process of ED 

plus bioleaching for the treatment of FA demonstrated good promises for optimization 

because the active surface of graphite electrodes can be increased easily using bigger rods or 

electrodic nets commercially available.  

From another point of view, around 300 grams per litre of leachate is the weight of 

electrochemically converted inorganic compounds. This figure, in turn, stands for the total 

mass of metals that are potentially recoverable from one litre of process solution (leachate) 

under the experimental conditions. 

 

3.5 Metals distribution 

 A relevant fraction of the metals is accumulating in the cation exchange membrane 

(Fig. 6). Membranes are used in electrodialytic remediation to minimise energy for the 

transport of highly mobile ions (e.g. H+ or OH−) instead of the target species, but also to 

prevent the return of the mobilized contaminants to the compartment where the solid matrix 

is [33]. In the electrodialytic control experiment, between 6-65% of the metals are 

concentrated in the cation exchange membrane. Other matrices such as LiCoO2 powder from 

used bateries also had limited recovery due to accumulation in the cation exchange 
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membrane [34]. This means that other types of membranes or reactors maybe be more 

adequate for metal recovery using the combined technologies. Only 6% of Li was in the 

membrane, followed by 9% of Cd, Co and Zn, 13% of Sr, 15% of Cu, 17% of Ni, 18% of Al, 

46% of Pb, and 65% of Cr. This is directly related with the metals atomic radius, as both Pb 

and Cr have the highest atomic radius and are retained more easily in the pores of the 

membrane. The bioleaching control experiment showed lower metal amounts in the 

membrane (4-24%), as the absence of the low-level direct current did not compel 

electromigration of metals to the cathode. While combining both technologies, the 

percentages of metals retained in the membrane are similar, varying between 31 % and 40 %.     

 More metals are also deposited in the cathode when using both electrodialysis and 

bioleaching (31-55%), compared to electrodialysis (average of 13%), and bioleaching 

(average of 6%). The bioleaching experiment acts as a control showing that cations that cross 

the membrane can also adhere to the graphite electrode. Graphite is known to be a good 

support material for metals because of its inertness, mainly through metal-carbon adsorption 

bonds [35].  The combination of both technologies appears to favour electrodeposition in the 

cathode when comparing them individually. It is also evident that lower amounts of metals 

(0.4-40%) can be found in the anolyte when using electrodialysis (13-87%) and bioleaching 

(5-67%). This is consistent with other studies, which concluded that dissolved ions are 

continuously being removed during the electrodialytic treatments so no equilibrium is 

obtained between ash and solution, with the continuous removal enhancing dissolution 

processes [36]. 



18 

 

4. Conclusions 

 Fly ashes from municipal solid waste incineration are complex matrices and can be 

sources of critical raw materials in the circular economy, and we need novel technologies that 

allow resource recovery. This study constitutes the first proof of concept that bioleaching can 

be enhanced when combined with electrodialytic remediation for metal recovery from fly 

ashes. When associating both methods, higher mobilisation of metals was observed, with 

higher metal concentrations in both anode and cathode compartments, in particular for Cu 

and Cr. We also observed substantial metal accumulation in the cation exchange membrane, 

which highlights the need for further developments on membranes or other types of reactors 

that can allow better separation of the elements. Further optimisation is still needed in 

particular regarding pH in the anode to ensure better conditions for bacteria survival, bacteria 

adaptation to alkaline wastes, liquid to solid ratio, mixing, and duration of the experiments. 

Further testing with other ashes (or alkaline wastes) and consortia would consolidate these 

results.  
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Figure 1 – Diagram of the experimental setup used based on the two-compartment 

setup developed and patented at DTU (PCT/EP2014/068956) [13]. In the bioleaching 

experiment, no direct current was applied. The cell stood in an orbital shaker for the 

duration of the experiments (150 rpm).  

Figure 2 – pH variation in the a) anolyte and b) catholyte during the experiments. 

Figure 3 – Metal concentration measured in the anolyte during the experiments – a) Cr; 

b) Cu; c) Zn, d) Li, e) Co, f) Pb, g) Ni and h) Cd (logarithmic scale). 

Figure 4 – Metal concentration measured in the catholyte during the experiments – a) 

Cr; b) Cu; c) Zn, d) Li, e) Co, f) Pb, g) Ni and h) Cd (logarithmic scale). 

Figure 5 – Chronoamperometry of the experiment combining electrodialytic treatment 

(ED) with bioleaching. Potential step (a) obtained by setting a cell voltage of 1 V 

between anolyte and catholyte and simultaneously reading the value of the electrode 

potentials (b). Zooming of the first 2000 s window (c) reveals how the circuit is forced 

in the opposite direction to the current flow that is spontaneously generated by the cell. 

Figure 6 – Metal percentages in the catholyte, anolyte, cathode, anode, and cation 

exchange membrane in each experiment. 
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Fig. 3 
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Fig. 4 
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Fig. 6 
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Table 1. Chemical composition of the starting material determined by inductively 

coupled plasma mass spectrometry after total digestion of SFA solid sample. 

Table 2. Experimental conditions tested. 

Table 3. Metal concentration in the anolyte (µg L-1) at t = 2 h and =96 h and percentage 

variation between the two calculated as 
!!"!"#
!!

× 100, where C2 and C96 are the 

concentrations at those times. 

Table 4. Results of the two-way repeated measures ANOVA considering the totality of 

data and detailing for experimental conditions (electrodialytic process, bioleaching, 

bioleaching and electrodialysis) and cell compartments (anolyte, anode, membrane, 

cathode, catholyte). Values marked in bold are statistically significant. 

Table 5. Measured concentration (mg kg-1 or ppm) in catholyte, anolyte, corresponding 

electrodes, and membrane of the ED+Bioleaching experiment under controlled 

chronoamperometry mode. Total moles for each element according the mass balance of 

the experiment and relative atomic masses are also reported. 
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Table 1 

Element Unit Concentration 
Ca g/100 g 38 

Si " 30 

Al " 11 

K " 6.2 

P " 3.5 

Mg " 3.2 

Ti " 2.5 

Fe " 2.4 

Zn " 1.2 

Pb mg/kg 3586 

Cr " 941 

Cu " 910 

Ba " 852 

Sn " 665 

Mn " 605 

Sr " 463 

Cd " 107 

Rb " 106 

Ni " 76 

Zr " 66 

Li " 23 

As " 21 

Ce " 21 

Co " 21 

V " 20 

Mo " 18 

La " 12 

Se " 11 

Nb " 11 

Y " 9.9 

Cs " 4.8 

Sc " 4.4 

Th " 2.8 

U " 1.0 
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Table 2 

Experiment Technology Catholyte Anolyte 
1 Electrodialysis 0.01 m NaCl 5 g fly ash, 50 mL modified 9K 

medium, 0.5 mL concentrated H2SO4 
2 Bioleaching 0.01 m NaCl 5 g fly ash, 5 mL bacteria inoculum 

and 45 mL modified 9K medium, 0.5 
mL concentrated H2SO4 

3 Electrodialysis and 
bioleaching 

0.01 m NaCl 5 g fly ash, 5 mL bacteria inoculum 
and 45 mL modified 9K medium, 0.5 
mL concentrated H2SO4 
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Table 3 

 1. ED 2. Bioleaching 3. ED and Bioleaching 
 t= 2 h t = 96 h % variation t= 2 h t = 96 h % variation t= 2 h t = 96 h % variation 

Al 280000 77300 -72 238000 68800 -71 1400000 240000 -83 
Cd 7620 3060 -60 8260 2390 -71 16200 91400 464 
Co 435 353 -19 461 507 10 1190 641 -46 
Cr 3080 26 -99 2240 54 -98 19900 177 -99 
Cu 13500 1130 -92 15500 162 -99 50400 1390 -97 
Li 574 523 -9 654 609 -7 1370 943 -31 
Ni 1000 860 -14 998 987 -1 2410 1540 -36 
Pb 2840 2090 -26 4390 2450 -44 11200 4940 -56 
Sr 2100 3950 88 2420 6090 152 7380 6340 -14 
Zn 487000 278000 -43 537000 261000 -51 1130000 520000 -54 
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Table 4 

 Experimental setup Cell compartment Interaction effect 

Al F(1, 3) = 20.856,  
h2 = 0.26, p < 0.001 

F(1, 2) = 9.656,  
h2 = 0.09, p < 0.001 

F(1, 5) = 19.598,  
h2 = 0.44, p < 0.001 

Cd F(1, 3) = 5.782,  
h2 = 0.17, p = 0.002 

F(1, 2) = 4.438,  
h2 = 0.09, p =0.01 

F(1, 5) = 3.697,  
h2 = 0.26, p = 0.006 

Co F(1, 3) = 3.984,  
h2 = 0.18, p = 0.01 

F(1, 2) = 3.491,  
h2 = 0.08, p =0.04 

F(1, 5) = 2.848,  
h2 = 0.17, p = 0.02 

Cr F(1, 3) = 4.857,  
h2 = 0.17, p = 0.005 

F(1, 2) = 3.805,  
h2 = 0.07, p =0.03 

F(1, 5) = 4.238,  
h2 = 0.22, p = 0.003 

Cu F(1, 3) = 3.545,  
h2 = 0.11, p = 0.02 

F(1, 2) = 4.925,  
h2 = 0.10, p =0.01 

F(1, 5) = 4.261,  
h2 = 0.23, p = 0.002 

Li F(1, 3) = 4.045,  
h2 = 0.13, p = 0.01 

F(1, 2) = 3.648,  
h2 = 0.08, p =0.03 

F(1, 5) = 2.983,  
h2 = 0.17, p = 0.02 

Ni F(1, 3) = 3.893,  
h2 = 0.13, p = 0.01 

F(1, 2) = 3.331,  
h2 = 0.08, p =0.04 

F(1, 5) = 2.699,  
h2 = 0.16, p = 0.03 

Pb F(1, 3) = 4.890,  
h2 = 0.13, p = 0.005 

F(1, 2) = 6.869,  
h2 = 0.13, p =0.002 

F(1, 5) = 5.426,  
h2 = 0.25, p < 0.001 

Sr F(1, 3) = 3.735,  
h2 = 0.14, p = 0.02 

F(1, 2) = 2.798,  
h2 = 0.07, p =0.07 

F(1, 5) = 2.258,  
h2 = 0.14, p =0.06 

Zn F(1, 3) = 4.088,  
h2 = 0.13, p = 0.01 

F(1, 2) = 3.933,  
h2 = 0.09, p =0.03 

F(1, 5) = 3.230,  
h2 = 0.18, p = 0.01 
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Table 5 
 

Element Conc in 
catholyte 

Conc in 
anolyte 

Conc in C-
electrode 

Conc in A-
electrode 

Conc in 
membrane 

Total moles 
in 50 mL 
solution 

Al 30000 14 0.2 6 1.2 5.56E-02 
Ca 340 14 2.6 9 8.9 4.67E-04 
Zn 358 22 0.3 2 0.8 2.93E-04 
Ti 145 0.6 0.01 0.4 0.1 1.53E-04 
Mn 43 1.7 0.02 0.1 0.06 4.06E-05 
Cu 28 4.4 2.2 0.8 0.06 2.82E-05 
Cr 28 0.2 0.01 0.08 0.03 2.75E-05 
Sr 9 0.3 0.05 0.08 0.05 5.17E-06 
Pb 13 1 0.04 0.5 0.6 3.56E-06 

 


