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Extended Abstract

1. Introduction

In this paper we discuss the applicability of the framework defined in [DK89, DKPS§9,
DKP90] on the existence of infinite normal forms on a particular class of non left linear term
rewriting system.

It is very common, in practice, to deal with non linear term rewriting systems especially
when one wants to axiomatize the semantics of a given structure, and the purpose of this paper
is that of showing that under some hypotheses it is possible to extend the results of [DK&9,
DKP89, DKP90] to a class of non left linear term rewriting system. Although, at a first glance
the class we consider can appear quite restrictive, in practice it captures a number of algebraic
structures largely used in computer science.

In particular, we deal with term rewriting systems in which the non terminating rules are
unfolding rules that model the operational semantics of a recursive operator. The left linearity
requirement is replaced by the retraction property of the supporting term algebra that allows the
definition of a rewriting relation modulo an equivalence relation induced on the set of terms by
the unfolding rules. With these two assumptions we can still restrict to consider, as in [DK89,
DKP89, DKP90], only a subset of infinite derivations, i.e. fair derivations. Actually, we go
further on by focussing on those rewriting systems which admit a peculiar kind of fair
derivations, i.e. uniform systems and structured fair derivations. The w-confluence of the
rewriting system can then be proved by properly constraining the possible interaction between
the non terminating rules and the remaining rules. In this respect the notion of independence
on the rules of the rewriting system is introduced.

The approach has been used in [IN90b] to prove the existence of infinite normal forms for
recursive (finite state) CCS expressions [Mil80] with respect to a correct and complete
axiomatization of the observational congruence given by Milner [Mil89]. In fact, our interest in
non terminating non linear rewriting systems comes from the experience we have made by
developing a verification system for the CCS language based on term rewriting techniques
[DIN90, IN90a]. In that framework it results that all the axiomatic characterizations of the




various behavioural equivalences contain non left linear rules. On the other hand, non
termination arises as soon as one wants to consider recursive processes.

2. Basic Definitions

We assume that the reader is familiar with the basic concepts of term rewriting systems. We
summarize the most relevant definitions below, while we refer to [BD89, DK89, DKP89] for
more details.

Let X be a set of operators, V be a set of variables and Tx(V) denotes the set of terms over
% and V. An equational theory is any set E = {(s, t) | 5, t € Tx(V)}. Elements (s, t) are called
equations and written s = t. Let ~g be the smallest symmetric relation that contains E and is
closed under monotonicity and substitution. Let =g be the reflexive-transitive closure of ~g.
Given Z, V and an equational theory S, Ts(V),g denotes the quotient algebra with respect to S.

A term rewriting system (TRS) R is any set {(1;, r)) | };, ; € Tx(V), V() €V(1)}. The
pairs (1, ;) are called rewriting rules and written 1; — 1;. The rewriting relation —g on Tx(V)
is defined as the smallest relation containing R that is closed under monotonicity and
substitution. A term t rewrites to a term s, written t —>g s, if there exist Iy — r . in R, a
substitution ¢ and a subterm t/u at the occurrence u, called redex, such that t/u =l and s =
tfue1.6]. A TRS R is left linear if the left hand side 1 of each rule 1 — r in R has at most one
occurrence of any variable. A term t is said to overlap a term t' if t unifies with a non variable
subterm of t' (after renaming the variables in t so as not to conflict with those in t).

Let > and > denote the transitive and transitive-reflexive closure of —, respectively.

A TRS R s finitely terminating if there is no infinite sequence t; =g tp =9 ... . ATRS R is
confluent if whenever s g€ t i‘>’R g, then there exists a term t' such that s "L}R t R q,
while R is locally confluent if whenever s g¢— t =g q, then there exists a term t' such that s
i>R t g€ q. A term tis in R-normal form if there exists no term s such that t —p s. A term s
is a R-normal form of tif t ‘*‘)‘R s and s is in R-normal form. A TRS R is canonical if it is
finitely terminating and confluent.

An equational TRS is a tuple (R, E), written R/E, where R is a TRS and E an equational theory.
The rewriting relation —g/g is defined by =g * =g * =g, where * denotes composition of
relations.

Given a (possibly infinite) rewriting relation —, let us recall the following definitions:
Definition 1 (o-rewriting) t—®t ift *> ¢ or if there exists an infinite derivation

t=tg—>t; = ... —t;— ... suchthat lim, ,t,=t.
Definition 2 (®-terminating) — is -terminating if for any infinite derivation
t=1ty >t = ... > t; — ... of terms, the limit lim,_,, t, exists.
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Definition 3 (top-terminating) — is top-terminating if there are no infinite derivations
t=1tg— t; —> ... = t, — ... of terms with infinitely many rewrites at the topmost occurrence.
Definition 4 (w-confluence) — is w-confluent if P o —»® implies —® ¢ O,

In other words, for any t, t, ty such that t; Pt —®@ 1, there exists t' such that

tl — 0t Ve ts.

Definition 5 (®w-canonicity) — is w-canonical if it is w-terminating and w-confluent.
Definition 6 (w-normal form) A term t'is an w-normal form of t if t —® t' and t' is minimal
for —, i.e.if t' — t", thent" =t.

Thus, an ®w-normal form need not be irreducible.

Among all the possible infinite derivations from any term, we can single out “interesting”
derivations.

Definition 7 (fair derivation [DKP90]) A derivation ty— t; — ... = t, — ... is fair if
whenever there is a rule 1 — r and an occurrence u such that, for all n past some N, the subterm
ty/u is a redex for 1 — r, then (at least) one of the rule applications t, — t;,1 (n2N) is an
application of ] - ratu.

Thus, a fair derivation guarantees that a redex does not persist forever. Note that this definition
does not prevent the fact that the same rewriting rule is applicable infinitely many times at
deeper and deeper occurrences.

3. Non Left Linear Term Rewriting System and ®-Normal Forms

Now, the interesting point is to show that fair derivations are the only derivations we have
to look at. This means that the limit of a fair derivation can be shown to be an @-normal form
and, viceversa, the @-normal form of any term can be computed as the limit of a fair derivation.
This result has been shown in [DK89, DKP89, DKP90] by using the further hypothesis of left
linearity of the term rewriting system. On the other hand, we will discuss what happens when
the left linearity hypothesis is not satisfied and which new hypotheses have to be assumed on
an infinite rewriting relation in order to guarantee the existence of w-normal forms.

Definition 8 (unfolding) An unfolding is an equation G = H[G], where G is a non variable
subterm of t;, 1<i<k, in the context H[ ] =op(ty, ..., ty) for some op € Z of arity k.
Definition 9 (unfolding rule) Given an unfolding G = H[G], the non terminating rule

G — H[G] is an unfolding rule.




Definition 10 (retraction) Let S be a set of unfoldings. Ts(V)/g is retractile by =g if it is
possible to define on it an equivalence relation =g such that for any two terms t;, t; € Tx(V)/s,
t; =g tp implies the following:

i. itexists a term t' such that t; —g®@ t' Oge—ty ;

ii. for each equivalence class of F there exists a unique finite canonical representative.

The retraction property means that our signature is such that any infinite term t can be seen
as the infinite unfolding of a finite term. Furthermore, if a class of finite terms exists whose
unfolding results in the same infinite term t, it is possible to select a unique finite canonical
representative of the class, C(t). Thus, an equivalence relation on Tx(V)/g, denoted with =g,
can be determined such that for any two infinite terms ty, t,, the equivalence t; =gt holds if
and only if C(ty) = C(tp).

Thus, let us now assume that we are dealing with term rewriting systems T, defined on a
retractile Tx(V),g equipped with =, such that T is the union R/F U S of a finitely terminating
term rewriting system R and a term rewriting system S which only contains unfolding rules.

Example 1
R X+e—x
X+X—>X
S f(x) — g(t(x))

The term rewriting system T = R/F U S is not finitely terminating and not left linear. R is a
finitely terminating term rewriting system and S contains only one non terminating rule. The
equivalence =g is trivially defined by the unfolding f(x) = g(f(x)), which collapses all the terms
like gN(f(t)) to the canonical representative f(x) for any n and t, and consequently the canonical
representative of all the other terms can be obtained.

In all the following definitions and propositions it is assumed to deal with the above
characterized term rewriting systems T. Now we are going to discuss the ®-canonicity of such
systems; this means that we discuss when — is:

e top-terminating;
°  @-terminating;
»  @-confluent.

We first show that — is top-terminating and m-terminating. Next, we derive a result about
fair derivations and ®w-normal forms similar to the result in [DK89, DKP89, DKP90] by
replacing the left linearity hypothesis with the retraction condition on the supporting algebra
Ts(V)/s. Then, we introduce and discuss some requirements on the infinite rewriting relation
—1, which allow us to guarantee its w-confluence.
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Proposition 1 Let S be a term rewriting system of only unfolding rules. Then —g is top-
terminating.
Proof Straightforward. ¢

Proposition 2 The rewriting relation -1 = —gpE U —g on Tx(V)/g is top-terminating and
-terminating.

Sketch of the proof Let us first show that — is top-terminating. Since R is the finite
component of the infinite term rewriting system T, the hypothesis that R is finitely terminating
implies that it is also top-terminating. Furthermore, from the definition of —g g (Section 2) it
follows that —g r is also top-terminating and (®-)terminating. On the other hand, —g is top-
terminating for Proposition 1. Thus, — is top-terminating. The fact that — is @-terminating
follows from top-termination by applying the same arguments as in Theorem 11 in [DKP89]. ¢

Proposition 3 Given the rewriting relation — and any term t € Tx(V)/g, then:

1.) if t admits an w-normal form t', then it exists a fair derivation

t=ty—>7t =T ... =27t >T... withlim,_, . t, =1}

ii.) for any fair derivation t = ty =7 t; =71 ... =ty =7 ... with lim,_,_, t; =t,

t' is an ®w-normal form of t.

Sketch of the proof

i.) The term t admits an ®w-normal form t', hence (Definition 6) t —1® t' and t' cannot be
reduced by —g /g, since such reduction does not preserve the limit. By contradiction, let us
suppose that it does not exist a fair derivation which computes an ®w-normal form of t. Let D be
a derivation t = tg —> t; —>T ... =T ty —>T ... such that its limit t' = limj,_,_ t, iS an ®w-normal
form of t. Let us suppose that D is not fair. For Definition 7, there exists a “hanging” reduction
by —g/r along the derivation and it can be applied to the limit t' as well. This contradicts the
hypothesis that t' is an ®-normal form.

ii.) Let D be a fair derivation t = tg = t] =1 ... =7 ty =1 ... with lim,_, t, =t. By
contradiction, let us suppose that t' is not an @-normal form of t. Due to the fairness hypothesis
we have only to consider the case in which t' can be reduced on an infinite redex by a non left
linear rule in —R, whose application was never possible on any of the finite terms t, along D.
In fact, in order to be applied, such rules may require the equivalence of syntactically different
subexpressions which represent the same infinite term. Thus, it could happen that a reduction
by —p is never detected on the finite terms in D, because it involves subexpressions which are
semantically equivalent, but syntactically different. Such subexpressions become syntactically
equivalent at the limit and the reduction can then be applied. Since the equivalence between
subexpressions in —p, is checked modulo =, the described situation can never occur. ¢




Proposition 3 allows us to restrict our attention to fair derivations, as they compute -
normal forms at the limit. Actually, there are cases in which it is possible to identify a subclass
of fair derivations which have a peculiar structure.

Definition 11 (structured derivation) A derivation t = ty = t; =T ... =T ty =T ... Over
Ts(V)s is structured if there exists an index N such that, for all n > N, t;, —g t;,1 and it never
happens that t, =g/ t;+1 can be applied.

Thus, for any structured derivation it is possible to single out an index N which splits the
infinite derivation into a finite subderivation of terms t, (n < N), in which —REY g s
applied, and an infinite subderivation of terms t; (n > N), in which only —¢ can be applied.
Note that, in general, there is no guarantee that even a fair derivation is structured.

Example 2
The term rewriting system
R g(x, gle,y)) — g(x.y)
S f(g(c, g(x.y))) —= gle, g(x, f(gle, gx.y)))

allows the following fair derivation that is not structured since every rewriting step by —g
generates a reduction for —g /g

D: £(g(c, g(a,b))) — g(c, g(a, f(g(c, g(a,b)))) —s g(c, g(a, glc, gla, flglc, ga,b)))))))
—r/r &€, g(a, ga, f(gle, g(a,b)))))) —g ...

Definition 12 (uniformity) A term rewriting system T is uniform if for any fair derivation
D:t—rt) =7... =7ty =7 ... withlimy_,  t, = t', there exists a structured fair derivation
D" t—7 t'l =T e =T t'n =T e with hmn_)oo t'n =t"and t" =1t.

Our interest on uniform term rewriting systems is twofold. First, in order to show the ®-
confluence of an infinite rewriting relation, it is possible to restrict only to the finite parts of the
infinite derivations, thus retrieving all the results valid for finitely terminating rewriting
relations, e.g. local confluence. Second, given a uniform term rewriting system, in general it is
possible to determine a bound N on the number of rewriting steps of a fair derivation, which
guarantees that a finite representation of the w-normal form has been reached. In case of
confluent uniform term rewriting systems, this means that it is possible to obtain a decision
procedure for deciding the equivalence of two terms by computing their ®-normal forms.

In order to show the w-confluence of — some additional requirements on the nature of R
and S have to be stated.




Definition 13 Given R = {lj > rj | 1<i<n} and S = {Gj = Hj[G4] I 1<j<k}, then R and S
are independent if and only if for 1<i<n and 1<j<k, ]; and Gj do not overlap.

Example 3

In the following term rewriting system
R g(a) —>b
S f(g(x)) — f(f(gx)))

R and S are not independent. It is easy to verify that, for example, the term f(g(a)) admits an
infinite number of fair derivations leading to different w-normal forms.

Proposition 4 Let R = {lj = rj | 1<i<n} and S = {G — H[G]} such that R is canonical, S
consists of a single unfolding rule. If R and S are independent and T = R/F U S is uniform,
then T is w-confluent.
Sketch of the proof Under the uniformity hypothesis we can restrict to fair structured
derivations. Thus, in order to prove that —RFY s is w-confluent, we can restrict to show
the @-confluence of —g/pU —g on the finite subderivations of fair structured derivations. In
this case, =g/ U —g can be treated as a finitely terminating rewriting relation and its -
confluence can be shown by means of local confluence.

Thus, we have to show that whenever t' ¢~ t — 7 t" at the occurrences u and u'
respectively, then there exists a term ¢ such that t' "L>T q € 1.
Since R is canonical and S is an unfolding rule, we have only to consider the cases in which t
can be rewritten with both —g  and —g. Let us consider the two cases:
a) t/u and t/u’ are disjoint redexes. Straightforward.
b) the redex t/u contains the redex t/u'.
Let us first consider the situation in which a redex for —g /g contains a redex for —g. It
follows from the definition of —g/ (= is induced by S) that t" can be rewritten into t' by
using —g/p- On the other hand, if a redex t/u for —g contains a redex t/u’ for —g g, t/u is an
istance Go of G for some substitution ¢ and, since R and S are independent, t/u’' can only
occurr if ¢ substitutes a variable x of G with an instance 1j¢' for some l; — rj in R and
substitution ¢'. The following diagram shows how the confluence can be obtained:

t [Go[xe 10']

Is IR/E
t [H[G]o[x< Lio']] t [Go[xe rio']]
J’R/F ‘LS
t [H[G]o[x« 1io']] ¢




Corollary Let R = {lj = rj | 1<i<n} and S = {Gj = Hj[Gjl | 1<j<k} such that R is
canonical, S consists of unfolding rules whose left hand sides do not overlap. If R and S are
independent and T = R/F U S is uniform, then T is w-confluent.

4. Final Remarks

In this section we briefly discuss some of the notions introduced in the paper, namely the
retraction property of the supporting algebra and the independence requirement on the rewriting
rules.

As regards the former, it is worth recalling that, when dealing with recursive expressions
that are regular set of equations, results exist that allow to compute the unique canonical
representative in the class of the terms with the same (tree) semantics, e.g. [CKV74]. This
means that our notion of retraction actually permits coping with a reasonably interesting class
of infinite rewriting systems.

On the other hand, independence is quite a strong condition on the syntactic nature of the
rewriting rules. It is, anyhow, weaker than the “non overlapping” condition on the whole term
rewriting system, which is till now required to guarantee w-confluence in case of non
terminating left linear system [DK89, DKP89, DKP90]. Nevertheless, we think that it can be
possible to replace the independence requirement with a more semantic condition which deals
with the infinite nature of the term. Future work concerns the definition of a notion of
preservation between the components R and S of a term rewriting system, which guarantees
that a reduction by R on a term denoting an infinite data structure cannot destroy its infinite
nature. Thus, the term can only be rewritten into a term denoting another infinite data structure.
Inspired by this notion, some syntactic conditions on term rewriting systems can still be
determined in order to preserve S, that weaken the constraint on the left hand sides of the rules
by permitting overlapping, but put some constraints on the right hand sides of the rules.
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