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Chapter 1

Finite-dimensional vector
spaces

1.1 Notations

Let X be a set, we write x € X for the statement “x is an element of X” and
x ¢ X for the statement “x is not an element of X”. If Y is a subset of X we
write Y C X. Given A and B subsets of X, we define the following subsets of
X

3

AUB={re X |z € Aor x € B}, (1.1)

ANB={re€ X |z € Aand z € B}, (1.2)

called the union and the intersection of A and B. We denote by @ the empty
set; two sets A and B are disjoint if AN B = ().
If A is a subset of X, the difference

X-A={zreX |ze€ X and z ¢ A}, (1.3)

is the complement of A (in X).

Let X; and X5 be two sets. The set of the ordered pairs (x1,x2), with
x1 € X1 and x5 € Xo, is the Cartesian product of X1 and Xs; it is denoted by
X1 X XQ.

We denote by N = {0,1,2,...} the set of natural numbers, by Q the set of
rational numbers and by R the set of real numbers.

Let X and Y be two nonempty sets, a function T from X to Y (or mapping
on X into Y) is a rule that assigns to each € X a unique element y € Y,

T:X =Y (1.4)
we denote by T'(z) the element y called the image of x under T'.



Let A be a subset of X, the set
T(A)={veY | v="T(u) for some u € A} (1.5)

is the image of A under T (T(0) = 0).
Let B be a subset of Y, the set

T-YB)={ue X | T(u) € B} (1.6)
is the inverse image of B (T~1(0) = 0).
The function T': X — Y is injective (or one-to-one) if

uy # ug = T'(u1) # T(ug), (1.7)

and is surjective (or onto Y') if for each w € Y there exists (at least) u € X
such that w = T'(u), in this case T'(X) =Y.

A function T" which is both injective and surjective is bijective.

Let X be a set. A distance (o0 metric) on X is a function d on the Cartesian
product X x X with real values,

d: X xX—>R (1.8)
such that for each x,y,z € X:
di. d(z,y) >0,
d2. d(z,y) =0 if and only if z = y.
d3. d(z,y) = d(y, v),
d4. d(z,z) < d(z,y) + d(y, z) (triangle inequality)

The real number d(z,y) is the distance between = and y. A set X with the
distance d is called metric space and is usually denoted by (X, d). The elements
of X are called points.

Conditions d1 and d2 are quite natural and intuitive. Condition d4 gen-
eralizes the triangle inequality for the triangles in the Euclidean space and has
important consequences, in particular it allows to prove that the limit of a
convergent sequence in a metric space is unique.

Two different metrics d and d’ on the same set X define different metric
spaces (X,d) and (X, d").

Proposition 1. Let X be a set with the metric d; for each x,y,z € X we have
|d(z,2) — d(y, z)| < d(z,y). (1.9)
Proof. From the triangle inequality in d4 it follows that
d(x, 2) — d(y, 2) < d(z,y);
changing = with y and taking d3 into account, we have
d(y, z) — d(z,z) < d(z,y),
and (1.9) follows. O



Let R™ be the set of the n-tuples of ordered real numbers x = (z1, z2, ..., Tp),
the function

(1.10)

with x, y € R" is a metric called Fuclidean distance. The conditions d1, d2
and d3 are easy to prove; relation d4 follows from the inequality

n

Z(ai—i—bi)Qg zn:a3+ zn:b?7 (1.11)
i=1 i=1

i=1

putting a; = x; —y; and b; =y; — z;, i = 1, ..., n.

The inequality (1.11) is trivial if a; =0 or b; =0 for ¢ = 1, ..., n; then let us
assume that some a; and some b; are different from zero. For each A > 0, from
the inequalities

L 0 L2
(ﬁaﬁﬁbo >0, (Ve ﬁbi) >0,

we get

1
2la;b;| < \a? + Xba i=1,..,n (1.12)

and then

2|zn:aibi|§/\zn:a§+§zn:b§ (1.13)
=1 =1 =1

follows. The two addends in the right-hand side are equal for A = /Y"1 b2//> 1, a?
and for this value of A equation (1.13) becomes

(1.14)

n
\ Z a;b;| <
i—1

which is known as Cauchy-Schwarz inequality. Thus, in view of (1.14), we have

n

i=1 i=1 i=1

i=1

2

3
S

which coincides with (1.11).



Let X be a set (X # (), the function

d(ay) = { Do (1.15)
is a metric called discrete metric.

Let X be the set of all possible sequences of k bits, each element of X is
constituted by a string = z125...z; of k symbols with x; € {0,1},i=1,..., k.
We define the distance between two strings = and y of X as the number of
positions at which the corresponding symbols are different. This distance, called
Hamming distance, measures the number of substitutions needed to convert a
string in the other, or, equivalently, the number of errors that have transformed
a string in the other. For example, for k = 6, given = 001001 and y = 000011,
we have d(z,y) = 2.

The functions

di(x.y) = lai — il (1.16)
i=1

and
doo(xay) = _EIllaX |xl - y2|7 (117)
with x, y € R" are distances in R"”.
In the set
Cla,b] ={f : [a,b] = R | { is continuous in [a, b]}, (1.18)
the functions
do(f,9) = max [f(t) — g(t)], (1.19)
t€la,b]
and .
di(f.9) = [ 170~ glo)id, (1.20

with f, g € C|a,b] are distances.

Let A be a subset of R, b € R is an upper bound for A if a < b for each
a € A. In this case A is bounded from above. We define the least upper bound
or supremum of A, denoted by sup A, as the minimum o of the upper bounds
of A. The supremum o is characterized by the following properties,

a <o, foreachacA, (1.21)
for each € > 0 there exists a € A such that ¢ > o —¢. (1.22)

¢ € R is a lower bound for A if a > ¢ for each a € A. In this case A
is bounded from below. We define the greatest lower bound or infimum of A,
denoted by inf A, as the maximum & of the lower bounds of A. The infimum &
is characterized by the following properties,

a >k, foreachaecA, (1.23)

for each € > 0 there exists a € A such that a < k +¢. (1.24)



1.2 Vector spaces

A (real) vector space is a set S of elements called vectors satisfying the following
axioms.

(A) To every pair, a and b, of vectors in S there corresponds a vector a + b,
called the sum of a and b, in such a way that

1. addition is commutative, a+ b =b + a,

2. addition is associative, a+ (b+c) = (a+b) +c,

3. there exists in S a unique vector 0 (called the origin) such that a+-0 =
a for every vector a,

4. to every vector a in S there corresponds a unique vector —a such
that a4+ (—a) = 0.

(B) To every pair, @ and a, where « is a real number and a is a vector in S,
there corresponds a vector aa, called the product of « and a, in such a
way that

1. multiplication by scalars is associative, a(fa) = (af)a,

2. la = a for every vector a.
(C) The following properties hold

1. multiplication by scalars is distributive with respect to vector addi-
tion, a(a+b) = ca+ ab, foreacha,be S, a € R,

2. multiplication by vectors is distributive with respect to scalar addi-
tion, (o + f)a = aa+ Pa, foreacha € S, a,f € R.

The sets
R" ={x=(21,...,zn) | x; €Ri=1,...,n}, (1.25)

constituted by the n-tuples of real numbers,

Pn={p()=a+arx+..+anz" | z€0,1],a;, €R,i=0,...,n}, (1.26)

constituted by the polynomials of degree less than or equal to n and real coef-
ficients,

Mm,n = {A = [aij] | Qij e R,’L = 17 ...7m7j = 17 ...7’I’L}7 (127)

constituted by the matrices with real coefficients, m rows and n columns, are
real vector spaces.



1.3 Norms on a vector space

Given the vector space S, a norm is a function || || on S into R such that

nl. ||a]] >0 for all a € S,
n2. ||ajl =0 if and only if a = 0,
n3. ||aal| = || ||a|| for alla € S, a € R,
nd. ||a+ bl < |a|| + ||b|| for all a,b € S (triangle inequality).
The vector space S with the norm || || is a normed space.
On R"™ we can define the following norms

Ilellog =, max |,

n 1/k
%Il = (Z l‘z|k> , with k integer, k > 1,
i=1

and on P,, we can consider the following norms

11l = s 1562,
and
) 1/k
1711, = /|f(9c)|k de| . with k integer, k > 1.
0
Lastly

n
Al = max > asl,
i=1,...,m 4
Jj=1
[ All = max |a],
i,
1/2
Al = | D lal? :
,J
are norms on M,, ,. The latter is called Frobenius norm.

From the property n4, it follows that
[llall = I|b]|| < |]a—b]||, for each a,beS.

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

A normed space S is a metric space with the distance induced by the norm

[l
d(a,b)=]la—Db|, abesS.

(1.36)



" 1/2
For example, on R™ the norm ||x||, = (Z |m1|2) induces the Euclidean
i=1

metric (1.10).
It is possible to prove that a distance d on a vector space S is induced by a
norm if and only if

1. d is invariant with respect to translations,

d(a+c,b+c)=d(a,b), foreachab,ceS, (1.37)

2. d is invariant with respect to homotheties,

d(Aa,0) = |\|d(a,0), foreachaecS, AeR. (1.38)

There exist metrics on a vector space S that are not induced by any norm.
For example, on R” there is no norm that induces the metric d defined in (1.15),
since d does not satisfy (1.38). On R? let us consider the Euclidean distance d
defined in (1.10), it is easy to prove that

d d

is a distance on R?, in fact properties d1, d2 and d3 are easy to prove and, as
far as the triangle inequality is concerned, for each x,y,z € R? we have

' ’ __dx,y) d(y,z) d(x,y)
d(xy)+d(y,2) = 1+d(x,y) + 1+d(y,z) = 1+d(x,y)+d(y,=z)
d(y,z) S d(x,z)

L+d(x,y) +d(y,z) ~ 1+d(x,2)’

because f(b) = %er, b > 0, is an increasing function and d satisfies the triangle

inequality. Since d’ does not satisfy (1.38), there exists no norm that induces it.

1.4 Inner products

Let S be a vector space, an inner product (or scalar product) is a function <, >
on S X § into R such that

sl. <a,b>=<b,a> foreachabeS (symmetry),

s2. < aja; + azas,b >= a3 < a;,b > +as < as,b > for each aj,as,b € S,
and oy, as € R (bilinearity),

s3. <a,a>>0 for each a € S (positivity),

s4. <a,a>=0 if and only if a = 0.



Vectors a,b € S are orthogonal if < a,b >= 0. Vectors uy,...,u,, € S are
orthonormal if

1, i=j,
o iy (1.40)

In this case we say that {uy,...,u,,} is an orthonormal set of vectors in S.

<ug,u; >= 62’]’ = {

On R™ we can define the inner product

<X,y >= inyi, x,y € R"; (1.41)
i=1

in the vector space P, the product

< f,g>= /01 f@)g(z)dz, f,g€ Py (1.42)
is an inner product. On the space M,, ,, the product
<AB>= Y ajby, AB €My, (1.43)

is an inner product. In R3 the vectors
x!' =(1,0,0), x*=(0,1,0), x*=(0,0,1) (1.44)

are orthonormal. In P, the polynomials f(x) =1, g(z) = = — 1/2, z € [0, 1],
are orthogonal with respect to the scalar product (1.42), in fact < f,g >=
Ji (@ —1/2)dz = 0.

Given a scalar product in S, the function that assigns to each vector a the

quantity
[al = v<aa> (1.45)
satisfies the conditions n1-n4 and thus is a norm on S, called norm induced by

the inner product <,>. The quantity (1.45) is called length (or norm) of the
vector a € S.

Proposition 2. Let S be a vector space equipped with the scalar product <, >.
Given the vectors a,b € S, the Schwarz inequality

| <a,b>[<|al b, (1.46)
the parallelogram law
2 2 2 2
la+b[” + [la—b[" = 2la]” + 2|b[", (1.47)
and the Pitagora theorem
if <a,b>=0 then |la+b]* = |al|® + |[b], (1.48)

hold.

10



Proof. If a = 0, (1.46) is trivially verified. Let us assume that a # 0 and
consider o € R,

0<<aa+b,aa+b>=a?|a®*+2a<ab>+|b|’=

5 2a <a,b>? s <ab>?
lall® [o* + —5 <a,b>+———| +|b|" - ——5— =
llall l[all [[all
b b >2
2 < a) > 2 < a, >
lafl” |a+ 2] Ibl|” = ——5— (1.49)
all all
If we put @ = — < a,b > /||a|®, from (1.49) we get
> <222
l[all
and then (1.46). O

We have seen that given an inner product on S, it is possible to define in a
natural way the norm (1.45) on S.

n 1/2
In R™ the norm ||x||, = <Z :z:1|2> is induced by the scalar product (1.41)
i=1

1 1/2
and in Py, the norm || f||, = <f |f(z)]? d:z:) is induced by the scalar product
0

(1.42). In the space M,, ,, the Frobenius norm defined in (1.34) is associated
to the scalar product (1.43).

Nevertheless, it is possible to define norms that are not induced by any
inner product. For example, in Py, the norm (1.30) is not induced by any inner
product. This follows from the fact that (1.30) does not satisfy the parallelogram
law, as it is easy to prove choosing the polynomials fi(z) = 1 and fo(x) = =,
2 € [0,1], for which ||fil . = Ifall.. = 1. | — foll., = 1 and ||y + foll . = 2.

Analogously, in R? the norm (1.28) does not satisfy the parallelogram law
(for x = (1,1) and y = (1,0) we have ||x|| = |yl =1, [x—¥[ =1 and
|x +yl|l.. =2) and then it is not induced by any inner product.

It is possible to prove that if a norm || || satisfies the parallelogram law, then
|l || is induced by the following scalar product

1
<ab>= Z(Ha—i—sz— la—b|?). (1.50)
1.5 Bases of a vector space

Let S be a vector space. Given the vectors uy,...,u,;; € S and the scalars
a1, ..., O, the vector ayuy + ... + Uy, is a linear combination of uy, ..., u,,.

11



Vectors uy, ..., u,, € S are linearly independent if
aug + ...+t oy, =0 = a; = ... = a,, =0. (1.51)

If there exist «; different from zero such that aju; + ... + a,u,, = 0, then
vectors uy, ..., U,, are linearly dependent.

A basis of S is a set B of linearly independent vectors of S such that each
vector in S is a (finite) linear combination of elements of B. Of course, this
combination is unique. It is possible to prove that every vector space has at
least a basis.

A vector space has finite dimension if it has a finite basis. It is possible to
prove that if B; and B; are two bases of the finite-dimensional vector space S,
then B; and B; have the same numbers of elements.

Thus, it is possible to define the dimension of a finite-dimensional vector
space S, which is the number of elements of a basis of S.

Herein after we shall consider vector spaces S of finite dimension n and
denote by {uy,...,u,} a basis of S. For each u € S there exist (and are unique)
B1, -y Bn € R such that

u=> Bu, (1.52)
i=1

If S has an inner product and uy, ..., u, are orthonormal, then {uy,...,u,} is
an orthonormal basis.
In R™ let us consider the vectors

Xl = (1707 . 70)a
x> = (0,1,...,0),
x" = (0,0,..,1),

{x!,...,x"} is an orthonormal basis, called canonic basis. The dimension of R"
is n.

In R? let us consider the vectors x! = (1,0) and x? = (1,1), {x!,x%} is a
basis of R?, which is not orthonormal.

In P; let us consider the polynomials fi(z) = 1, fao(z) = 2, ga(x) = V/3(1 —
2x), € [0,1], {f1, fo} is a basis and {f1,¢2} is an orthonormal basis of P;.
The dimension of the vector space P, is n + 1.

In M, ,, the matrices {A%};=1 . m with coefficients
Jj=1,....,n

1, k=il=j

g
Y1 = { 0, otherwise. (1.53)

are an orthonormal basis and the dimension of M, ,, is m x n.

12



Let U and W be two vector spaces, a function T : Y — W is linear if it is
homogeneous
T(aa) = aT'(a), foreach acl, a € R, (1.54)

and additive
T(a+b)=T(a)+ T(b), foreacha,bell. (1.55)

In particular, if T is linear then 7'(0) = 0.

A bijective linear function is called isomorphism and two vector spaces U
and W are isomorphic if there exists an isomorphism 7 : U — W.

Vector spaces with the same dimension are isomorphic. In fact, the following
theorem holds.

Theorem 1. FEvery vector space S of dimension n is isomorphic to R™.

Proof. Let {uy,...,u,} be a basis of S. Then, each u € S can be written in the
n

form u = 3 B;u;, with the scalars f, ..., 8, being uniquely determined. The
i=1

bijective function

u (B0, Bn) (1.56)

from S to R™ is the required isomorphism. O

Vice versa, two isomorphic vector spaces U and W have the same dimension.

Theorem 2. If the vector spaces U and W are isomorphic, then they have the
same dimension.

Proof. Tf {uy,...,u,} is a basis of U, then {T'uy, ..., Tu,, } is a basis of W. Firstly,
we prove that the vectors Tuy, ..., Tu, are linearly independent. In fact,

alTul + ...+ anTun =0
implies
T(oqug + ... + azu,) =0

and then, in view of the fact that T is injective, we have
oug + ... +au, =0

from which we deduce
a;=..=aqa, =0,

because uy,...,u, are linearly independent. To prove that each w € W can
be written as a unique linear combination of vectors Tuy, ..., Tu,, we proceed
in the following way. Since T is bijective, given w € W there exists u € U
such that Tu = w. From the relation u = aju; + ... + a,u,, it follows that
w=o1Tu; + ...+ a,Tu,. O

13



1.6 Subspaces

A non-empty subset M of the vector space S is a subspace if for each a,b € M,
a, B € R, the vector ca + Sb belongs to M.

Let D be a non-empty set of vectors of S, the intersection of all subspaces
containing D is a subspace of S, called subspace spanned by D and denoted by
Span(D). Span(D) contains all possible (finite) linear combinations of elements
of D.

If My and My are two subspaces of S, Span(M;, Ms) is the subspace of
S constituted by all the vectors a + b with a € My, b € M5 and is denoted by
M1 + M.

A subspace M of S is a complement of a subspace My if

MiNMsy = {0} and S = My + Mos. (1.57)

In this case, we say that S is the direct sum of the subspaces M; and My and
we write

S =M & Ms. (1.58)

If that is the case, every vector s € S can be written in a unique way as
s=a+b, withae M;,b e M. (1.59)

In fact, (1.59) follows from the definition of M 4+ My, and to prove the unique-
ness of a and b, let us assume to have

s =aj; + by =as + by, al,agé./\/h,bhngMg. (160)
Then,
a; —ag = by — by,

and, from (1.57)1, we get a; = as and by = bs.

In R?, given x! = (1,0) and x* = (1, 1), let us consider M; = Span(x') and
My = Span(x?), we have

My 0 Ma = {(0,0)} and My + M, = B2,

thus R%2 = M; & Mas.

In R3 let us consider the vectors x! = (1,0,0),x%> = (0,1,0) and x* =
(0,0,1); for M; = Span(x!,x?) and Mz = Span(x?,x3), we have M; + My =
R3, but M; N Mz = Span(x?), then R? is not direct sum of M; and M.

The subspace M of § has dimension m if it is spanned by m linear indepen-
dent vectors of S.

Given a subspace M of dimension m of a vector space S of dimension n (m <
n), there exists a basis of § which contains a basis of M.

Let S be a vector space with the scalar product <,>. Two subspaces Mj
and M5 of S are orthogonal if each vector of the former is orthogonal to each
vector of the latter.

14



Proposition 3. Let S be a vector space with the scalar product <,>. Let
{uy,...,un} be an orthonormal set of vectors of S. For each u € S, putting
a; =< u,u; >, the following Bessel inequality holds

m

S feuf? < Jlul®. (1.61)

i=1
Moreover, the vector u' =u— > a;u; is orthogonal to Span(uy, ..., u,,).

Proof. We have

m m

0<u|*=<u-— Zaiui,u - Zaiui >=
i=1 i=1
m m m
hall* =D el = lail® + Y lal® =
i=1 i=1 i=1

m
2
hall® = e,
=1

from which (1.61) follows. Moreover, we have

m
!/
<u,u; >=<u,u; > —Zoq, <u,u; >=a; —a; =0.
i=1

1.7 Orthonormal bases

An orthonormal set {uy, ..., u,, } of vectors of S is complete if it is not contained
in any larger orthonormal set. In particular, a complete orthonormal set of S is
an orthonormal basis of S, in fact, the following proposition holds.

Proposition 4. Let O = {uy,...,u,,} be an orthonormal set of vector in the
vector space S equipped with the inner product <,>. The following conditions
are equivalent to each other.

(1) The orthonormal set O is complete.

(2) If <u,u; >=0 forj=1,..,m thenu=0.
(8) The subspace Span(Q) coincides with S.
(4) Ifues, we haveu=>3% ", <u,u; >u,.
(5) Ifu,v €S8, the Parseval identity holds,

m
<u,v >:Z<u7ui ><v,u; > (1.62)
i=1
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(6) IfuesS, then we have

[af* =" <uu > (1.63)

Proof. (1) = (2) If <u,u; >=0 for j = 1,...,m with u # 0, the union of O
and the vector u/ ||u|, is an orthonormal set of S containing O.

(2) = (3) If there were u € S which is not a linear combination of vectors
u;, then, in view of Proposition 3 the vector v’ =u—3", < u,u; > u; would
be different from zero and orthogonal to each u;.

(3) = (4) If each u € S had the expression u = Z;nzl a;u;, then, for each
i =1,...,m, it would be

m
<u,u; >= E a; < uj,u; >= Q.
Jj=1

4) = (6) fu=3" <uuw >u;, v=>_", <v,u; >uy then

m m
<u,Vv>= Z <u,u; ><v,u; >< u;, u; >:Z <u,u; ><v,u; >.
i,j=1 i=1

(5) = (6) Put u=v in (1.62).
(6) = (1) Let ug € S be orthogonal to all u;. Then,

m
[uo|* = Z <ug,u; >*=0
i=1
which implies ug = 0. O

Let M be a subspace of S; the set
Mt ={ueS|<v,u>=0 foreachve M} (1.64)

is a subspace of S called orthogonal complement of M. The vector space S is
the direct sum of M and M=,

S=Mae M. (1.65)
In fact, if {eq,...,e;,} is an orthonormal basis of M, for each v € S we have
V=V+v,, (1.66)

where v=>Y" <e,v>e e Mandv,=v—-> " <e,v>e €M in
view of Proposition 3.
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Let S; and Sy be two vector spaces with inner products <, >g, and <, >s,.
A linear function T : S; — S which satisfies

<u,v>g5=<T(u),T(v) >s,, foreachu,ves, (1.67)

is an isometry. An isomorphism satisfying (1.67) is called isometric isomorphism
and the space S; and Sy are said isometrically isomorphic.
An isometry preserves the scalar product and then preserves the norm
lulls, = |T(u)||s,, for each ue€ &;. (1.68)
From (1.68) it follows that if ||T'(u)||s, = 0 then ||u|ls, = 0, thus an isometry
is injective.

Proposition 5. Fvery vector space S of dimension n with inner product < ,>gs
18 1sometrically isomorphic to R™.

Proof. Let {eq,...,e,} be an orthonormal basis of S, the function T on S into
R™ defined by

T(u) = (ur,...,upn), u; =<e,u>s, i=1,..,n (1.69)
is an isometric isomorphism, in fact, for each u, v € .S we have
n n
<T(u), T(v) >gn= Zuivi = Z <epu>s<e,v>s=<uv>g, (1.70)
i=1 i=1

where the last equality follows from the Parseval identity (1.62). O

1.8 Convergence of vectors

Let us now introduce the notion of convergence of a sequence of vectors in a
vector space equipped with a scalar product.

A sequence {v(®)},.cy of vectors in S converges to a vector v € S if for each
€ > 0 there exists & > 0 such that

Hv(k) - VH <e foreach k> k. (1.71)

In that case, the sequence {V(k)}keN is convergent and the vector v is the limit
of {vF)} ey for k going to infinity,

lim v® = v, or v® v, for k — . (1.72)
k—o0

In R™ the sequence {x(k)} ken converges to x if the sequence of real numbers
n

Hx(k) - x||; =3 |x£k) — x;]? converges to 0 for k going to infinity and, in
i=1

particular, if
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(k)

x; —x;fork—o0,i=1,..,n (1.73)

The convergence defined above is also called strong convergence. It is easy
to prove that the limit of a convergent sequence {v(k)}keN is unique. In fact,
let us assume that
k)

v® 5v and v® 5w, for k — oco. (1.74)

Then we have

|W_WHSW;VWWWhW—wL (1.75)
from which, in view of (1.71), we get ||[v — w]| = 0.
For each w € S, from the Schwarz inequality it follows that
| <vl® v, w>|< Hv(’“) - VH [Iwl|,
therefore, if {v(¥)},cn converges to v, we have that
lim <v® w>=<v,w> foreach weS. (1.76)

k—o0

If condition (1.76) is satisfied, we say that the sequence {v(®)},cy in S converges
weakly to v € § and we write

v®) v for k — oco. (1.77)

Of course, if a sequence is strongly convergent, then it is weakly conver-
gent. Unlike infinite dimensional vector spaces, where strong and weak con-
vergence do not coincide, in finite-dimensional vector spaces each weakly con-
vergent sequence is (strongly) convergent. In fact, let us assume that (1.76)
holds and let {uy,...,u,} be an orthonormal basis of S. Then, we have that
<vlh) —v u >0 when k — oo, for each i = 1,...,n. In view of relation
(1.63) of the Proposition 4 we have

2 n
Hv(’“) - vH =Y <vl —viu; 2
=1

thus, lim v(%) = v.
k—o0

Let S be a normed vector space, a sequence {V(k)}kGN C S is a Cauchy
sequence if for each € > 0 there is § € N such that Hv(p) — V(Q)H < ¢ when

p,q > q or, equivalently, if ||v(p) — v(q)H — 0, for p,q — oo.
If {v(k)}keN is a convergent sequence with limit v, then it is a Cauchy
sequence, in fact

me’v@

< Hv(p) - VH + Hv —v@ (1.78)
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and Hv(p) - V(Q)H converges to 0 for p,q — oo.

A normed vector space S is complete if for each Cauchy sequence {v*)} .oy C
S there is a unique vector v € S such that vy — v when k — oco.

Proposition 6. Each finite-dimensional vector space S with inner product <, >
is complete.

Proof. From Proposition 5 it follows that if S has dimension n then it is isomet-
rically isomorphic to R™. Let T be the isometric isomorphism defined in (1.69)
and {v*)},cn C S a Cauchy sequence, we have

HT(V(p)) _ T(V(Q))’ 2

. =< T(v(P)) — T(V(Q))7T(v(p)) _ T(v(q)) Spn

=< vP) —v(@ y@) _y@ 5 o= ||y — (@)% (1.79)

therefore, {T'(v(®))},cy is a Cauchy sequence in R™. Since R™ is complete, there
is x € R” such that T(v(®)) — x for k — oo, and in view of the fact that 7" is
surjective, there exists v € S such that T'(v) = x. Then we have,

v =v¥ls = IT(v) = Tv")rn =[x = T(v*) [, (1.80)

from which it follows that v(¥) — v when k — oo. O

Two norms || ||; and || ||, on a vector space U are equivalent if there are two
positive constants A and p such that

AMually < Jull, < pllull; for each u € U. (1.81)

The following theorem holds.

Theorem 3. In a finite-dimensional vector spaces all norms are equivalent.

1.9 Open and closed sets, neighborhoods

Let S be a vector space with the norm || ||. Given a € S, r > 0, the sets
B(a,r)={beS | |la—b| <r}, (1.82)
B(a,r)={bes| Jla—b| <r}, (1.83)
Sa,r)={beS| |la-Db|=r} (1.84)

are the open ball, closed ball e sphere of centre a and radius 7.
For example, in S = R? with the inner product (1.41) we have

B(0,7) = {x € R? | 23 + 23 < r?}, (1.85)
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B'(0,7) = {x € R* | 27 + 23 < r?}, (1.86)
S(0,7) = {x € R? | 2} + 23 = r?}. (1.87)

A subset A of S is open if for each a € A there exists r > 0 such that
B(a,r) C A. A subset C of S is closed if its complement S — C' is open.
Given a € S, a subset U, of S which contains an open ball with centre a is a
neighborhood of a.

Open balls, closed balls and spheres can be defined in a set X with metric
d, they have been introduced in a normed vector space because in these notes
we are interested in focusing on normed vector spaces.

The following proposition holds.

Proposition 7. Sets S and O are closed and open.
The union of an arbitrary family of open sets is open.
The intersection of a finite family of open sets is open.
The intersection of an arbitrary family of closed sets is closed.
The union of a finite family of closed sets is closed.

A subset K of S is convez if given a,b € I, we have aa + (1 — a)b € K,
for each « € [0,1]. A subset K of S is bounded if there exists £ > 0 such that
llal| < & for every a € K.

The balls B(a,r) and B’(a,r) are convex. The subset K = {v#)},cy of S
constituted by the elements of the convergent sequence {v(*)},cy is bounded
and not convex, on the contrary, Span(K) is convex but not bounded.

1.10 Mappings on vector spaces

Let & and W be normed vector spaces and T : i — W a mapping (or function).

T is continuous at ag € U if for each € > 0 there is § > 0 such that for each
a € U satisfying ||a — ag||ys < J, we have ||T'(a) — T'(ag)|lw < e. T is continuous
on U if it is continuous at each ag € U.

In other words, T is continuous at ag if for every open ball B(T'(ap), ) with
centre T'(ag) and radius ¢ there is an open ball B(ag,d) with centre ap and
radius & such that T'(B(ag,d)) C B(T(ap),¢)-

An alternative formulation of continuity can be expressed in terms of open
and closed sets.

Proposition 8. Let U and W be normed vector spaces and T' : U — W a
mapping. T is continuous on U (that is at each ag € U) if and only if for each
open (closed) set A in W, the inverse image T—1(A) of A under T, is an open
(closed) set in U.

The notion of convergence of a sequence of vectors can be used to characterize
closed sets and continuous functions. In fact, the following propositions hold.
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Proposition 9. Let C be a non-empty set of the normed vector space S. C
1s closed if and only if each convergent sequence constituted by vectors in C
converges to a vector of C.

The following result generalizes the well known relationship between conti-
nuity of real functions and convergence of sequences.

Proposition 10. Let U and W be normed vector spaces and T : U — W a
mapping. T is continuous at ag € U if and only if for each sequence {at)} ey C
U such that lim a®) = ay, we have lim T'(al®)) = T(ap).

k—o0 k—o0

A mapping T : U — W is linear if the properties (1.54) and (1.55) are
satisfied.

Example 1. Let {eq,...,e,} be an orthonormal set of S, function L defined
from S into Span(ei, ...,en) such that

L(u):Z<u,ei >e;, Yues, (1.88)
i=1

1s linear, on the contrary, the function that assigns to each vector u in S the
constant vector U is not linear.

A bijective map T is invertible and the function 77! : W — U defined by
T=Y(v) = u, if and only if T'(u) = v is called inverse of T. If T is linear and
invertible, then 7! is linear. In fact, for z, w € W, let u, v be the unique
vectors of U such that T'(u) =z and T(v) = w. For o and § € R we have

az + pw = oaT(u) + ST(v) = T(au + fv) (1.89)
and then

T Haz+ Bw) = au + fv = aT ' (z) + BT} (w). (1.90)

Let T : U4 — W be a linear mapping, T is bounded if there is k > 0 such that
IT(a)|lw < k|laljy, for each a €lf. (1.91)

All linear mappings on finite-dimensional vector spaces are bounded. The
following proposition holds.

Proposition 11. Let U and W be finite-dimensional normed vector spaces.
FEvery linear mapping L : U — W is bounded.

Proof. For the sake of simplicity, let us limit ourselves to prove the proposition
in the case in which the norm on U is induced by the scalar product <, >;,. Let
{e1,...,e,} be an orthonormal basis of U, for each u € U we have

u= Zuiei, (1.92)
i=1
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with u; =< u,e; >y, 1t =1,...,n, and
L(u) = u;L(e;). (1.93)
i=1

Therefore, in view of the properties n3 and n4 of the norm, from (1.93) we get
1Ll <> sl [[L(ed)w < B Juil, (1.94)
i=1 i=1

where § = max IIL(e;)|lw-. Finally, from (1.94), using the Schwarz inequality
i=1,...,n

we obtain that

IL(@)lw <8 [ <wei>u | <BY leillu lullw = Bnllull, — (1.95)

i=1 i=1
for each u € U, and then L is bounded. O

Proposition 12. Let T : U — W be a linear mapping; T s continuous on U
if and only if it is continuous at 0 € U.

Proof. Let us assume that T is continuous at 0 € U, then for each € > 0 there
is 0 > 0 such that if ||allys < 0 then ||T'(a)|ly < € (in view of the linearity of T,
T(0) = 0). Now consider ag € U, for each a € U such that ||a — agljyy < 0 we
have ||T(a) — T(ag)|ly = [|[T(a—ag)||y < ¢, therefore T is continuous at ag. [

Proposition 13. Let T : U — W be a linear mapping. T is continuous on U
if and only if it is bounded on U.

Proof. Let us assume that 7' is bounded, then from (1.91) it follows that for
each € > 0 putting 6 = ¢/k, if ||ullyy < J, we have
IT()lw < kllufly < ~é=e (1.96)

and then T is continuous at 0 € U; the thesis follows from Proposition 12.
Vice versa let us assume that 7' is continuous but not bounded (reductio ad
absurdum): then, for each k € N there is u®) € ¢/ such that

1T ®) > El[a® [l (1.97)
In particular, we have u(®) # 0, then, we can put
(k)
e 1.98
YT M@y (1.98)

The sequence {v(*)},cy converges to 0, but

T(™)]lw

T @)y = | >1 1.99
Tl = (1.99)
which is in contrast with the continuity of 7. O
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Remark 1. In infinite dimensional vector spaces there are linear functions that
are not continuous. Let us consider the set P of the polynomials on [0, 1] with

the scalar product < f,g >= fol f)g(t)dt and let L : P — P be the mapping
that assigns to each polynomial its derivative. L 1is linear, but not bounded.
Given the polynomials fi(t) = t*, k € N, we have

1
2k+1

<1

el =

and
2 2 ! 2k—2 k?
L =k t“"TAdt =

therefore, |L(fx)||*> = +o0o when k — oo and L is not bounded.

Proposition 14. Every subspace M of a vector space S with inner product is
closed.

Proof. The proof is based on Proposition 9. Let M be a subspace of the vector
space S and {v(k)}keN C M a sequence converging to v € S. For {uy,...,u;,}
an orthonormal basis of M, we have

and
Hv(’“) —VH — 0 when £k — oco.

From the inequality

m
E <v,u; >u; —V
i=1

<

# =]

m m
Z <v,u; > u; 72 < v(k),ui >u;
=1 =1

taking into account that {v(’“)}keN converges to v and then converges weakly
to v, we get that v € M. O

Let U and W be vector spaces with inner product and dimension n and m,
respectively. Let us denote by L(U, W) the set of all linear mappings on U into
W

LUW)={L:U — W | L is linear}. (1.100)

If we define the sum of two mappings and the product by a scalar in the following

natural way
(L1 + LQ)(U) = Ll(u) + L2(u), (1101)

(aLi)(u) = aLi(u)

for each u e U, a € R, LU, W) turns out to be a vector space.

23



Let {uy,...,u,} and {wq,...,w,,} be two orthonormal bases of U and W,
respectively. The m x n linear mappings L;; defined by

_ w;, k=] . -
L;j(u) = { 0 k#£j i=1,...m, j=1,...n (1.102)
are linearly independent. In fact, ) «a;;L;; is the null application if and only
,J

if Y a;jLi(ug) = 0, k =1,...,n and then, in view of (1.102), > a;zw; = O,

»J 7
k =1,...,n. From the linear independence of vectors wy, ..., w,, it follows that
the coefficients «;; are zero. Moreover, for each L € L(U, W) we have

L= > <L(u),wi>w Li. (1.103)

In fact, for each u € Y, we have u =, _, < u,uy >y uy, from which

Z <L(Uj),Wi>W Lij(u) = Z <L(Uj),Wi>W Lij (Z <u,ur >y uk> =

k=1

Z <L(uj),w;>w <u,u; >y wW; =

Z <L Z <uwuj >y uj |, Wiy Wy =

1=1,..., m j=1,....n

| > <L(u),wi>w wi = L(u),

and then (1.103) is proved. Thus the linear mappings defined in (1.102) are a
basis of the vector space L(U, W) and the dimension of L(U, W) is m x n. The
vector spaces L(U, W) and M,, ,, are isomorphic (Theorem 1).

For each L € L(U,W) let us consider the quantity

L(u w
Ly = sup T
ueld, u#0 [lalles
It is easy to verify that (1.104) is a norm on L(U, W). Firstly, if L € L(U, W)
then L is bounded (Proposition 11), then there is £ > 0 such that || L(u)|w <
kllully for each u € U, and  sup ||L(u)|lw/|lull exists and is finite. More-
U, uz0

,u

(1.104)

over, from the linearity of L it follows that

sup WE@IW _ L) (1.105)

weut, uzo  |ully =1
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and

1Ly + Lollx = sup [[Li(a) + La(u)llw < sup ([[La(a)]lw + [[L2(w)llw)

laflu=1 lufle=1
< swp L@l + sup [La(@lhy = [Lilly + [ Zallv.  (1.106)
lufle=1 lafle=1
In a similar way we can prove that ||aL||y = |a| | L]y for each L € L(U, W)
and o € R. Finally we have ||L||y = 0 if and only if sup ||L(u)|w =0 if and
lufler=1

only if ||L(u)|yy <0 for each u € U, ||lullyy = 1, if and only if L(u) = 0 for each
u € U. We can then conclude that (1.104) is a norm on L(U, W) called natural
norm.

The norm (1.104) is not induced by any scalar product. To prove this, let us
put U = W and let {uy,...,u,} be an orthonormal basis of /. Given the linear
mappings

Li(u) =u, La(u) =< u,u; > uy,
we have ||L1 + L2||N = 2, ||L1 — L2HN = 1, ||L1||N = ||L2||N = 1, then (1104)
does not satisfy the parallelogram law.

Example 2. Let T : U — W be an isometry, we have

T
IT||v = sup Tl _ lall _ (1.107)
ucl, u#0 Hu||u ucl, u;ﬁOHU-HL{

For the mapping (1.88) defined in the Example 1, we have

k
| <u,e; > ‘2
L \/ i=
HLHN — H (11)”5 1 <1

sup —————= = sup
ues, uz0 |[ulls  ues, uzo [ulls

— ?

choosing u €Span(eq, ...,ex), we get ||L|ny = 1.

1.11 Functionals

Let S be a vector space with inner product <,>. A function ¥ on S into R is
called functional. 1 is a linear functional if the properties (1.54) and (1.55) are
satisfied,

1. ¥(aa) = arp(a), for each a € S, a € R (homogeneity).
2. Y(a+b)=19(a) +¢(b), foreach a,be S (additivity),
Given b € S, the functional ¥(u) =< u,b >, u € S is linear, on the

contrary ¢(u) = |lul| for u € &, is not linear, in fact, in general we have
leu]| = |af [lul] # a][u].

The following theorem is known are representation theorem for linear func-
tionals.
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Theorem 4. Let S be a finite-dimensional vector space with inner product <, >
and ¢ : S — R a linear functional. There exists a unique a € S such that

Y(u) =< a,u>, foreachucsS. (1.108)

Proof. If » = 0, (1.108) is verified by a = 0. Then let us assume that ¢ # 0
and consider the subspaces of S,

M=1{veS |y(v) =0} (1.109)

and
Mt ={ueS | <v,u>=0 foreach ve M} (1.110)

Since 1) # 0, M* contains at least an element z different from zero, and then
we can put a = ¢(w)w, where w = z/||z|. We have

<a,w>=9Y(w) <w,w>=1(w) (1.111)

and, fue M, 0 =v¢(u) =< a,u>.
Let us fix u € S; for each A € R we have

u=\w-+u-—Aw, (1.112)
where \w € M= if we choose A\ = 9(u)/)(w) we have

vl = w) = () - S 0, (1.113)

and then u — A\w € M. Taking into account the linearity of v, the choice of A
and (1.111), we have

<au>=<aAw+u—Iw >=<a,\w >= Ylu) <a,w>=1(u), (1.114)

P(w)

which proves the existence of a. As far as the uniqueness is concerned, let us
assume that there exist a;,as € S such that

Y(u) =< aj,u >=< az,u >, foreachues. (1.115)

Chosen u = a; — ay from (1.115) we get
< a; —as,a; —ag >=0, (1.116)
from which, in view of the property s4 of the inner product, the equality a; = as

follows. O

The subspace M defined in (1.109) is called the kernel of ¢. From the
theorem above it follows that if S has dimension n and v is different from 0,
then the dimension of M is n — 1.
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A functional ¢ : § — R is continuous at ag € S if for each € > 0 there is
§ > 0 such that for each a € S satisfying ||a—ag|| < d, we have |¢o(a)—p(ag)| < €.
@ is continuous on & if it is continuous at each ag € S.

The functional || || : S — R which assigns to each vector its norm, is contin-
uous at each ag € S, in fact, in view of the inequality (1.35) we have

llall = llaol[| < [la = aol|.

Analogously, from the inequality (1.35) it follows that for each given a € S, the
functional ¢ : S — R defined by ¢(v) = ||v — a|| with v € S is continuous.

Remark 2. From Theorem 4 it follows that every linear functionaly : S — R is
bounded and then continuous on S. In fact, from both (1.108) and the Schwarz
inequality (1.46) we get

[v(v)] < |la]l |Iv]| for each v € S, (1.117)
then 1 is bounded

The vector space S* = L(S,R) constituted by all linear functionals on S is
called the dual space of S. If the vector space S has dimension n, then S* has
dimension n. For {ey, ..., e,} an orthonormal basis of S, the n linear functionals
p; € 8* with p;(u) =< e;,u >, for each u € S are a basis of §*. In fact, the
linear independence of ;, i = 1,...,n follows from the linear independence of
vectors e;, i = 1,...,n, moreover, given ¢ € S&* in virtue of Theorem 4 there
exist a € S such that ¢(u) =< a,u >, for each u € S and

cp:i<a,ei>gai.

i=1
In view of (1.104) and (1.117) we have
lelly = [lall. (1.118)

The vector spaces S and &*, having the same dimension, are isomorphic.
) 9

1.12 Projections

Let M; and My be subspaces of S with My complement of M;. Then each
s € S can be written in a unique way as s = s1+s2, with s; € M7 and sy € M.
The projection on My along My is the mapping Py, defined by Py, (s) = s1.
Py, is linear and idempotent, (Paq,)? = P, -

Example 3. In R? given x! = (1,0) and x?> = (1,1), consider the subspaces
My =8Span(x') and My =Span(x?). For each v = (v1,v2), we have v = v1+v?2,
with v = (v; — v2,0) € My, v? = (vg,v2) € My, and the projection on M;
along My is defined by P, (v) = vi. For x3 = (1,2) and M3 =Span(x?), we
have v = u! + a3, with u' = (MT_“Q,O) € My, ud = (%,v2) € M3, and the

projection on My along M3 is defined by Ppq, (v) = ul.
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Let M be a subspace of § with an inner product, the orthogonal projection
on M is the linear mapping Py, that assigns to each vector v € S the vector
V = Pyp(v) € M defined in (1.66). V satisfies the condition

<v—-v,w>=0 for each we M. (1.119)

Now we are in the position to extend the notion of projection to a non-empty
closed convex set of S.
Given a subset A of S and ug € S, the distance of ug from A is the scalar

dist((ug, A) = ianL‘HUO —v|. (1.120)
ve

The following result is known as minimum norm theorem.

Theorem 5. Let S be a finite-dimensional real vector space with the inner
product <, > and let K C S be a non-empty closed conver subset of S. For each
f € S there is a unique u € K which satisfies the following equivalent conditions

If —ul = mellrcl If —v|| = dist(f, K), (1.121)

<f—-uv-u><0 foreachvek. (1.122)
The vector u = Pi(f) is called projection of f onto the closed convex set K.

Proof. First of all, let us prove that there exists u € K which satisfies (1.121),
then we prove the equivalence of (1.121) and (1.122) and finally the uniqueness
of u € K satisfying (1.122).

If f € K, then u=f;if f ¢ K, we set d = dist(f,K). From the definition
of infimum it follows that there is a sequence {u(k)}keN C K such that d, =
Hu(k) — f|| — d, for k — oo. {u®},cy is a Cauchy sequence, in fact, by using
the parallelogram law (1.47) with a = f —u® b = f — ul?, recalling that K is
convex, we have

[u® —u@|? < 242 + 2d2 — 442, (1.123)
from which we get
[u® —u@|| -0, when p,q— co. (1.124)

Thus, u® — u € K for p — oo (see Proposition 9) and d = ||u — f|| because
the norm is a continuous functional.

Now we have to prove the equivalence of (1.121) and (1.122). Let us assume
that u € K satisfies (1.121), for each w € IC we have

v=(1—-tu+tw e K foreacht e 0,1]
and then

[f —ull < [f = (1 =tu—tw| = [f —u—t(w—u)|.
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As a consequence, for t € (0, 1], we have
If—ul?<|f—ul’ -2t <f—uw—u>+t*|w—ul’

and then 2 < f —u,w —u >< ¢ ||w — u||” which implies (1.122) when ¢ — 0.
Vice versa, let us assume that u € K satisfies (1.122), we have
lu—fP—|v—f]’=2<f-uv—-—u>—|u—v|*<0 foreachveKk,

from which (1.121) follows.
In order to prove the uniqueness of u, consider uy,us € K satisfying (1.122).
We have

<f—-u,v—u; ><0 foreachveck, (1.125)
<f—uy,v—up; ><0 foreachvek. (1.126)
Setting v = uy in (1.125) and v = u; in (1.126), and summing we get
lug —uy||? <0. (1.127)
O

Example 4. Consider S = R? with the scalar product defined in (1.41), K =
B'(0,1) = {(z1,22) € R? : 22 + 23 < 1}. If £ ¢ K, we have P (f) = £/|/f||. In
fact, for each v € K, we have

f
I8 =2 10N = vl = = vl 2 0 = 1= = 1] = =

If K is not convex, the uniqueness of the projection is not guaranteed (for
S =R? and £ = 5(0,1), Pc(0) = 5(0,1)) and if K is not closed the existence
of the projection is not guaranteed (see for example K = B(0,1)).

The mapping Px : & — K defined in the preceding theorem is continuous.
In fact, the following proposition holds.

Proposition 15. Under the hypotheses of Theorem 5 we have
| Pc(f1) — Pc(£2)|| < ||If1 — £2f], for each f1,f5 € S. (1.128)
Proof. Setting u; = Px(f1) and uy = Pi(f2), in view of (1.122) we have
<fi—u;,v—u; ><0 foreachvel, (1.129)

<fy—uy,v—uy, ><0 foreachvelk. (1.130)

Putting v = up in (1.129) and v = u; in (1.130), and summing we get
ur —ws|? << fi — fr,uy — 1y >,
that, by taking the Schwarz inequality into account, implies

[ur — | < [[fi — £
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Since a subspace is closed and convex, the orthogonal projection onto a
subspace defined in (1.119) can be obtained as particular case of the minimum
norm theorem and the following proposition holds. Unlike the projection onto
a convex closed set, the projection onto a subspace is linear.

Proposition 16. If K = M, with M subspace of S, for each £ € S the projec-
tion u = Pp(f) of £ onto M is characterized by

ueM, <f—uv>=0, forechveM, (1.131)

and Paq is a linear mapping.
Proof. From (1.122) we get

<f—uv—u><0 foreachveM,
and then

<f—utv—u><0 foreachveM, foreachteR,
thus, it follows that
<f—uv>=0, foreachveM.

Moreover, if u satisfies (1.131) we have

<f—-uv—-—u>=0 foreachve M.

Given f1, f; € S, putting u; = Py (f1) and ug = Pay(f2), from (1.131) it follows
that

<f1+f27u17u2,v >=<f) —u;,v>+ <f27ll2,V >=0, (1132)

for each v € M, then, Py (f; + £5) = Pyr(f1) + Pvm(f2). Analogously, we prove
that Ppy(af) = aPpy(f) for each a € R, £ € S. O

Example 5. Let A € M, , andy € R™ be given. For m > n the linear system

Ax =y, xeR" (1.133)

may be over-determined and can be solved via the least squares approach, which
consists in minimizing the functional

¢(x) = [|[Ax —y[l2, x€R™ (1.134)

Fori=1,...,n, the vectors a"), constituted by the columns of A, belongs to R™.
Assuming that they are linearly independent, the subspace M = span(a(l), e a("))
of R™ has dimension n and Ax € M for each x € R™. Then, minimize (1.134)
s equivalent to calculate

in [|[v—yla. 1.1
min |[v —yll2 (1.135)
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In view of the minimum norm theorem, there is a unique u € R™ such that

—yll2 = min [[v - 1.136
la = yll2 = min |[v - yll2 (1.136)

and
<y-—u,v>=0, for each v e M. (1.137)

Vector u is the projection Pap(y) of y onto M and the unique x € R™ such
that Ax = u is the minimum point of (1.134).

1.13 Differentiation

Here we introduce the notion of differentiation of functions on normed vector
spaces. Let U and W be two vector spaces with inner product and let T be a
function defined on a neighborhood of 0 € U with values in WW. We say that
T(u) approaches zero faster than u and we write

T(u)=o0(u) asu—0 (1.138)

if T
Tl
u#0, u—0  |lully
If 71 and T are two functions, T} (u) = T2 (u)+o(u) means that T} (u) — T (u) =
o(u).

= 0L (1.139)

For example, for Y =W =R and T'(t) = t* with a > 1, we have T'(t) = o(t)
ast — 0.

Let g be a function defined on the open set D C R into the vector space W,
the derivative of g at t, if it exists, is defined by

21 = Lo(r) = 1im 82— 8
glt) = g(t) = lim B2 B, (1.140)
In that case we say that g is differentiable at t. The function g : D — W is

of class C' (or smooth) if g(t) exists at each ¢t € D and if the function g is
continuous on D.
Let g be differentiable at t, then we have

s—0 S
or equivalently
g(t+s) = g(t) + sg(t) + o(s), s— 0. (1.142)

'In other words, for every k > 0 there is k' > 0 such that | T(u)|lyy < k|lully if |Julle < &'.
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Since sg(t) is linear in s, g(t + s) — g(t) is equal to a function linear in s plus a
term that approaches zero faster than s.

Let & and W be normed vector spaces, D an open subset of & and T :
D — W a function. We say that T is (Fréchet) differentiable at u € D if the
difference T'(u + h) — T'(u) is equal to a linear function of h plus a term that
approaches zero faster than h. More precisely, if there exists a linear mapping

DT(u):U - W (1.143)

such that
T(u+h) =T(u) + DT (u)[h] + o(h), ash—0. (1.144)

If DT (u) exists, it is unique. In fact, for each h € U we have

DT(u)lh] = lim Tu+t O‘Z) — T _ %T(u + ah)|ao. (1.145)

We call DT'(u) the (Fréchet) derivative of T at u.
If T is differentiable at each u € D, then DT is a function from D to the
space L(U, W) of linear mappings from U to W, introduced in (1.100),

DT :D — LU, W), (1.146)

which assigns to each u € D the linear mapping DT '(u).

A function T : D — W is of class C! (or smooth) if T is differentiable at
each u € D and DT is continuous.

If D is an open subset of R and g a function from D to W, from (1.142) it
follows that Dg(t)[s] = sg(t).
The following theorem holds.

Theorem 6. Let T : D — W be a function, with D open subset of U. If T is
(Fréchet) differentiable at ug € D then T is continuous at ug.

Proof. For u € U, we have
T(ug+u) —T(ug) =T(up+u) — T(ug) — DT (up)[u] + DT (up)[u], (1.147)
since the ratio

1T (uo + ) — T(ug) — DT (uo)[ul]|
[[ul]

(1.148)

converges to 0 as u — 0, there is §y > 0 such that if 0 < ||u|| < d9 we have

1T (ao +u) = T(ug) — DT (up)[u]|| < [[u]. (1.149)
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Moreover, since DT'(ug) is linear, from Proposition 11, it is bounded as well,
then there exists x > 0 such that

DT (uo)[u]|| < llul|, for each u € Y. (1.150)
Then, for ||u|| < dp we have

1T (o + ) = T(uo)|| < [[T(uo +u) = T(up) — DT (uo)[u]|+

DT (uo)ull] < (1 + )[[ul| (1.151)
Finally, for each £ > 0, putting 6 = min(dg,e/(1 + &)), the continuity of T" at
ug follows. U

Example 6. Let L : U — W be a linear application. For ug,u € U we have
L(ug +u) = L(ug) + L(u), (1.152)

therefore, DL(ug) = L, that is DL is constant.
Let M be a subspace of the vector space S with inner product, {e1, ...,ex} an

k
orthonormal basis M and Paq the projection onto M, Ppy(v) = > < v,e; >
i=1
e;. We have

k
DPy(v)[h] = Z <h,e; >e; = Ppq(h), foreachhesS. (1.153)
i=1

Example 7. Let U a vector space with inner product <,>, ¢ : U — R the
nonlinear functional defined by ¢(u) =< u,u >, u € Y. We have

$p(u+h)=<u+hu+h>=¢(u)+2<uh>+¢h), (1.154)
with ¢(h) = o(h) ash — 0, in fact,
h,h
W — ) =0 ash - o0. (1.155)
Since 2 < u,h > is linear in h, we have that
D¢(u)lh] =2 <u,h >, for each h elU. (1.156)

Let X, X}, &5 and Y be finite-dimensional vector spaces with inner product;
let D be an open subset of X .

Let us consider the bilinear mapping 2 = : &1 x Xy — Y which assigns to
each fy € X7 and gy € Ay the product 7(fy, go) € Y. Within this framework,
the product P = 7(F,G) of two functions F : D — &; and G : D — X, is the
function P : D — Y defined by

P(u) = n(F(u),G(u)), foreachueD. (1.157)

Let us state the following fundamental proposition.

2A mapping 7 : X1 x Xa — Y is bilinear if 7(af; + Bf2,g) = an(f1,g) + Br(f2,g) and
7(f, ag1 + Bge) = an(f,g1) + Br(f, g2) for each f,f1,f2 € A1, g, 81,82 € A2, o, BER.
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Proposition 17. (Product Rule) Let F' and G be differentiable at u € D. Then
their product P = 7(F,G) is differentiable at u and

DP(u)h] = n(DF(u)[h],G(u)) + 7 (F(u), DG(u)[h]) (1.158)
forallh e X.
Remark 3. If X =R, by replacing u with t in (1.158) we have

P(t) = n(F(t), G(t)) + m(F(t), G(1)). (1.159)

Let G be an open subset of X1, F: D — X; and G : G — Y, with F(D) =
{veX,:v=F(u),ueD}Cg.

Proposition 18. (Chain Rule)
Let F be differentiable at u € D and G be differentiable at v = F(u). The
the composition C = G o F is differentiable at u and

DC(u)[h] = DG(F(u))[DF(u)h]] (1.160)

for every h € X.
Remark 4. If X =R, writing t in place of u in (1.160) we have

d .

%C’(t) = DG(F(1))[F(t)]. (1.161)
Example 8. Let us consider the functional ¢ : U — {0} — R defined by ¢(u) =
V< u,u >, u €l if the composition of the function f: RT — R defined by
f(8) = /s, for each s € RT and the functional ¢ given in Ezample 7,

P(u) = f(¢(u)), ueld (1.162)

From Proposition 18, by taking (1.156) into account, we get that the derivative
of ¥ at u is given by

Dip(u)[h] = D f(¢(u))[Dé(u)[h]] (1.163)

1
= S(¢(w)V*2<uh>= Tall < u,h >,  foreveryhecld. (1.164)
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Chapter 2

Tensor calculus

This chapter is devoted to some results of tensor algebra and analysis. The term
tensor stands for a linear function from an inner product space to itself.

Let V be a real vector space of dimension n > 2 equipped with the scalar
product -. Denoted by {e;,es,...,e,} an orthonormal basis of V, for every
u € V the quantities

U; =Uu-€;, 1= 1,...,n (2.1)

are the (Cartesian) components of u and we have

(2.2)

n
u-v:Zuivi and [lul| =
i=1

If n = 3 it is possible to prove via geometric considerations that u-v = [jul|
Iv|| cos 8, where 6 € [0, 7] is the angle between the vectors u and v.
2.1 Second-order tensors
A (second-order) tensor A is a linear mapping from V into V,
A(au+ pv) = aAu+ fAv, foreach a,f€R, u,ve. (2.3)
The set

Lin={A:V — V| A is linear} (2.4)

of all tensors is a vector space. Given A, B €Lin, a € R, the tensors A + B and
aA are defined as in the following

(A+B)v=Av+Bv, forallve), (2.5)

(aA)v =aAv, forallve). (2.6)
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The zero tensor in Lin is the tensor 0 defined by
Ov=0, forallveV, (2.7)
and the identity tensor I is defined by

Iv=v, forallveV. (2.8)

For o € R, the mapping that assigns to each v € V the vector av is a tensor,
on the contrary the function that assigns to each v the vector (v-v)v is not a
tensor, because it is not linear.

If A,B € Lin, then the product AB € Lin is defined by (AB)u = A(Bu)
for all u € V. In general, AB # BA; if AB = BA then we say that A and B
commute. Given A € Lin and the integer k£ > 0, we define the following powers

of A
1 ifk=0
k __ )
A _{ AFTA ifE> 1. (29)

Proposition 19. For every tensor A € Lin there is a unique tensor AT such
that
ATv.u=v-Au foralu,veV. (2.10)

Tensor AT is called transpose of A.

Proof. Let us first prove that for each A € Lin there is a tensor A7 which
satisfies (2.10). To this end, for a fixed v € V, let us consider the linear func-
tional ¢ : ¥V — R defined by #(u) = Au-v, u € V. From the theorem of
representation of linear functionals it follows that there is a unique a, € V such
that

Y(u) =Au-v=a,-u, foreachuel. (2.11)

Now let us consider the function B from V to V defined by
Bv =a,, foreachveYV, (2.12)
B is linear, in fact if v,w € V and a € R, we have
B(v+w) - u=ayiw-u=Au-(v+w)=

Au-v+Au-w=a,-utay-u=
Bv-u+Bw-u, foreachuce€V; (2.13)
B(av)-u=a,, -u=Au-(av) =
cay-u=aBv-u, foreachuel. (2.14)

Let us put AT = B, we have

Au-v=a,-u=Bv-u=ATv.u foreach u,v e V. (2.15)
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To prove the uniqueness, let as assume that there exist two tensors B and C
such that

v-Au=Bv-u=Cv-u foralluveV, (2.16)

then
B-C)v-u=0 (2.17)
|

for each u,v € V. Setting u = (B — C)v from (2.17) we get ||(B — C)v|| = 0,
from which we obtain (B — C)v = 0 for each v € V, and then B—C =0. O

Proposition 20. For A, B €Lin, the following properties hold,

(A+B)T =AT + BT, (2.18)
(AB)T =BT AT, (2.19)
(AT)T = A. (2.20)

Proof. For each u,v € V we have
u-(A+B)v=(A+B)u-v=(Au+Bu)-v= (2.21)
u-A'v+u-Blv=u (AT + B)v, (2.22)

which proves (2.18). Properties (2.19) and (2.20) follows directly from the fol-
lowing equalities,

u-(AB)"v=(AB)u-v=A(Bu)-v=Bu-ATv = (2.23)
u-BTATy, (2.24)
u-(ANTv=ATu.-v=u-Av. (2.25)

O

2.2 Symmetric and skew-symmetric tensors

A tensor A € Lin is symmetric if AT = A and is skew-symmetric if AT = —A.
Let us denote by

Sym={A € Lin: A =A"T} (2.26)
the subspace of Lin of all symmetric tensors and by
Skw = {W € Lin: W = -W7'} (2.27)

the subspace of Lin of all skew-symmetric tensors. Every A € Lin can be written
in a unique way as the sum of (A + AT)/2 € Sym and (A — AT)/2 € Skw.
Moreover, since SymNSkw = {0}, Lin is the direct sum of Sym and Skw,

Lin = Sym & Skw. (2.28)

Tensors (A+AT)/2 e (A—AT)/2 are called symmetric part and skew-symmetric
part of A.
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2.3 Dyads

For a,b € V, a® b is the element of Lin defined by,
(a®@b)u=(u-b)a forallue. (2.29)

Tensor a ® b is called dyad and the symbol ® denotes the tensor product. The
relation (2.29) defines a tensor, in fact,

a®@bu+v)=[(u+v)-bl]a=(u-b+v-bla=
(a®@b)u+ (a®b)v, (2.30)
a®b(au) = a(u-b)a=a(a®b)u (2.31)
for all u,v € V, a € R.

Proposition 21. Consider a,b,c,d € V and and let {ey,...,e,} be an or-
thonormal basis of V.

(i) The following properties hold

(a®@b)’ = (b®a), (2.32)
(a®b)(c®d) = (b-c)(a®d), (2.33)
O S P (234
i: e;®e; =L (235)

(ii) The dyad a ® b is symmetric if and only if b = aa, a € R and is skew-
symmetric if and only if a=b = 0.

Proof. The proof of (2.32) follows from the equalities
u-(a®b)lv=(a®b)u-v=(u-b)(a-v)=
u-(a-v)b=u-(b®a)v, foreachu,vel. (2.36)

From the relations
(a®@b)(c®d)u=(a®b)(d-u)c=(b-c)(d-u)a=

(b-c)(a®d)u, foralluel, (2.37)

condition (2.33) follows, moreover (2.34) follows directly from (2.33). As far as
(2.35) is concerned, we have

(e1®e+...+e,Qe,)u=

uieq + ... + upe, = Iu, for each u € V. (2.38)
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Next exercise summarizes some properties of the tensor product.
Exercise 1. Prove that given A € Lin and a,b € V, we have
A(a®b)=Aa®b, (2.39)
(a®@b)A =a® ATb. (2.40)
Solution. For each u € V, we have
A(a®b)lu=A(b-u)a=(b-u)Aa=(Aa®b)u, (2.41)
(a®@b)Au= (b-Au)a= (ATb-u)a=(a® ATb)u. (2.42)
Consider e € V with ||e| = 1, for each v € V the vector (e ® e)v = (v-e)e
is the projection of v onto Span(e); the vector (I — e ® e)v is the projection of

v onto the subspace orthogonal to e,

PSpan(e) =eQ®e, PSpan(e)J- =I-e®e.

2.4 Components of a tensor

Given an orthonormal basis {ej,...,e,} of V, the Cartesian components of a
tensor A € Lin are
Aij :ei'Aej7 7".7 = 1a-~-an- (243)

For u € V, we have

u= Zujej7 (2.44)
j=1

putting v = Au, for each i = 1,...,n we have

vi=v-e;=Au-e; =e;- ZA(ujej) = Zei~Aejuj = ZAijuj. (2.45)
j=1 j=1

j=1

Proposition 22. Let {ey,...,e,} be an orthonormal basis of V, the dyads {e; ®
€;}ij=1,..n are a basis of Lin. In particular, for each A € Lin, we have

A= i Aij(ei ® ej). (246)

ij=1
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Proof. Let us start by proving that the dyads {e; ® ej}i,jzl,m’n are linearly
independent tensors. Let us consider the linear combination of the dyads {e; ®
€;}ij=1,..n with coefficients «;;, we have

Z ;€4 X €; = 0 (247)
ij=1
if and only if
Z (e, @eju= Z ajjuje; =0, foreachue V. (2.48)
ij=1 ij=1
Putting
Bi=> aijuj, i=1,..n (2.49)
Jj=1
from (2.48) we get f1 = ... = f, = 0 and then
n
Zaije]‘ -u=0, foreachueV, i=1,..n. (2.50)
j=1

The relations in (2.50) are equivalent to
Zaijej = 0, i = 1, ey Ny (2.51)
j=1

that, in their turn, taking into account the linear independence of vectors
ei, ..., ey, imply the equalities o;; = 0, ¢,7 = 1,...,n.
For each u € V we have

n n n

Au= Z(AU)ZGZ = ZZAij“jei = Z Aij(u-ej)ei = Z Aij(ei ® ej)ll,

i=1 i=1 j=1 i,5=1 3,j=1

which proves (2.46) and allows to conclude that {e; ® ej}i,jzlwyn is a basis of
the vector space Lin that, therefore, has dimension n?. O

Proposition 23. Given A € Lin, we have
A=) (Ae;®e;). (2.52)
j=1

Proof. To prove (2.52) we use the representations (2.46) and (2.43) along with
the relation (2.33), from which we get

n n n
A=) Ajleive) =) (ei-Aej)(ei®e;) = D (e;@e;)(Ae; @e)) =
ij=1 ij=1 ij=1
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n n n
(Zei@)ei) ZAej@)ej :ZAej@)ej,
i=1 j=1 j=1
where the latest equality follows from (2.35). O
For a,b € V, we have
(a®b);j =ab;, i,j=1,...,n, (2.53)

in fact,
(a@b)ij =ei-(a®@ble; = (a-e;)(b-e;) = ab;.

Moreover the components of the identity tensor I are

(1 ifi=,
JU_{ 0 ifit] (2.54)

and, for S a symmetric tensor and W a skew-symmetric tensor, we have

Sij =€;- Sej = Sei ‘e = Sji; ’L,] = 17 ceey 1, (255)
Wl‘j = € ~Wej = —Wei ‘€ = —Wji, i,j = 1, ceey 1, (256)

Given a tensor A € Lin, the matrix

An A . A
Ay Axy . Ay

[A] = (2.57)
Anl An2 Ann
is the matriz of the components of A with respect to {eq,...,e,}.
Given the tensors A, B €Lin, we have

[AT] =[A], (2.58)
[AB] = [A][B], (2.59)

1 0 0
m= %1 - 9. (2.60)

0 0 1

41



2.5 Inner product and norm on Lin

The trace is the linear functional on Lin that assigns to each tensor A the scalar

trA and satisfies
tr(a®@b)=a-b, foreachabeV

From the relation (2.46) and the linearity of ¢r we have

trA=tr [ Y Ajle;®e;) | =Y Ajtrei®e;) =

ij=1 i,5=1
n n
E Aij(ei . ej) = E A”
ij=1 i=1

Proposition 24. The trace has the following properties
trA = trAT,
tr(AB) = tr(BA),

for each A, B €Lin.
Proof. We have

n n n

trA = ZA“ = Zei -Aei = Zei-ATei = t?"AT,
i=1 i=1 i=1

and (2.63) is proved. As far as (2.64) is concerned, we remark that

n n
AB = Z Aij(ei X ej) Z Blm(el ® em) =

i,j=1 I,m=1
n n
Z AijBim(e; @ ej)(er @ ep) = Z AijBjm(ei ® en),
i.glm=1 i g,m=1

BA=| Y Bule®en) || D Aijle;@e)) | =

I,m=1 ij=1

Z AijBlm(el ®en)(e;® ej) = Z AZ-]-Bli(el ® ej).

i,5,l,m=1 ,J,l=1

From (2.65) we get

tr(AB) = Z AijBjm(e;-en) = Z AijBji,

i,j,m=1 1,5=1
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and from (2.66) we have
t’l"(BA) = Z A,;jBli(el -ej) = Z Ai]‘Bﬂ,
i,5,0=1 ,j=1

and the thesis follows. O

In particular, from the preceding proof, it follows that the components of
the product AB are given by

e, -ABe, = ZAijjl’ m,l=1,..,n. (2.67)
j=1

The vector space Lin can be equipped with the inner product
A-B=1tr(ATB), A,B € Lin. (2.68)
Let us verify that (2.68) is scalar product. The symmetry is satisfied, in fact
A-B=tr(ATB) =tr(BTA) =B-A,
as for the bilinearity, given A, B, C €Lin we have
A-(B+C)=tr(AT(B+C)) =tr(A"B) +tr(ATC) =
A-B+A-C,

moreover, for each a € R,
A - (aB) = tr(aATB) = atr(ATB) = aA - B.
Finally, as for the positivity, we have

AA=tr(A"A)=tr || D Aij(e;@e) | Y Am(er@ey)| =

i,j=1 I,m=1

tr Z AijAlm(ej ® ei)(el ® em) =tr Z Aiinm(ej ® em) =

i,4,l,m=1 ij,m=1

En:A?jzo,

ij=1

moreover, A-A =0 if and only if A;; =0fori,j =1,...,n.

The inner product of A and B in terms of components is given by

A.-B= Z A;jBij, (2.69)

i,j=1
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in fact,

AB*trATB ZA” e; ®e;) ZBM er®ep))
3,j=1 k=1
Z Ai;Bi(e; ® e)) Z AijBij. (2.70)
i,7,0=1 i,j=1

In the vector space Lin the norm induced by the inner product (2.68) is

IA| = VA tr(ATA), A € Lin. (2.71)

In particular, we have
IA]l = [[AT], (2.72)

in fact,
|A|I?=A A =tr(ATA) = tr(AAT)

=tr(AT)TAT) = AT AT = ||AT|2. (2.73)
Exercise 2. The norm (2.71) is submultiplicative,

|AB| < [|A|l IB||  for each A,B € Lin. (2.74)

Proposition 25. For A,B,C €Lin, u,v,a,b € V, the following relations hold

I-A=trA, (2.75)
C-(AB)=(ATC)-B=(CB")-A (2.76)
u-Av=A-(u®v), (2.77)
(a®@b)-(u®v)=(a-u)(b-v), (2.78)
[lu@ul = [ul* (2.79)

Proof. (2.75) is trivial; to prove (2.76) we remark that
C-(AB) =tr(CTAB) = tr((ATC)TB) = (ATC)-B =

tr(BCTA) = tr((CB")TA) = (CB)- A

Moreover,

u-Av = Zui ZAijvj = Z Aijuivj = Z Aij(u® V)ij =A- (u ®V),
i=1 j=1

ij=1 ij=1
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then (2.77) is proved. Finally,

n n n
(a®@b) - (u®v)= Z a;bjuv; = (Z aiui> (Z bj”ﬂ') = (a-u)(b-v),
ij=1 i=1 i=1
and (2.78) is proved as well. Finally,
[lu@u|?=tr((u@u)(ueu) = (u-u)? = ul"

O

From (2.78) and (2.46) it follows that {e; ® e;}; j=1, .. is an orthonormal
basis of Lin,

. 1 i=k j=1
(e @e)) (e @ er) = (ei-ex)(e; ) = { 0  otherwise.
Given A €Lin, for each u € V, we have
|Auf?> =Au-Au=u-ATAu=ATA - (u@u) < |ATA| [[u®u]

< [|ATI IA] u @ ul| = [|A[* [jul?,

then,
[Au| < [[Afl [[uf|, for each ue V. (2.80)

In particular, in agreement with the fact that A is linear, A is bounded (Propo-
sition 11).

Proposition 26. Given A, B €Lin, the following properties hold,

(1) If A is symmetric, we have
1
A'C:A.CT:A,i(C—kCT), for each C € Lin. (2.81)
(2) If B is skew-symmetric, we have

1
B~C:—B-CT=B~§(C—CT), for each C € Lin. (2.82)

(8) If A is symmetric and B is skew-symmetric, we have A -B = 0.
(4) If A -C =0 for every symmetric tensor C, then A is skew-symmetric.

(5) If A -C =0 for every skew-symmetric tensor C, then A is symmetric.
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Proof. (1) If A = AT, then
A.-C=tr(ATC)=tr(AC)=A.CT,
moreover,
A.C= %(A~C+A-C) = %(A~C+A-CT) =
Aé(c +cCT).
(2) On the contrary, if A = — AT we have
A.-C=tr(ATC) = —tr(AC) = —-A-C7,
and 1 1
A.-C= 5(AC+A~C) = 5(A.C—A-CT) =
A-S(C-Ch),
(3) If A is symmetric and B is skew-symmetric, then
A-B=tr(AB)=B”.A=-B-A,

then A-B = 0.
(4) Let us assume that A is not skew-symmetric, then A = S + W, with
S €Sym, W €Skw; in view of (3) we have

0=A-C=S-C+W.-C=S.-C, foreach C e Sym;

in particular, choosing C = S, we have S-S = 0 and then S = 0.
(5) The proof is analogous to that of point (4). O

We know that Lin=Sym@Skw, from the previous proposition it follows that
Skw is the orthogonal complement of Sym and Sym is the orthogonal comple-
ment of Skw,

Sym® = Skw, Skw™ = Sym (2.83)

and that Psym(A) = ABAT e Poyyw(A) = A*2AT are the orthogonal projections

of A onto the subspaces Sym and Skw, respectively.

2.6 Invertible tensors
A tensor A is called invertible if it is injective
(i) if u; # uy then Au; # Au,,

and surjective,
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(ii) for each v € V there exists (at least) u € V such that Au=v.

If A is invertible, the tensor A~!, called inverse of A, is defined as follows.
Given vy € V there is a unique (in view of (i)) ug € V such that Aug = vy,
then, we can define A~'vy = ug. A~! is linear, in fact, given v;,vy with
Au; = vy, Auy = vo, from the linearity of A it follows that A(ajuy + asug) =
a1vy + asvs, then

-1
A7 (a1 vy + agvae) = ajug + aguy =

011A71V1 + CMQA71V2. (284)
From the definition it follows that if A is invertible then
AAT'=AIA=1 (2.85)

These relations characterize A~!, in fact, the following theorem holds.
Theorem 7. Let A be a tensor. If there exist two tensors B, C € Lin such that

AB =CA =1, (2.86)
then A is invertible and B = C = A~%.

Proof. If Au; = Auy then CAu; = CAu; and u; = up, then A has the
property (i). For each v € V put u = Bv, then Au = ABv = v and A satisfies
(ii). From AB = I, multiplying (left) by A=! we get B = A~!, and from
CA = I, multiplying (right) by A~! we have C = A~!. O

Theorem 8. A € Lin is injective if and only if it is surjective.

Proof. Let us assume that A is injective, that is Au = 0 implies u = 0. Let
{e1,...,e,} be a basis of V, then {Aey,...,Ae,} is also a basis of V. In fact,

from
i=1 i=1

we get Z?:l a;e; = 0 and then a; = ... = a, = 0. Therefore each v € V can
be written as v =>"" , a;Ae; = A (D", a;e;) = Au and A is surjective.
Now let us assume that A is surjective, that is each v € V can be written
as v=Au. If {f},...,f,} is a basis of V, let ey, ...,e, € V be vectors such that
f, = Ae;, i = 1,...,n, then {eq,...,e,} is a basis of V, in fact >\, oye; = 0
implies A (3", ae;) = > i, a;f; = 0 and then a3 = ... = a,, = 0. Thus, we
have proved that if Au = 0 then u = 0, and then A is injective. O

Theorem 8 does not hold in an infinite dimensional vector space. Let P[0, 1]
be the vector space of polynomials with real coefficients, p(z) = ag +ayx + ... +
arpz®, with k integer and 2 belonging to the interval [0,1]. Consider the linear
function T : P[0,1] — PJ0,1] defined by T'(p(x)) = xp(x). T is injective, but
not surjective, in fact given the polynomial p(z) = ag, there is no ¢ € P[0, 1]
such that T'(qg) = p. Moreover the linear function D : P[0,1] — PJ0, 1] defined
by T(p(z)) = p'(x), is surjective, but not injective, in fact for p(z) = a¢ and
q(x) = by, with ag # by we have D(p) = D(q).
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Theorem 9. (1) Let A,B € Lin be invertible tensors, then AB is invertible
and
(AB)' =B 'A% (2.88)

(2) Let A € Lin be invertible and « # 0, then oA is invertible and

1
A l=-Al
(ah) = -

(3) Let A € Lin be invertible, then A~1 is invertible and

(AH 1 = A. (2.89)

(4) Let A € Lin be invertible, then AT is invertible and

(A~ =(A™hH" (2.90)

(5) Let A € Lin be invertible, then A* is invertible for each k € N and
(AF) =1 = (AHk, (2.91)

Let us consider the functional det :Lin— R that assigns to each tensor A the
determinant of the matrix [A] of the Cartesian components of A with respect
to the orthonormal basis {e1, ...,e,} of V

det A = det[A]. (2.92)

det A is called determinant of the tensor A. In the following, we will prove that
the definition does not depend on the choice of the basis {e1,...,e,} di V.

The following properties of the determinant of a tensor are a direct conse-
quence of the analogous properties of the determinant of a matrix. For each
A B € Lin we have

det(AB) = det A det B, (2.93)
det(AT) = det A, (2.94)
det(aA) =a"det A, «a€R, (2.95)
det(I) = 1. (2.96)

The following proposition holds.

Proposition 27. A tensor A is invertible if and only if det A £ 0, in this case

det(A™1) = (det A)~ L. (2.97)
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Proof. Tf A is invertible, from (2.85), taking (2.93) into account, it follows that
1 =det Adet(A™1),

from which det A # 0 and (2.97) follow. Vice versa, let us assume that det A is
different from 0, then A is injective. In fact, the relation Au = 0 is equivalent to

n

the linear system ) A;;u; =0, ¢ = 1,...,n whose unique solution is u; = ... =
j=1

uy, = 0. Then, in virtue of the Theorem 8 we conclude that A is invertible. [

Example 9. Given e € V with |le]| = 1, the tensor e ® e which assigns to each
v €V the vector (e -v)e is not invertible since it maps the subspace orthogonal
to e in the vector 0.

2.7 Orthogonal tensors
A tensor Q is orthogonal if it preserves the inner product - on V,
Qu-Qv=u-v, foreachu,veV. (2.98)

In particular, an orthogonal tensor is invertible, in fact, from(2.98) for v = u
we get
[Qul| = [[ul], (2.99)

thus, if Qu = 0, then u = 0. An orthogonal tensor is an isometry (see (1.67)).
Condition (2.99) expresses the fact that Q preserves the norm of vectors.

Proposition 28. Q € Lin is orthogonal if and only if
QQ"=Q"Q=L (2.100)
Proof. Let us assume that condition (2.100) is satisfied, then
Qu-Qv=u-Q'Qv=u-v, foreachu,vey,
and Q is orthogonal. Vice versa, let us assume that Q is orthogonal,
u-v=Qu-Qv=u-Q’'Qv, foreachu,veV,

then we have that u- (v — Q% Qv) = 0 for each u € V, therefore, v—QTQv = 0
for each v € V and finally

Q'Q=1 (2.101)
If we right multiply (2.101) by QT we get
Q'QQ" =qQ”,
from which, left multiplying by Q7 we deduce that QQ” =1. O
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From the preceding proposition, we get that Q is orthogonal if and only
if Q7 = Q~!, moreover, if Q is orthogonal then det Q = +1. An orthogonal
tensor R with det R = 1 is called rotation.

We have seen that if A is an invertible tensor and {ey, ..., e, } is a basis of V,
then {Aey, ..., Ae,} is a basis of V. If A is an orthogonal tensor the following
proposition holds.

Proposition 29. If{e1,...,e,} is an orthonormal basis of V and Q is an orthog-
onal tensor, then {Qe,, ..., Qe,, } is an orthonormal basis of V. Vice versa, if Q
is a tensor such that if {e1, ...,e,} is an orthonormal basis then {Qeq, ..., Qe, }
is an orthonormal basis, Q is orthogonal.

Proof. Let Q be an orthogonal tensor, we have
Qei . er = €; -ej = (51‘3‘,

then {Qe,, ..., Qe, } is an orthonormal basis of V.
Now let us assume that {Qey, ..., Qe,, } is an orthonormal basis of V. Since

Qe;-Qe; =0;; = €;-ey,
it is an easy matter to verify that
Qu-Qv =u-v, foreachuvel.
O

Let £ = {ey,...,e,} and F = {fy,....f,} be two orthonormal bases of V.
The tensor

Q=) fioe, (2.102)
i=1
is orthogonal and
f,=Qe;,, i=1.n (2.103)

Given u € V we have

n n
u= E i€, u= E nifs,
i—1 i=1

with .
&=u-e = Zﬁjfj'ez‘
j=1

= aner e, = ZQijnj 1= 1, ey Ny (2104)
j=1 j=1

where 0;; = e; - Qe; are the components of Q with respect to the basis F.
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Given (&1, ...,&,) € R™, the vectors u = > " ;e and v = Y " &f;, in
view of (2.103), are linked by the following relation

v = Qu. (2.105)

Thus, tensor Q (or more precisely the matrix with components @Q);;) can be con-
sidered a coordinate transformation as in (2.104) or as a vector transformation,
as in (2.105). In this case, Q represents a change of basis, from basis E to basis
F.

Given the tensor B, we wonder what is the relationship between the matrix
of its components B;; with respect to £ and the matrix of its components BZ’»j
with respect to F'

B= ) Bje®e, (2.106)
ij=1
B= ) Bjfiof. (2.107)
ij=1
We have
and
[B'] = [Q"BlQ], (2.109)

where [B] and [Q] are the matrices of the components of B and Q with respect
to E.

Finally, if B;; are the components of a matrix, we want to determine the
relationship between the tensors B and C defined, respectively, by

B = Z Bijei ®ej, (2110)
ij=1
and .
C= ) Bjfiaf; (2.111)
ij=1
From (2.110), (2.111) and (2.103) we get
C =QBQ". (2.112)

Relation (2.112) expresses the link that must exist between a tensor B and a
tensor C such that if Bu = v, then CQu = Qv, for each u € V,

u \4

B
—
il il (2.113)
Qoo
Tensor QBQT is called orthogonal conjugate of B with respect to Q.
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Example 10. Let us put n = 3 and consider the change of basis

f; = cosfe; + sin fe,, (2.114)
fo = —sinfe; + cos fe,, (2.115)
f3 = e3, (2116)

corresponding to a positive (anticlockwise) rotation of an angle 6 about es. The
rotation

R=e3s®e3+sinflea®Re; —e; ®ez) +cosbe; ®e; +ex®ey)

is such that Re; = f; and the matriz of its components R;; = e; -Re; with
respect to F is

cosf —sinf 0
sinf cosé O |. (2.117)
0 0 1
The orthogonal tensor Q = —I is called central reflection in the space of

vectors.
For n = 3, the orthogonal tensor Q whose matrix of components is given by

0
1 0 |, (2.118)
0

is a reflection with respect to the subspace spanned by vectors e; and es.
Now, we can prove the following result.

Proposition 30. The definition of determinant given in (2.92) does not depend
on the choice of the basis of V.

Proof. Let us start by noting that if {ey,...,e,} and {fi,...,f,} are two or-
thonormal bases of V), there is an orthogonal tensor Q such that

Qe, =1f;, i=1,..n. (2.119)
In fact, the tensor
Q=fiver+HRXey+...+f,®e, (2.120)

satisfies (2.119) and is orthogonal in view of Proposition 29. From definition
(2.92) it follows that det A = det[A], where the matrix [A] has components
A;; = e;-Aej, i, = 1,...,n. Let [A’] be the matrix of the components of A
with respect to the basis {fi, ..., f,},

Al =f-Af;, ij=1,..,n (2.121)
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and let [QT AQ] be the matrix of the components of the tensor Q7 AQ with

respect to the basis {ey,...,e,},
A;/] =e;- QTAer7 ,j=1,..,n,
in view of (2.119) we have
A, =Qe;-AQe; = A, ij=1,..n.
Still from definition (2.92) we have
det QT AQ = det[QT AQ] = det[A],
from the relation (2.223) we finally get that

det[A] = det[A’].

2.8 Some subsets of Lin
A tensor A is positive semidefinite if
v-Av >0, foreachveV,

is positive definite if v-Av >0, for each v # 0.
A tensor A is negative semidefinite if

v-Av <0, foreachvel,

is negative definite if v-Av < 0, for each v #£ 0.
Let us consider the following subsets of Lin,

LinT = {A € Lin : det A >0},

Psym = {A € Sym : A is positive definite},
Sym™ = {A € Sym : A is positive semidefinite} ,
Nsym = {A € Sym : A is negative definite},
Sym~ = {A € Sym : A is negative semidefinite} ,
Orth = {Q eLin: QQT = QTQ = 1} ,
Ortht = {R € Orth : detR = 1}.
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Lint, Orth e Orth™ are groups' with respect to the multiplication by tensors;
Orth is called orthogonal group, Orth™ is called rotation group. Psym, Nsym,
Sym™ and Sym~ are convex cones?. Sets Sym and Skw defined in (2.26) and

(2.27) are vector spaces of dimension "(";1) and "("2_1), respectively. For n = 3
the sets

1
{61 ®ep,esPeye3®es, —(eg ey +ex®ey),

V2

1 1
\ﬁ(el ®e3+e3®e1),ﬁ(e2 ®e3+e3®e2)}, (2135)
and

1
{\/5(91 ez —ey®eyq),

1 1
E(el ®e3—e3®e1),ﬁ(e2 ®e3—e3®e2) R (2.136)

are an orthonormal basis of Sym and Skw, respectively.
A tensor is called spherical if A = oI, with « € R. Given A € Lin, the
tensor

1
Ag=A - —(trA)I, (2.137)
n
is called deviatoric part of A. From (2.137) it follows that trAg = 0. Let
Dev={A € Lin: trA =0} (2.138)

be the set of deviatoric part of all tensors and
Sph={al: a € R} (2.139)

be the set of all spherical tensors. It is an easy matter to prove that Dev and
Sph are subspaces of Lin with dimension n? — 1 and 1, respectively, that Dev is
orthogonal to Sph and that

Lin = Dev + Sph. (2.140)
Thus, it holds that
Lin = Dev & Sph

and the orthogonal projections Ppey and Pspn of Lin onto Dev and Sph are
defined by

1
(trA)I, A € Lin. (2.141)

o
Exercise 3. For D € Psym, Q € Orth, show that QDQT e Psym.

Ppev(A) = Ay, Pspn(A)

LA group G is a set of elements with the operation * which satisfies the following properties:
1. Ifa,b€ G, thenax*xb e G,

2. For each a,b,c € G, we have (a*xb) xc=ax* (bx*c),

3. There exists the identity element 1 such that 1 xa =a %1 = a, for each a € G,

4. For each a € G, there is an element a le G, such that alxa=axa =1

2A subset C of a vector space S is a cone if Au € C for each A > 0 and u € C.
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2.9 Vector product

In this section we fix n = 3. Given u,v € V let us denote by u A v the vector
product of u and v.

Let {e1,e3,e3} be a right orthonormal basis, the components of u A v with
respect to this basis are

UgU3 — U3V, UIV1 — UIV3, UV — UV1. (2.142)

The vector product A has the following properties,

(cu+ Bv)Aw=auAw+ pvAw, (bilinearity) (2.143)
uAv=-vAu, (skew-symmetry) (2.144)
uAu=0, (2.145)

u- (VAw)=w-(uAv)=v-(wAu) (2.146)

for each u,v,w € V, o, 8 € R.
Moreover, if u # 0, then u A v = 0 if and only if v = au with a € R. In
fact, from (2.142) the following relations follow

U2V3 = U3V2, U3V1 = U1V3, U1V = U2V]. (2.147)

From (2.147) assuming, for example, that uq # 0, we get

U U
Vg = —2@1, v3 = —37)1, (2.148)
U1 Uq
and then v = Z—llu.
The vector u A v is orthogonal to the subspace spanned by u and v and we

can prove that
[uAv| =Tl [lv] siné, (2.149)

where 6 € [0,7] is the angle between the vectors u and v. Moreover, the
mixed product u- (v A w) is equal to zero if and only if u, v and w are linearly
dependent; in fact, if u- (v Aw) =0 then u=0, or vAw =0, that is w = av
for some a € R, or u is orthogonal to v A w and then belongs to the subspace
spanned by v and w.

The further properties hold,

luAv|? = [ul?|v]® = (u-v)?, for each u,v €V, (2.150)

[uAv|?+(u-v)? =1, foreachu,veV with |[ul|=|v|=1 (2.151)
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Proposition 31. Foru,v,w €V, we have

(uAV)Aw=(u-w)v—(v-wu=(vRu—u®v)w. (2.152)

Exercise 4. For a,b €V, show that the unique solution to the linear equation
x+aAx=Db (2.153)

18
1

=T et @ batbAral (2.154)

X

Now we are in the position to prove that (for n = 3) there exists a linear
bijective mapping from Skw to ), which therefore, are isomorphic. For a vector
w with components w1, wo, w3, let us consider the skew-symmetric tensor

W =—ws(e1@exs—ex®@e;) +wa(e; ®e3 — ez Qep)

7’[01(82 X e3 —e3 ®62). (2155)
It is easy to verify that

Wa=wAa, foreachacV, (2.156)

w is called axial vector of W.
Vice versa let W be a skew-symmetric tensor

3
W = Z Wij(ei (%9 e; —e; & ez'). (2157)
i,j=1
i<
For every a € V we have

(ei®ej —e;®e)a=(ej-a)e; — (e;-a)e; = (e; Neg;) Aa, (2.158)

then ,
Wa = Z Wij(ej A ei) A a, (2.159)
ij=1
<

and
3

W= WiyeAe;) (2.160)
l%]<:j1

is the axial vector of W.
From (2.247) it follows that (for W # 0) the subspace of V

KerW ={veV|Wv=0} (2.161)
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has dimension 1 and is spanned by w. KerW is called axis of W.
Given ey, e; orthonormal vectors, the vector e3 = e; A es is the axial vector
of the skew-symmetric tensor

W = e ®e; —e; es. (2162)

Proposition 32. Consider Q € Orth, if det Q = 1, then there exists e € V such
that Qe = e. If, on the contrary, det Q = —1, then there exists e € V such that

Qe = —e.
Proof. We have

det(Q —I) = det[Q(I — Q)] = det Qdet(I — Q) =

— det Qdet(Q — I) = — det(Q — I),

then det(Q —I) = 0 and in virtue of Theorem 8, there is e € V, e # 0 such that
(Q—T)e =0. If det Q = —1, the proof is analogous. O

Exercise 5. For Q €Orth let e € V be a vector such that Qe = e.
1. Prove that QTe =e.

2. Let w be the axial vector of the skew-symmetric part of Q, prove that
e €Span(w).

Solution. 1. Qe =e = Q7Qe = Qe = QTe =e.
2. Let W = (Q — Q%) /2 be the skew-symmetric part of Q, we have

1
Wv = 5(Q—QT)v:wAv, vevy, (2.163)
in particular,

wAe=We=0, (2.164)
then e eSpan(w).

From the Proposition 32 we get that the subspace A(Q) = {e € V: Qe = e}
contains non-zero elements. A(Q) is called azis of Q and, in view of the exercise
5, has dimension 1.

Exercise 6. Given W, Z €Skw, let w,z € V be the corresponding axial vectors.
Prove that
WZ=z@w—(z -w); (2.165)

thus, in particular
WZ-ZW =zQw-wQ® 2z, (2.166)

Z- W =2(z-w),

and
1

W (2.167)

Iwll =
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Solution. In view of (2.247) and (2.152) we have
WZv=wA(zAV)=(v-w)z—(z-W)V

=[z®@w—(z-w)I]v, foreachveV.

If the vectors u,v,w € V are linearly independent, then the scalar |u- (v A
w)| is the volume of the parallelepiped P determined by u, v, w.

Proposition 33. Given the linearly independent vectorsu,v,w € V and A €Lin

we have
Au-(Av A Aw)

det A = o (v AW) (2.168)
In particular, from (2.168) we get the relation
Vol(A(P))
Al = ——+5 21

which gives a geometrical interpretation of the determinant. In (2.169) A(P) is
the image of P under A and Vol designates the volume.
Relation (2.168) comes from the following propositions.

Proposition 34. For A € Lin, let {u,v,w} and {u/,v’, w'} two sets of linearly
independent vectors of V. We have

Au-(AvAAw)  Au' - (AV ANAW)
u-(vaw)  u-(VAW)

(2.170)

Proof. Since u,v,w are linearly independent, we have that u- (v Aw) # 0. Let
{e1,e3,e3} be an orthonormal basis of V, with e3 = e; A es. To prove (2.170) it
is sufficient to prove that for each set of linearly independent vectors {u, v, w}
we have

Au-(AvAAw)=u-(vAw)Ae; (Aey A Aes)]. (2.171)
The following relations hold

u = uje; + uses + uzes, (2.172)
VvV = vie1 + v9es + v3es, (2.173)
W = wi€e; + waeq + wses, (2174)

from which we get
Au-(Av AAw) = (ujAe; +usAes + usAes) - [(viAe + vaAest+

’UgAeg) A\ (wlAel + woAey + w3Ae3)] =
(ulAel + u2Ae2 + ug,Ae3) . [vlngel A Ae2 + vlngel A A83—|—
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vowi Aeg N Ae; + vawszAea A Aes + vswi Aes A Ae; + vswoAeg A Aey] =
ujvowszAer - (Aex A Aes) + ujvswoAer - (Aes A Aey)+
ugviwsAes - (Aer A Aes) + ugvswi Aes - (Aeg A Aey)+
usviwoAes - (Aer A Aes) + ugvowi Aes - (Aea A Aep) =

Ae; - (Aea A Aes)[ujvaws — u1v3we — UV ws + UsUzwi+

uzv1we — uzvawi] = [u- (v Aw)]Ae; - (Aea A Aes).
O
Proposition 35. Let {e1,es,e3} be an orthonormal basis of V, with es =
e; A eg; for each tensor A we have
det A = Ae; - (Aey A Aej). (2.175)
Proof. We have
3
Aej, = ZAikei, k=1,23. (2.176)
i=1
then
Aeg A Ae3 = A12A2383 — A12A3392 — A13A2263+ (2177)
Ao Azzer + A1z Azzer — AzaAsze, (2.178)
Ae; - (AesNAes) = A1 (AgaAzz — AzpAgz) + Ag1 (A3 Az — A1 Azz)+ (2.179)
Az1(A12A23 — A13A9). (2.180)
On the other hand
det A = Ay (A Azz — AzaAg3) + A1 (A13As2 — A1 As3)+ (2.181)
As1(A12423 — A13A22), (2.182)
from which the thesis follows. O

Exercise 7. Let o : V XV xV — R be a skew-symmetric trilinear functional,
that is linear in each argument and

o(u,v,w) = —p(v,u,w) = —¢p(u,w,v) = —¢(w,v,u), (2.183)

for allu,v,w € V. Let {e1,e2,e3} be an orthonormal basis of V, for A €
Lin, prove that

p(Aer, e, e3) + (er, Aes, e3) + p(er,eq, Aes) = (trA)p(er, es, e3). (2.184)
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Solution.

3
@(Ael,eg,eg) = (,D(Z Ailei,eg,eg,) = (2185)
i=1
p(Arrer, ez, e3) + p(Azez,€2,€3) + p(Azie3, €2, €3). (2.186)

On the other hand we have
p(Az1e2,€3,e3) = As1p(ez,e2,e3) = —Az1p(ez, €2, €3), (2.187)

then ¢(Asies,e3,e3) = 0. In a similar way we prove that ¢(Asjes, ez, e3) =0
and from (2.186) we get

@(Ael,eg,eg) = cp(Allel,eg,eg). (2.188)
Using the same arguments for ¢(e1, Aes, es) and (e, e, Aes) the thesis fol-
lows.
2.10 Cofactor of a second-order tensor

Put n = 3. Given A € Lin, the cofactor A* of A is the unique element of Lin
such that for each w € V and W &€ Skw linked by the relation

Wv=wAv, foreachveV, (2.189)
vector A*w and tensor AWAT in their turn, satisfy the relation
AWATv = (A*w) Av, foreach v € V. (2.190)

Proposition 36. Consider A € Lin, its cofactor A*, and ¢ € V. The following
properties hold.

(1) For each a,b € V, we have

A*(aAb) = (Aa) A (Ab). (2.191)

(2) If A is invertible, then A* is invertible and

A* = (det A)A™T. (2.192)

(8) The rotation group Orth™ coincides with the set

c={ReLin—{0} : R=R"}. (2.193)

(4) The dyad c ® c satisfies the relation

I-c®c) =1-c-c)I+c®c. (2.194)
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(5) Let {e1,eq,es} be an orthonormal basis of V, we have

3
d (I-e@e) =1 (2.195)

i=1

Proof. (1) Given w = aAb and W =b®a—a®b, the skew-symmetric tensor
associated to w, in view of (2.190) we have

(A*w)Av=A(b®a—-ax@b)ATv (2.196)

=(Ab® Aa— Aa® Ab)v=(AaAAb)Av forallve), (2.197)

from which we deduce (2.191).

(2) Let A be an invertible tensor and assume that there is v .€ V, v # 0
such that A*v = 0. Take a,b € V, both different from zero such that v =aAb.
In view of (2.191) we have

0=A*(aAb)=AaAAb, (2.198)

from which, taking into account the properties of the vector product, we deduce
that Aa = aAb, then a— ab = 0 and finally v = 0. Now, let {e1,es,e3} be an
orthonormal basis of V with e3 = e; A e;. We have

A*e1 = Aeg AN Ae3, (2199)
A¥ey = Aes A Aeq, (2.200)
A*e3 = Ae1 AN Aeg, (2201)

and, in view of Proposition 35, the following relations hold

ATA%e;-e; = A%e; - Ae; = det A, (2.202)
ATA%ey-e3 = A%ey- Aey = det A, (2.203)
ATA%e;-e3 = A*e;- Aes = det A, (2.204)
and
ATA%e;-e; = A%e;-Ae; =0 ifi#j, (2.205)

we can thus conclude that
ATA* = (det AT, (2.206)

from which (2.192) follows.

(3) Consider R €O0rth™, from (2.192) taking account that detR = 1 and
R” = R!, we get that R* = R and then R € C. Vice versa, let us assume
that R € C, then

R(aAb)=R*(aAb)=(Ra)A(Rb), abeV. (2.207)
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Let {e1,e2,e3} be an orthonormal basis of V with e3 = e; A ey, in view of
(2.207) we have

Reg = Rel N Reg, (2208)

R62 = Re3 A Rel, (2209)

Re; = Res A Regs, (2.210)
then

| detR 7=y,

and finally

RTR = (detR)IL (2.212)
From (2.212) it follows that

(detR)? = det R, (2.213)

from which we obtain that det R = 0 or det R = 1. If det R = 0, from (2.212)
we get RTR = 0 and then R = 0 which is excluded by the fact that R € C.
Therefore, we have that det R = 1, which, along with (2.212), allows to conclude
that R =R~

(4) For each u,v € V, we have

I-c@c)(urv)=I-c®@clun(I-c®c)v
=uAv—(c-u)cAv+(c-v)cAu, (2.214)
and
[(1—c-c)I+c®c](uAv)=uAv—(c-c)urAv+[c-(uAV)lc
=uAv+cAcA(uAV)], (2.215)
where the latest equality comes from (2.152). On the other hand,
cAflcA(uAVv)=—-cA[(uAV)ACc]

=—-—cA[(u-c)v—(v-c)ul = —(u-c)cAv+(v-c)cAu, (2.216)

substituting (2.216) in (2.215) and comparing the obtained expression with
(2.214), we get (2.194).
(5) To prove (2.195) it is sufficient to note that in view of (2.194) we have

3

3
i=1

i=1

O
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2.11 Principal invariants

For each A € Lin, let us introduce the following scalar quantities,

I (A) = trA, (2.218)
I(A) = %[(trA)2 —tr(A?)] (2.219)
I3(A) = det A. (2.220)

Ii(A),Iy(A), I3(A) are called principal invariants of A. For ¢ = 1,2,3 we have
I;(QAQ") = I;(A), for each Q € Orth. (2.221)
In fact, for Q €Orth we have
I(A) =trA = tr(QTQA) = tr(QAQ") = I,(QAQ"). (2.222)
Moreover, let us note that
tr(A?) = tr(Q"QAQTQA) = tr(QAQT QAQ") = tr[(QAQ")?,
and then, in view of (2.222)
I,(A) = L,(QAQ").
Finally, in view of (2.93) we have
I3(A) = det A = (det Q)(det A)(det QT)
= det(QAQT) = I3(QAQT). (2.223)
It is easy to verify that if n = 3 and A;j, 4,5 = 1,2, 3 are the components of
A with respect to an orthonormal basis {e;, e2,e3} of V, we have
I1(A) = A11 + Az + Ass, (2.224)

I)(A) = A1 Agp + AgpAsg + A1 Az — A1pAgy — A3 Az — AgzAszp,  (2.225)
I3(A) = A11(A Az — AszAsz) + Ag1(A13Ass — Ao Ass)+

Az1(A12Az3 — A13Az), (2.226)

or equivalently,
L(A)=1-A, (2.227)
I (A) =e;-(Aex AN Ae;) +e3-(Aes A Aey) +e3-(Aep A Aeg),  (2.228)
I3(A) = Ae; - (Aez A Aeg), (2.229)

Let n(A) = {I1(A), I2(A), I3(A)} denote the list of the principal invariants
of A.
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2.12 Eigenvalues and eigenvectors

A real number a is an eigenvalue of A € Lin if there is a vector u € V, ||ul| = 1,
such that
Au = au, (2.230)

u is called eigenvector of A. Given an eigenvalue a of A,
M(a) ={u eV | Au=aqu} (2.231)

is a subspace of V called characteristic space of A corresponding to the eigen-
value a. If M(a) has dimension m, then the eigenvalue a is said to have mul-
tiplicity m. The set o(A) of the eigenvalues of A, each repeated a number of
times equal to its multiplicity is called spectrum of A.

a is an eigenvalue of A if and only if the tensor A — al is not invertible and
then a is a real root of the characteristic polynomial of A,

p(a) = det(A — al). (2.232)

The eigenvalues of a tensor are also called principal components (of the
tensor), and the eigenvectors are called principal vectors.

Proposition 37. If n = 3 the characteristic polynomial (2.232) of A € Lin
has the following expression

pla) = —a® + I;(A)a® — I(A)a + I3(A). (2.233)

Proof. To prove (2.233) take into account that if {e1, ez, es} is an orthonormal
basis of V, in view of Proposition 35 we have,

det(A —al) = (A —al)e; - [(A — al)es A (A — al)es).
0

The third degree polynomial (with real coefficients) (2.233) has at least a
real root.

2.13 Spectral theorem
Proposition 38. The following properties hold.

(a) The characteristic spaces of a tensor S € Sym are mutually orthogonal.

(b) The eigenvalues of a tensor P € Psym are positive, the eigenvalues of a
tensor S € Sym™ are non-negative.

(c) The eigenvalues of a tensor N € Nsym are negative, the eigenvalues of a
tensor S € Sym~ are non-positive.
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Proof. (a) Let a and b be the eigenvalues of S € Sym and let u, v the corre-
sponding eigenvectors,
Su=au, Sv=bv.

We have
au-v=Su-v=u-Sv=bhu-v,

then
(a —b)u-v =0,

therefore, if a # b then u-v = 0.
(b) Given P € Psym let a be an eigenvalue and v the corresponding eigen-
vector of P, we have
a=av-v=Pv-v>0.

O
Theorem 10. (Spectral theorem). Let S be a symmetric tensor. There exist

an orthonormal basis of V constituted by eigenvectors g1,...,8, of S, and n
eigenvalues s1, ..., S, of S,

Sgi =5 g t=1,..n, (2234)

such that .
S=> sigi®e. (2.235)

i=1

In particular, for n = 3, one of the following cases holds:
1. S has three distinct eigenvalues, then the characteristic spaces of S are

Span(g), Span(gz) and Span(gs).
2. S has two distinct eigenvalues s; # sa, so = s3, then (2.235) reduces to

S = 5181 ® g1+ s2(I— g1 ®g). (2.236)

Span(gi) is the characteristic space corresponding to s; and Span(g;)® the
characteristic space corresponding to ss.
3. S has only one eigenvalue s; = sy = s3 = s,

S =4I, (2.237)
in this case V is the only characteristic space of S.
The relation (2.235) is the spectral decomposition of S.

If M; (i =1,...,k < n) are the characteristic spaces of S, then each vector
v can be written in the form

k
v=>"vi, vieM, (2.238)

i=1
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and
V=M D..opM,;. (2.239)

The matrix [S] of the components of S with respect to the basis {g1,...,gn}
of eigenvectors has the form

S1 0 0
sj= | Y o2 0 (2.240)
0 O Sn

For n = 3, from the spectral theorem it follows that if S € Sym, 7(S) is
completely characterized by the spectrum o(S); it is easy to prove that

Il(S) = 81 + S2 + 83, (224].)
IQ(S) = 8182 + 8183 + S2S83, (2242)
Ig(S) — §182S83. (2243)

If S € Sym, the multiplicity of an eigenvalue s coincides with the multiplic-
ity of s as root of the characteristic equation det(S — sI) = 0. The following
proposition follows directly from the previous remark.

Proposition 39. For n =3 consider S, T € Sym such that n(S) = n(T), then
S and T have the same spectrum, o(S) = o(T).

We point out that this result holds only if S and T are symmetric. Let us
consider the tensors

S:I—|—e3®e3, T:I—|—e3®e3+e1®e2,
we have Il(S) = Il(T) = 4, IQ(S) = IQ(T) = 5, I3(S) = Ig(T) = 2, but
o(S) ={1,1,2} and o(T) = {1, 2}.

For non-symmetric tensors, eigenvectors corresponding to distinct eigenval-
ues are not necessarily orthogonal. For example, the spectrum of tensor A €
Lin

A=c;®@e; +2esQ0e+3e3Qe3 + e ® e, (2.244)
is 0(A) = {1, 2,3}, the corresponding eigenvectors are ey, %(el + e3) and e3,
and we have that e; - (e; +e5) = 1.

Exercise 8. Forn =3, D € Sym, Q € Orth, show that o(D) = o(QDQ").

Solution. It is sufficient to remark that QDQ7 is symmetric and that n(D) =
n(QDQ"), the desired result follows from Proposition 39.
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Consider n = 3. A skew-symmetric tensor W = 0 has only one eigen-
value equal to 0, the remaining roots of the characteristic polynomial are two
conjugate imaginary numbers. The principal invariants of W are

L(W)=0, L(W)=W2+W4+W2, IW)=0, (2.245)

where W;; are the components of W with respect to the orthonormal basis
{e1,es,e3}. The characteristic polynomial of W is therefore

a® 4+ I,(W)a = 0, (2.246)

since I5(W) > 0, W has the only zero eigenvalue ¢ = 0. The eigenvector
corresponding to the null eigenvalue is the axial vector w of W. In fact, from
the relation Wa = w A a, a € V, we have that w is the only eigenvector of W
and Ww = 0.

For v € V we have
Wiv=wA(WAV)=(VAW)AW = (v-w)w — ||w]|?v, (2.247)
and W?2 has the expression
W2 =wow-—|w|’L (2.248)

Tensor W2 turns out to be symmetric and its spectral decomposition is

W2 = |w|2I- 2 o ). (2.249)
[wil — [[wll

Tensor W3 is instead skew-symmetric and

W3 = —|w|*W. (2.250)

A dyad a ® b with a,b € V has a null eigenvalue with multiplicity n — 1
and the corresponding characteristic space is the subspace orthogonal to b. The
dyad a ® b has also the eigenvalue a-b whose characteristic space is Span(a).
In general, these characteristic spaces are not orthogonal, they are orthogonal
if and only if a = ab.

Exercise 9. Consider n = 3. Determine spectrum, characteristic spaces and
spectral decomposition of the following symmetric tensors

A=ol+fme@m, B=m®n+nq®m, (2.251)
with a, F €R, mn eV, m-n=0, |m| =|n| =1.
Solution. Putting g = m A n we have

An=an, Am = (o + 8)m, Aq = aq, (2.252)
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then o(A) = {a, o, a+ 3}, the characteristic spaces are Span(n, q) and Span(m)
and the spectral decomposition of A is

A=an®n+qeq)+ (¢ +f/mem
=(a+fme@m+ ol —-mem). (2.253)
Moreover, we have
Bq=0,B(m+n)=m+n, B(lm—n)=n—m, (2.254)

then o(B) = {—1,0, 1}, the characteristic spaces are Span(m —n), Span(q) and
Span(m + n) and the spectral decomposition of B is

m-+n m-+n m-—n m-—n

N R R B

B =

Exercise 10. Put n = 3. A tensor P is called orthogonal projection if P €
Sym and P? = P.

(a) Forn €V, ||n|| =1, show that the following tensors are orthogonal projec-
tions,
0, I, n®n, I —-n®n. (2.255)

(b) Show that if P is an orthogonal projection, then P admits one of the rep-
resentations (2.255).

Solution. (a) It is easy to verify that tensors in (2.255) are orthogonal
projections.

(b) If P is an orthogonal projection, let us calculate its eigenvalues. Let A
be an eigenvalue and v the corresponding eigenvector,

\v = Pv = P2y = A2,

from which we have A = 0 or A = 1. The following four cases are possible,

-o(P)=1{0,0,0}, P =0,

-o(P)={1,1,1}, P =1,

-o(P)=1{0,1,1}, P = I — n ® n, with n eigenvector corresponding to the
0 eigenvalue.

- o(P) = {0,0,1}, P = n ® n, with n eigenvector corresponding to the
eigenvalue 1.

Exercise 11. Putn = 3. Given R €Orth* let e € V be such that Re = e. For
W the skew-symmetric tensor associated to e, prove that R has the following
representation

R =1+sinfW + (1 — cos)W?, (2.256)

with 6 € [0, 2m).
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The representation formula (2.256) proves that each rotation is completely
characterized by an axis and an angle.

Some properties of the product of tensors are collected in the following propo-
sitions.

Proposition 40. Put n = 3. A tensor A € Lin commutes with each tensor
W € Skw if and only if A = wl.

Proof. Let us assume that
AW = WA for each W € Skw. (2.257)
For w € V fixed, let W be the skew-symmetric tensor associated to w, we have
W(Aw) =A(Ww) =A(wAw)=0,
then Aw belongs to the characteristic space of the null eigenvalue of W,
Aw = Aw, with A = A(w) € R. (2.258)

Let wq, wy be two linearly independent vectors in V), in view of the linearity of
A we have _ _
)\(Wl)Wl + )\(WQ)WQ = AW1 + AW2 =

A(W1 + WQ) = X(Wl + WQ)(Wl + WQ)7 (2259)

from which we get
[A(W1) — XMW1 + W) |wi + [AM(wa) — A(wy + wa)]wa = 0, (2.260)
and then A(wy) = A(w2) = w. O

Proposition 41. A tensor S € Sym commutes with each tensor Q € Orth™ if
and only if S = wl.

Proof. Let us assume that

SQ =QS for each Q € Orth™

and that S has two distinct eigenvalues w and )\ and let u and v be the cor-
responding orthogonal eigenvectors (of norm 1). Let {u,v,fs,....f,} be an or-
thonormal basis of V, put

n
Q=veu-udv+y f;af;,
1=3

we have that Qu = v and Q €Orth™ since it transforms the orthonormal basis
{u,v,fs,...,f,} into the orthonormal basis {v,—u,fs,....,f,} and detQ = 1.
Then, we have

QSu=wQu=wv, QSu=SQu=Sv=))\v,

from which we get (w — A)v = 0 and then w = \. O
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Theorem 11. (Commutation theorem). Consider S, A € Lin such that SA =
AS. Then, if v. € V belongs to a characteristic space of S, Av belongs to the
same characteristic space. Vice versa if A leaves each characteristic space of a
symmetric tensor S € Sym invariant, then S and A commute.

Proof. If S and A commute, let v be an eigenvector of S corresponding to the
eigenvalue w, Sv = wv, then

S(Av) = ASv = wAv,

that is Av belongs to the characteristic space of S corresponding to w.
Vice versa let M;, ¢ =1, ..., k be the characteristic spaces of S. Each v € V
has the representation (2.238) and Av,; € M; for each 4, then

SAv;, = w;Av; = A(w;v;) = ASv;,
from which it follows that SAv = ASv. O

Tensors A and B € Sym are called coazxial if there is at least one orthonormal
basis of common eigenvectors.

Proposition 42. The tensors A, B € Sym commute if and only if are coazial.

Proof. For the sake of simplicity, take n = 3. Let us assume that A and B are
coaxial, let {g1, 82,83} be a common basis of eigenvectors

3 3
A=) agog, B=) bgoeg (2.261)
i=1 i=1
Then, in view of (2.34) we have AB = BA. Vice versa, let us assume that
AB = BA, we can consider the following cases.
(i) If A = al, the coaxiality is evident.
(ii) If A has three distinct eigenvalues ay, as, a3, let us consider its spectral
decomposition

3
A= Z a; 8i D &, (2.262)
i=1
and put
3
B= ) Bjgi®g (2.263)
i,j=1
Then, we have
3
jj=1
7ij#j

since the skew-symmetric tensors g; ® g; — g; ® g; are linearly independent,
from (2.264) we get
(a1 —az)Biz2 =0, (2.265)
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(a1 —a3)Biz =0, (2.266)
(a2 — a3)323 = 0, (2.267)

from which it follows that B1, = B13 = Bes = 0, thus, g1, g2, g3 are eigenvectors
of B as well.

(iii) Now let us consider the case in which A has two distinct eigenvalues
a; # ap = as,

3
A=wg g tal-g®eg) B= Z Bi; gi ® g;, (2.268)
ij=1

with gy and gz belonging to Span(g;)*. Considering once again the relation
0 = AB — BA we get that Bi2 = Byz = 0, then Bg; = b;g;. Let f; and f3
be the remaining two eigenvectors of B such that {g1, f,f3} is an orthonormal
basis of V, we conclude that {g, f3, f3} is a basis of eigenvectors for both tensors
B and A. O

Proposition 43. The following properties hold.

(1) Given A € Sym~ (Sym™ ), if there is u € V such that u-Au = 0, then
Au=0.

(2) Consider A,B € Sym. If A-B >0 for each B € Sym™* (Sym~) then
A € Sym*t (Sym~ ).

(8) Consider A € Sym™. For each B € Sym™ (Sym™) we have A -B > 0
(<0).

(4) Consider A € Sym™, B € Sym™* (Sym~). If A -B =0 then AB = BA =
0.

Proof. (1) Let A = Z?=1 a;q; ® q; with a; <0 (a; > 0) be the spectral decom-
position of A. We have

Au = Z a;(q; - u)q;, (2.269)
i=1
therefore .,
0O=u-Au=> ai(q;-u)’ (2.270)
i=1
if and only if
ai(qi-w)? =0, i=1,..,n (2.271)

since a; are non positive (non negative). (2.271) is verified if and only if

ai(q;-u) =0, i=1,..,n, (2.272)
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which is equivalent to the condition Au = 0.

(2) Let us assume that A does not belong to Sym™ (Sym™), then A has an
eigenvalue A < 0 (A > 0), Av = \v. The tensor B = —Av ® v belongs to Sym™
(Sym~) and

0<A-B=-Mr(Avev)=-)?<0.

(3) Let
A=) aq®q witha >0 (2.273)
i=1

be the spectral decomposition of A. Moreover, let

B=> bpi®p; withb >0 (b <0) (2.274)

i=1

be the spectral decomposition of B. We have

AB= ) aibj(q;®q)(p; ©p;) = > abj(ai-pj)(@ ©p;),  (2.275)

i,j=1 ,j=1
and "
ij=1

(4) Let (2.273) and (2.274) be the spectral decompositions of A and B,
respectively. In view of (2.276) the condition A-B = 0 is equivalent to the
conditions

aibj(qi : pj) = O, i,j =1,...,n, (2277)

therefore, from (2.275) we get that AB = 0, in a similar way, we prove that
BA =0. O

For A € Sym, the function

A
ga(u) = uu uu, ueV,u£o, (2.278)

is called Rayleigh ratio.
Proposition 44. Given A € Sym, its Rayleigh ratio q4 satisfies the inequalities
a1 < ga(u) < ay, foreachu € V,u+#0, (2.279)
where a1 and a, are the minimum and mazimum eigenvalues of A.
Proof. Let ,
A= Zai gi ® g, (2.280)

i=1
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be the spectral decomposition of A, with

a1 <as <...<ay,. (2.281)
For u € V, we have
3
u= Z g, with a; = u-g;, (2.282)
=1
and
3
Au =) oag;. (2.283)

i=1
Putting (2.282) and (2.283) in (2.278), we get

3
OL?CLZ‘
ga(n) = 5— (2.284)
> of
i=1
From (2.284), taking (2.281) into account, we get (2.279). O

Exercise 12. Given the tensor A, with A # ol for each real number a,, compute
the orthogonal projection onto Span(I, A).

Solution. From the minimum norm theorem, it follows that given U € Sym,
there is a unique U € Span(I, A) such that (U —U)-V = 0 for each V €
Span(I, A). Let us start by determining an orthonormal basis of Span(I, A).
For

Ag=A — %I, (2.285)
the deviatoric part of A, the tensors
A =L (2.286)
vn
and Ay
Ar = T (2.287)
with
Aol =/ 1afz - TAE (2,289
are orthonormal and then are a basis of Span(I, A). Thus,
U = Pspan(i,a)(U) = (U-A1)A; + (U- Ar)As
- tTnUI +(U-Az)A, (2.289)
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2.14 Square root theorem, polar decomposition
theorem

Theorem 12. (Square root theorem) For every C € Psym, there exists a unique
tensor U € Psym such that

U? =C. (2.290)
We write v/C for U.
Proof. Let
C= z": Cigi Qi (2.291)
i=1

be the spectral decomposition of C, with ¢; > 0. Let us define U € Psym in the
following way

U= Z VCigi ® g, (2.292)
i=1

(2.290) is trivially verified. To prove the uniqueness of U let us assume that
there exist Uy, Uy € Psym such that U? = U3 = C. For each i = 1,...,n we
have

0= (U} — c;l)g; = (Uy + D) (U — Ve, (2.293)
putting v; = (U;—,/¢;1)g;, from (2.293) we have that U;v; = —,/¢;v;, therefore
v; = 0 since the eigenvalues of U; are positive. Then, we get that U;g; =
\/€igi; analogously we prove that Usg; = /c;g;, then U;g; = Usg; for each
i=1,..,n. O

Exercise 13. Putn = 3. For each E €Sym, determine the projection Pg,,,~ (E)
of E onto Sym™.

Solution. We remark that Sym™~ and Sym™) are convex closed cones of Sym
3. then we can apply the minimum norm theorem. Thus, given E €Sym we
have to find A €Sym™ such that

(E—A)- (T—-A) <0 for each T € Sym™. (2.294)

Let
3

E= Z €8 ® g; (2.295)
i=1

be the spectral decomposition of E, we have

3 3
E’=) elgiwg, VE?=) |elgi g (2.296)
i=1 i=1

3Sym™ (Sym™) is closed in Sym since it is the inverse image of the closed set {x € R3 :
0<x <z <3} {x €R3: 27 <22 < 23 <0}) of R3 under the continuous function that
assigns to each tensor its spectrum.
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Tensors

E-VE o E+VE?

A= 2.297
belong respectively to Sym™ and Sym™ and are orthogonal,
1
A-B= Ztr(E2 ~VE2E + EVE? - E?) = 0. (2.298)

It is an easy matter to prove that Ps,,,- (E) = A, with A defined in (2.297), in
fact
(E—A)-(T-A)=B.-T-B-A=B-T<0 (2.299)

for each T € Sym™, because B € Sym™. Finally, we have
E=A+B = Psy, (E) + Poyp+ (E). (2.300)

The projection Py~ is not linear. For E; = —g3 ® g3 + 2(I — g3 ® g3),
E; = —g1 ® g1 — 382 ® g2, we have Pgyy- (E1) = —g83 @ 83, Py (E2) =
—g1 ® g1 — 382 ® g2 and Psyyy- (BE1 + E2) = —(I - g1 @ g1).

Theorem 13. (Polar decomposition theorem). For each F € Lin™, there exist
U,V € Psym and R € Orth™ such that
F =RU = VR. (2.301)

Moreover, each decomposition is unique; in fact,

U= VFTF, V= VFF’, (2.302)

F = RU is called right polar decomposition of F, F = VR is called left polar
decomposition of F.

Proof. First of all let us prove that FTF and FFT belong to Psym; we have
FTF FF? € Sym, moreover

v-FTFv=Fv-Fv >0 foreach ve,

and Fv-Fv = 0 if and only if Fv = 0 or, if and only if v = 0 since F is
invertible. Analogously we prove that FFT ¢ Psym. Therefore, U and V in
(2.302) are well defined. Let us prove the existence of the polar decomposition.
For U = VFTF € Psym put R = FU !, we have to prove that R € Ortht.
Since det F > 0 and det U > 0 we have that det R > 0, moreover

RTR=U'FT'FU ' =1, (2.303)
and

RR” =FU U 'FT = F(U?)'FT =FF 'F TFT =1L (2.304)
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Finally, let us define V.= RUR”; V € Psym, in fact
v-Vv=v.(RUR")v = RTv.UR”v > 0 for each v # 0,
since U € Psym. Moreover, we have
VR =RUR'R=RU=F. (2.305)

Now, we have to prove the uniqueness of the polar decomposition. Let F = RU
the right polar decomposition of F, since R € Orth™ we have

F'F = U2 (2.306)

In virtue of the square root theorem, there is a unique U € Psym satisfying
(2.306), thus U = VFTF and U is unique. Since R = FU ™!, also R is unique.
Analogously, we prove the uniqueness of the decomposition F = VR and this
concludes the proof. O

We point out that in general U and V do not coincide, on the other hand, if
F € LintNSym, then from the relations F? = U? = V?2 it follows that U =V
and then F = RU = UR.

The tensors U and V of the polar decomposition of F € Lin™, are linked by
the relation V.= RUR”, and have the same spectrum.

Exercise 14. Put n = 3. Given ey, ey orthogonal vectors with norm 1, for
es=ejNey let W =es ®e; —e; ®es be the skew-symmetric tensor having es
as azial vector. Compute the right polar decomposition of the tensor F = I+W.

Solution. We point out that
Fe; = e + ey,
Fe; = ey — ey,
Fe; = e3,

and that
detF = Fe; - (F62 A\ Fe3) = (e1 + 62) . (e1 + eg) =2,

therefore F' € Lin™. Now, let us determine the spectral decomposition of FTF =
I — W2, From relations

FTFe1 = 2817 FTFGQ = 262, FTFeg — e3,

we get that
FIF=e;®e;+2(I—e3@e3),

from which we get the expression of U,
U=e;@e;+V2(I-e3®ey),

and finally

1

1
(I—e3 ®e3) + —=W.

R=FU l=e;®e; + —
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Exercise 15. For n = 3 let {e1,es,e3} be an orthonormal basis of V. Given
the tensor F =14 ves ® e1, v € R, compute its polar decomposition F = VR.

Solution. If v =0, then F =1 e V = R = I. Then, assume that v # 0. The
eigenvalues of the tensor FFT =1 + v(er ®es +es@e;) +vies ® ey are

2472 — /42 4
o= LV ET (2.307)
2 2 4 2 4
= LIV AT (2.308)
3 =1, (2.309)
and the corresponding eigenvectors are
1 -1
qir = —e; + 2 eq, (2.310)
ni i
—1
Qe = —e; + 22 ey, (2.311)
%) Yno
and
q3 = €3 (2.312)
with
C_1\2
ng = 4|1+ (%) . i=1,2. (2.313)
Y

Then, we have

V=191 ®q1 + /202 @ q2 + e3 R e3

e ®e; + e;®ex +e;®ep)

g
Vi

€9 ®e2 +83 ®63, (2314)

2
T Vi e

2+77
Lo
4+ 2

and

R=V'F=[(¢1) g @q+ () ’qe@q2+es@es] [[+7e;@e]
2 P 2

=——e ®e + ——

V4472 V4472

i (—e1 X es +ex® e1) + e3 ® es. (2.315)

_1’_7
Vit

Exercise 16. Forn = 3 let {e1,e3,e3} be an orthonormal basis of V. Compute
the polar decomposition F = VR of the tensor

62®82

F=fe;®e +a(l—e ®e)+ ayes ey, (2.316)

with a,v,0 € R,a > 0,6 > 0.
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Exercise 17. ForF € Lint, let F = RU = VR, U,V € Psym and R € Orth™
be the polar decompositions of F. Prove that R is the rotation closest to F in
the sense that

IF-R| <|[F—-Q|, foreach Q€ Orth™, Q #R. (2.317)
Solution. For each Q €Orth*, Q # R, we have
IF-Q|>=tr(FTF —Q"F —FTQ+1) = |[F|>+3-2Q-F,  (2.318)

|F - R|”=|F|*+3-2U-L (2.319)

from which we get

IF-QI*~|F -R|*=2(U-1-Q"F). (2.320)
Since

Q F=tr(FTQ) =tr(URTQ) = Q- U, (2.321)
with Qo = RTQ €O0rth*, Qg # I, we have

IF - Q|” - |F - R|*=2U-(I-Qo), (2.322)
moreover

tr[(Qo—D'U(Qo—T1)] =U-[(Q - )(Qo - D)7 =

U-(21- Q- Q}) = 2U- (I- Q). (2.323)
Since (Qo—I1)TU(Qo—1I) € Psym, from (2.323) it follows that 2U - (I-Qg) > 0.

2.15 The Cayley-Hamilton theorem

Theorem 14. (Cayley-Hamilton theorem). Put n = 3. For A € Lin we have
A3 — I (A)A? + L(A)A — (A)I = 0. (2.324)

Proof. We prove the theorem by assuming that A has three linearly independent
eigenvectors vi, vo, Vg

Av, =a;v;, i=1,2,3. (2.325)
Since from (2.325) it follows that
Alvi=alvy, i=1,2,3, j=1,2,3, (2.326)
in view of (2.233) we have
[A° — [1(A)A? + I(A)A — I3(A)I]v; =
advi — I(A)a?v; + L(A)a;v; — I3(A)v; =

[a} — I, (A)a? + I,(A)a; — I3(A)]v; =0, i=1,23. (2.327)
Since vy, Vva,v3 are linearly independent, (2.324) follows directly from (2.327).
O
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Exercise 18. Put n = 3. Given A € Lin, prove that
det A = é[(trA)3 — 3(trA)tr(A?) + 2tr(A?)]. (2.328)
Solution. Consider that from the Cayley-Hamilton it follows that
tr(A®) = I;(A)tr(A?) — I,(A)[,(A) + 3I3(A).

Exercise 19. Put n = 3. Show that if A € Lin is invertible, then

[A? — [(A)A + I, (A)T], (2.329)

and deduce that for each integer k, A* can be expressed as linear combination
of I, A, A% with coefficients that depend on the principal invariants of A.

Solution. For the Cayley-Hamilton theorem we have
A® — I (A)A% + [L,(A)A = I3(A)AA ™,
multiplying by A~! we get the desired expression.

Exercise 20. Put n = 3. Let A € Lin be invertible. Show that

_ Is(A
(a) LA™Y = 23,

_ I (A
(b) LA™Y = 24,

(C) 13(A71) = 13(1A)~

2.16 The generalized eigenvalue problem

Given the tensors A € Sym, B € Psym, we say that a (real) number a is a
generalized eigenvalue of (A, B) if there exists u € V u # 0, such that

Au = aBu; (2.330)

u is called generalized eigenvector and problem (2.330) is called generalized
etgenvalue problem.
Vectors uy, ..., u,, are B-orthonormal if

_ s )1 ifi=y,

Proposition 45. Given the tensors A € Sym, B € Psym, there exists a basis of

V constituted by B-orthonormal generalized eigenvectors uy, ..., u, correspond-
ing to the generalized eigenvalues ay, ..., a, of (A, B),

Aui = aiBui, 1= 1, ey N (2332)
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Proof. In virtue of the square root theorem there exists U €Psym such that
U? = B. The problem (2.330) can be rewritten as

Av =av, (2.333)

where we put R
A=U'TAU! v=Uu (2.334)

From the spectral theorem, it follows that there exist an orthonormal basis of V
formed by eigenvectors vy, ..., v, of (2.333) and n real numbers aq, ..., a,, such
that R

Av,=a;v;, i=1,...,n. (2.335)

It is easy to verify that the vectors u; = U~ 'v;, i = 1, ..., n are the eigenvectors
of the generalized problem (2.330) corresponding to the eigenvalues aq, ..., ay,
and satisfy (2.333). Moreover, the relations

51']' =V;-V; = Uu,; . UIIj =u;- U211j =u;- Bu]‘, (2336)

allow to conclude that vectors uy, ..., u,, are B—orthonormal. O

a is a generalized eigenvalue if and only if A —aB is not invertible and then
a is a real root of the characteristic polynomial,

p(a) = det(A — aB). (2.337)

For each vector u € V u # 0, the ratio

u-Au
alw) = S8, (2.338)

is the Rayleigh quotient of the generalized problem (2.330).

Proposition 46. Let
a1 <as <..<a, (2.339)

be the generalized eigenvalues of the problem (2.330). The Rayleigh quotient
(2.838) satisfies the inequalities

a1 <q(u) <ayn, foreachuelV u#0. (2.340)

Proof. Let uy,...,u, be the B—orthonormal eigenvectors of (2.330). For each
ue€V u#0 we have
u=ouy +... +a,uy,, (2.341)

and
(a1ug + ... + apuy) - (pa;Buy + ... + apa,Buy,)

(a1u1 + ...+ anun) . (alBul + ...+ anBun)

q(u) =
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2 2
T i i Y (2.342)
aj + ...+ oz

From (2.342), taking (2.339) into account, we get

a? + ...+ a?)ay,
<gq(u) < ( L z = ay. (2.343)
ai + ... + oy

(@2 + ...+ a2)ay
a?+..+a?

a]; =

2.17 Third and fourth-order tensors

A third-order tensor F can be considered a linear mapping from Lin to V or
a linear mapping from V to Lin. In particular, given u,v,w € V, u®@ v ®@ w
denotes the third-order tensor defined by

uvewH]|=(vew-H)u, H € Lin, (2.344)

u®vewh]=(w-hjuev, heV. (2.345)

Example 11. Put n = 3. The mapping E from V to Skw that assigns to each
vector w the skew-symmetric tensor W having w as azial vector

E(w)=W with Wv=wAv, forehvel, (2.346)
1s a third-order tensor.
Let us put
1 ifijk is an even permutation of 1,2,3,
gijk =< —1 ifijk is an odd permutation of 1,2,3, , i,j,k=1,2,3.
0 otherwise
(2.347)

Given an orthonormal basis {e1,ez,e3} of V and denoted by wi,ws, w3 the
components of w, in view of (2.155) the components of W are

3
Wi =— Z5ijkwk7 (2.348)
k=1
therefore
3 3
W = Z Wije ®@e; = — Z Eijk(w ‘eple; ® €;
hi=1 irj k=1
3

=- cijk(e; @ e; ®ep)w (2.349)

i3, k=1
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and, finally,
3

E=— > cijle;oe;®ep). (2.350)

,5,k=1

Analogously, the function F' from Skw to V that assigns to each skew-symmetric
tensor W the corresponding axial vector w,

F(W)=w with Wv=wAv, forechvel, (2.351)

is a third-order tensor. Given the components of W, the components of w are

3
1
w; = —3 Z €ijkWik, (2.352)
J,k=1
then
3 3 138
W= szel —= Z cijkWikes —3 Z eijr(e; - Wey)e;
i=1 i,7,k=1 i,73,k=1
1< 1<
= 75 Z sijk[(e] ® ek) W}el = 75 Z Eijk(ei K e; ®ek)W, (2353)
i,5,k=1 i,j,k=1
and, finally,
3
1
F = 3 Z aijk(ei Re;® ek). (2354)
iy, k=1

Also the function Eo from Lin to V that assigns to each tensor A the azial
vector of the skew-symmetric part (A — AT)/2 of A is a third-order tensor.

A fourth-order tensor A is a linear mapping from Lin to Lin. Let us denote
by I the fourth-order identity defined by I[H] = H for each H € Lin. The tensor
product A ® B of the second-order tensors A and B is the fourth-order tensor
defined by

A®B[H]=(B-H)A, H € Lin. (2.355)

From tensors A and B it is possible to define the fourth-order tensor A X B,
AXB[H| = AHB”, H € Lin.

Let us denote by LLin the vector space of all fourth-order tensors. Let us consider
the orthonormal basis {eq,...,e,} of V, the components of the fourth-order
tensor A are

Ajjii = (e, ®ej)-Ale, ®e], 4,5,k 1=1,..,n. (2.356)
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Putting K = A[H], from (2.46) we get that
K = Z AyjriHyy.
k=1

From the linear independence of vectors {ey,...,e,} in V it follows that the
elements (e; ® e;) ® (ex ®ey), i,4,k,l =1,...,n in Lin are linearly independent,
moreover, for each A € Lin the following representation holds,

A= Y Ajulei®e)® (e ®e). (2.357)
i,k =1
In fact,

AU =Y (A[UD(ei®e)) = > Ayulne; @e;
i,j=1 i,k l=1

n n

= Z Aijri(er-Uee; @ ej = Z Ajjri((exr®@e)-Ue; ® e
i,j,k,l1=1 i,4.k,l=1
= > Aijulei®e;)® (ex ®e)[U]. (2.358)
i,5,k,l=1

Thus, the fourth-order tensors {(e; ® ;) ® (ex ® €)}i j k1=1,....n are a basis
of the vector space Lin, which has dimension n*

Lin is a normed space, with the natural norm

AH
lAly = sup JAEIL (2.359)
HeLin, Hzo || H|
The transpose of A is the unique fourth-order tensor A” such that
ATH]-K = A[K]-H, for each H,K € Lin. (2.360)

Exercise 21. Compute the transpose of the fourth-order tensors A ® B and
AXB.

Solution. Given H, € K €Lin, we have
H- A®BK]=H-(B-K)A=B-K)(A-H)=

K-B ® A[H],
then (A ® B)” = B ® A. Moreover, we have that

H-AXBIK]=H-AKB” = tr(BK"ATH) =

tr(KTATHB) = K- A" X BT[H],
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and then, (AXB)T = AT BT.

The fourth-order tensor A has the major symmetry (or is symmetric) if
AT = A. In terms of indices, this means that Aijrr = Apsj.
The symmetry in the first couple of indices (Aj;jx = Ajix) means that A has

values in Sym
AH])" = A[H], H € Lin, (2.361)

and the symmetry in the second couple of indices (A;jr = Ajj,) means that
A[HT] = A[H], H € Lin, (2.362)
or, equivalently, that A is zero on Skw,
A[W]=0, W € Skw.

We say that A has the minor symmetry if has the symmetries in the first and
second couples of indices.

Exercise 22. Prove that the components of the identity tensor 1, defined by
I[A] = A, for each A €Lin, are

|1 ifi=handj=k,
Lijnk = { 0 otherwise, (2.363)

and that IK T =1, where I is the identity of Lin.

The mapping T : Lin— Lin such that T[A] = AT, for each A €Lin is a
fourth-order tensor and the fourth-order tensors S and W defined by

A+ AT
==

_A-AT

S[A] 5

WIA] , for each A € Lin, (2.364)

are called symmetrizer and skew-symmetrizer.

Exercise 23. Compute the components of the fourth-order tensors A ® B,
AXB, T, S and W.

Exercise 24. Prove that A X B is symmetric if and only if A and B are
symmetric and that A ® B is symmetric if and only if A = aB, o € R.

Exercise 25. Given A,B,C,D €Lin and A € Lin, prove the following compo-
sition rules

(AXB)(CXD)=ACKBD, (2.365)
(A®B)A =A ® AT[B], (2.366)
A(A @ B)= A[A] ® B. (2.367)
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Given Q €Orth, let us consider the fourth-order tensor Q =Q X Q, we have
Q[A]-Q[B] = QAQ" - QBQ"

=tr(QATQTQBQ") = tr(ATB) = A-B, for each A,B € Lin, (2.368)

then Q € Lin is an isometry.

Let us denote by Sym the vector space of all fourth-order tensors defined
from Sym into Sym and denote by Iy, the restriction of I to Sym. Herein after
we shall limit ourselves to consider tensors A € Sym.

A symmetric tensor A € Sym is called positive definite if

A -A[A] >0, for each A € Sym, A # 0. (2.369)

A is called invertible if it is bijective. Tensor A~! such that A™1A = AA™! =
Isym is the inverse of A.

Let C € Sym be a symmetric fourth-order tensor. The spectral problem for
C consists in determining the pairs (v, C) with v € R, C €Sym, ||C|| = 1 and
C[C] = ~C; ~ is an eigenvalue of C and C the corresponding eigentensor. As
for the symmetric second-order tensors, for symmetric fourth-order tensors the
following spectral theorem [9] holds.

Theorem 15. Let C :Sym—Sym be a symmetric fourth-order tensor. There
exist v; € R and C; €Sym ,i =1, ..., %, such that

n(n+1)
2
Ci-Cj=di, Z Ci ® C; = Lsym, (2.370)
i=1
and
%
C[Ci| =%Ci, C= ) 7Ci®C, (2.371)

i=1

Exercise 26. Forn = 3, let {e1,e2,e3} be an orthonormal basis of V, and let
us consider the symmetric tensors

Or=e; ®e;, Oz=er®e;, Oz=e3es, (2.372)
Oi= " (e1@ester@er), Os = ——(e1 @es+es@er),  (2.373)
= —(e e e e), = —(e e e er), .
4 \/5 1 2 2 1 5 \/g 1 3 3 1
1
O = —=(e2®e3 +e3®en). (2.374)

V2
Compute eigenvalues and eigentensors of the symmetric fourth-order tensor
A € Sym
A=0,2014+0,005+0;® 05+ 05 ® 0. (2.375)
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Solution. We have
AJO1] =01 + O3, A[O3] =07 + 05, A[O;] =0, i =3,...,6, (2.376)

then, the eigenvalues of A are y; = 2 with eigentensor %(01 +03) and 2 =0
with eigentensors %(01 —0y), 03,04, 05 and Og and the spectral decompo-

sition of A is
01 + 02 Ol + 02

V2 V2

Exercise 27. For n = 3, compute eigenvalues and eigentensors of the fourth-
order tensor

A=2

(2.377)

C=2ulgym + N @I, A peR. (2.378)

Solution. We have C[I] = (2u + 3A)I and C[A] = 2uA for each A €Dev,
then the eigenvalues of C are v = 2u + 3\ with eigentensor C; = %I and

vo = 2 with eigentensors orthogonal to I. The spectral decomposition of C is

I 1 I I
C=2u+3N) = ® = + 2u(lsym — —= ® —=). 2.379
@p+30) 77 ® 2+ 2ullsym — = ) (2.379)

V3 V3
Exercise 28. Prove that a symmetric fourth-order tensor C is definite positive
if and only if its eigenvalues are positive.

Exercise 29. Prove that the tensor C defined in (2.378) is positive definite if
and only if
>0, 2u+31>0. (2.380)

Prove that if i and X satisfy (2.380), the inverse of C is

L1 1 1 1 I 1

— 5 5 © 5 + s~ 5@ ). (2.381)

Exercise 30. For n = 3, and {e1,ea,e3} an orthonormal basis of V, compute
eigenvalues and eigentensors of the fourth-order tensor

A:aOl®01+502®02+7(01®02+02®01), (2382)

with 01 :el®e1702 :eQ®e27 057/6776}:&'

2.18 Isotropic functions
In this section we limit ourselves to consider the case n = 3. Given J COrth,

a subset A CLin is invariant with respect to J if QAQT € A for each A € A,
Q €7J. QAQT is called the orthogonal conjugate of A with respect to Q.
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The sets Lin, Lin™, Orth, Orth™, Sym, Skw, Sym~, Sym™, Psym e Nsym
are invariant with respect to Orth. In fact, by limiting ourselves to the case

LinT we have
det(QAQT) = det A(det Q)? = det A.

For A CLin, a functional ¢ : A — R is invariant with respect to J if A is
invariant with respect to J and

©(A) = o(QAQ"), foreach Ac A, Q€. (2.383)

A function G : A —Lin is invariant with respect to J if A is invariant with
respect to J and if

QG(A)QT = G(QAQT), foreach A€ A,Qe7. (2.384)

A functional (a function) is called isotropic if it is invariant with respect to
Orth.

Proposition 47. Let ¢ be a function on Lin with scalar or tensor values, then
¢ is isotropic if and only if ¢ is invariant with respect to Orth™.

Example 12. The functionals Iy, Is and I3 on Lin are isotropic. In particular,
n(A) = 77(QAQT)7 for each Q € Orth. (2.385)

Let us denote by PB(A) = {n(A) : A € A} the set of all possible lists n(A)
of principal invariants, with A € A.

We shall prove some important representation theorems for functions on
A CSym. Herein after, we shall assume that A is invariant with respect to
Orth.

Theorem 16. (Representation theorem for isotropic functionals). A functional
v : A — R is isotropic if and only if there exists a function @ : P(A) — R such
that

©(A) =@p(n(A)), foreach A € A. (2.386)

Proof. Assume that ¢ is isotropic, to show (2.386) it is sufficient to show that
¢(A) = ¢(B) (2.387)

whenever

n(A) =n(B). (2.388)

Let A,B € A satisfy (2.388), then A and B have the same spectrum and in
virtue of the spectral theorem there exist two orthonormal bases {e1, ez, es}
and{fy, f2, f3} such that

3 3
A=) we;®e, B=)Y wfaf. (2.389)
i=1 i=1
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Let Q be the orthogonal tensor such that
Qf, = e;; (2.390)
since Q(f; ® £,)QT = (Qf,) ® (Qf,), we have that QBQT = A. But, since ¢

is isotropic, we have p(A) = o(QBQT) = p(B). The inverse implication is a
trivial consequence of the fact that n(A) = n(QAQ”) for each Q €Orth. [

Theorem 17. (Transfer theorem) Let G : A —Lin be an isotropic function.
Then, each eigenvector of A € A is an eigenvector of G(A).

Proof. Let e be an eigenvector of A € A and Q €Orth the reflection with
respect to the plane orthogonal to e,

Qe=—e, Qf=Ff, foreachfc Span(e)t, (2.391)
It is easy to prove that QAQ” = A. Now, since G is isotropic
QG(A)QT = G(QAQT) = G(A), (2.392)
then, Q commutes with G(A). Moreover,
QG(A)e =G(A)Qe = -G(A)e (2.393)
which, along with (2.391) implies that G(A)e €Span(e),
G(A)e = we, (2.394)
and then e is an eigenvector of G(A). O
Proposition 48. (Wang’s lemma). Consider A €Sym.

(a) If the eigenvalues of A are distinct,

3
A=) we e, (2.395)
=1

then I, A and A2 are linearly independent and

Span(I, A, A?) = Span(e; ® e1,e; ® e3,e3 @ e3). (2.396)

(b) If A has two distinct eigenvalues,
A=weRetwr(I—e®e), |e|=1, (2.397)
then I and A are linearly independent and

Span(I, A) = Span(e @ e,I1 — e ® e). (2.398)
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Proof. As far as (a) is concerned, to prove that I, A and A? are linearly inde-
pendent we have to prove that if

aA? + BA +41 =0, (2.399)
then
a=0=v=0. (2.400)

From (2.395) we get
awi + Bwr +7 =0,
aw? + Bws +v =0, (2.401)
aw3 + Bws +v = 0.

The matrix of the system (2.401) is the Vandermonde matrix, whose determi-

nant is given by [ (w; —wj). Since w; are distinct, the solution to system
1<i<j<3

(2.401) is given by (2.400). The subspace H =Span(e; ® e1,e2 @ €3,€3 ® €3)

has dimension 3, and since A% = Zle w?e; ® e;, we have that I, A, A? belong

to H, then H =Span(I, A, A2). Point (b) can be proved analogously. O

Theorem 18. (First representation theorem for isotropic functions) A func-
tion G : A —Sym (A CSym) is isotropic if and only if there exist functionals
©0, 01,02 : P(A) = R such that

G(A) = @o(n(A))I+ o1 (n(A))A + a2 (n(A))A®  for each A € A, (2.402)

Proof. Assume that G has the representation (2.402). Given A € A and
Q €Orth, in view of (2.385) we have

G(QAQ") = po(n(QAQ I+ ¢1(n(QAQ™))QAQ" +

©2(n(QAQT))QAQTQAQ" =
©o(n(A)QQ” + 1 (n(A)QAQ™ +
e2(n(A))QA’Q" = QG(A)QT, (2.403)

then G is isotropic. Vice versa assume that G is isotropic and take A € A. The
following cases occur.

Case 1. A has three distinct eigenvalues. Let (2.395) be the spectral decom-
position of A, by virtue of Theorem 17

3
G(A) = Z piei ® e, (2.404)
=1

from (2.396) we conclude that there exist three scalar functions ag(A),
a1(A), az(A) such that

G(A) = Oéo(A)I + Oél(A)A + as (A)A2 (2405)
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Case 2. A has two distinct eigenvalues. Using the same arguments as in Case
1, it is possible to prove that G(A) has the representation (2.405) with
(%) (A) =0.

Case 3. A has exactly one distinct eigenvalue , A = wI. In particular, QAQ” =
A for each Q €Orth, then from the isotropy of G(A) it follows that
QG(A)QT = G(A) for each Q €Orth, then, in view of Proposition 41
G(A) = pI and G(A) has the representation (2.405) with ag(A) = 5 and
Oél(A) = OéQ(A) =0.

Now we have proved that if G is isotropic then has the representation (2.405).
By virtue of the representation theorem for isotropic functionals, to complete
the proof we have to prove that aq, a1, as are isotropic functionals

a(QAQT) = ap(A), k=0,1,2 (2.406)

for each A € A, Q €Orth. Then, consider A € A, Q €O0rth, from the isotropy
of G it follows that

G(A) - QTG(QAQ)Q =0,
from which, taking both (2.405) and

Q"(QAQ")’Q =A%, (2.407)
into account, we get
[a0(A) — a0(QAQT)IT + [ (A) — a1 (QAQT)|A+
[a2(A) — a2(QAQT)]AZ = 0. (2.408)

Now, we have to consider the three cases previously analyzed.

Case 1. By virtue of the Wang’s lemma, I, A e A? are linearly independent
and (2.408) implies (2.406).

Case 2. In view of (2.385) and Proposition 39 A and QAQ” have the same
spectrum, then, QAQY, as A, has two distinct eigenvalues and then
a2(A) = a2(QAQT) = 0. Moreover, due to the Wang’s lemma I and
A are linearly independent and once again from (2.408) we get (2.406).

Case 3. In this case A = wl and QAQ” = A, then (2.406) is trivially verified.
O

If A is invertible, from the Cayley-Hamilton theorem it follows that
A2 =T (A)A — L(A)T + I3(A)A ™, (2.409)

thus, Theorem 18 has the following corollary.
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Theorem 19. (Second representation theorem for isotropic functions) Let A be
the set of all invertible symmetric tensors. A function G : A —Sym is isotropic
if and only if there exist functionals Vo, 1, 12 : P(A) — R such that

G(A) = Yo((ANT + 1 (n(A)) A + 1ha(n(A) AL for each A € A. (2.410)

For the linear applications (fourth-order tensors) the following result holds.

Theorem 20. (Representation theorem for isotropic fourth-order tensors) A
fourth-order tensor A :Sym—Sym is isotropic if and only if these exist two
scalars p and A such that

A[A] = 2uA + X tr(A)I, for each A € Sym. (2.411)

Proof. Clearly (2.411) defines an isotropic function. Let N be the set of all
vectors with 1 norm. For each e € N, tensor e ® e has spectrum {0,0,1} and
characteristic spaces Span(e)* and Span(e). Then there exist two functionals
i, A N — R such that

Ale® el =2u(e)e®e+ A(e)I, for each e € NV. (2.412)

Now, consider e,f € A and let Q be the orthogonal tensor such that Qe = f.
Since
Qe®e)Ql =faf, (2.413)

and A is isotropic, we have

0=QAle®e]Q" —Af ®f] =

2[u(e) — p())f @ £ + [A(e) — A(H)]I. (2.414)
Since f ® f and I are linearly independent, from (2.414) we get
/1,(6) = M(f>a )‘(e) = )‘(f)7 (2415)

then p and X are constant scalar quantities and from (2.412) we conclude that
Ale®e] =2ue®e+ AI, for each e € N. (2.416)

Now, let us consider A €Sym, in view of the spectral theorem A has the repre-
sentation (2.395), and by virtue of (2.416) and the linearity of A, we have

A[A] = 2pA + Nwr +ws + w3)L. (2.417)
O

Corollary 1. Let A :Symyg —Sym be a fourth-order tensor, with Symg =
{A €Sym : trA = 0}. A is isotropic if and only if there exists a scalar u
such that

AJA] =2uA, for each A € Symy,. (2.418)
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In particular, if A is isotropic, then A and A[A] commute, AA[A] = A[A]A,
and are coaxial.

Exercise 31. Prove that the function R :Psym— Psym which associates to each
C the tensor V/C is isotropic.

Solution. For each C €Psym, Q €Orth, we have
(QVCQ")* = QvCcQ"QveQ” = Qcq’. (2.419)

Exercise 32. Let G :Sym—Sym be an invertible isotropic function, prove that
G~ is isotropic.

Solution. For each A €Sym, Q €Orth, we have
G(QGT1(A)Q") = QAQT, (2.420)
applying G~! we get
QGTH(A)Q" = GTH(QAQ"). (2.421)
Exercise 33. The function G :Lin—Lin defined by G(A) = A¥, k € N is

1sotropic.

Exercise 34. The function G :Lin™ — Lin™ defined by G(A) = AL, is isotropic.

From exercises 31 and 34 it follows that the function S :Psym—Psym de-
fined by S(C) = (R(C))~! = (v/C)~! is isotropic. Moreover, the function
that associates to each F €Lin™ the tensor FTF €Psym is isotropic; since the
composition of two isotropic functions is isotropic, the functions defined from
Lin™ into in Psym that assign to each tensor F the tensor U of the right polar
decomposition of F and U~! are isotropic. The function from Lin*t into Orth*
that assigns to each tensor F the tensor R of the right polar decomposition of
F is isotropic.

2.19 Convergence of tensors

Let us consider the natural norm on Lin (see (1.104)),

A
1Ay = sup IABL o e (2.422)
uzo [ull
The natural norm is submultiplicative
|AB||x <[[A|~[B|~, A,B € Lin, (2.423)

and ||I||y = 1.
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Given A €Lin, from (2.80) it follows that
|Al > ALy, (2.424)
where ||A] is given in (2.71). In particular, if n = 3, we have
|A||? = tr(ATA) = Ay 4+ Ag + A3, (2.425)
where 0 < \; < Ay < A3 are the eigenvalues of the tensor AT A €Sym™ and

[Aul? ATAu-u
[ul> — wu

(2.426)

is the Rayleigh quotient of the tensor AT A which satisfies the inequalities

o< AlAwu (2.427)
u-u
from which it follows that
IAIZ = s, (2.428)
In particular,
Al < [A* < 3A[R. (2.429)

Now we want to define the convergence of a sequence of tensors {Ay}, . to a
tensor A €Lin. We say that {A}, . converges to A if for each ¢ > 0 there
exists k > 0 such that

|Ar — Al| <e foreach k> k. (2.430)
Proposition 49. The following conditions are equivalent.
(i) JAx—A| =0 fork — oo.
(i) ||[Axu— Au|| =0 when k — oo, for each u € V.
(iii) |Ayu-v—Au-v| =0 when k — oo, for each u,v € V.
Proof. If (i) holds, then, for each u € V we have
|Aru — Aul = [|(A — Aul| < [|A) — Al [u]] =0, (2.431)

then (i)=-(ii). In Section 1.8 we have proved that (ii)=-(iii) and that in finite-
dimensional vector spaces (iii)=-(ii). Thus, we have to prove that in a finite-
dimensional vector space (ii)=-(i). Let {u;,us,us} be an orthonormal basis of
V, if (ii) holds, then for each ¢ > 0 there is kg = k(e) such that [[Ayu,—Au;|| <e
for k > ko and for ¢ = 1,2,3. Given u € V, we have u = Z?:l(ll'lli)lli and
then

[(Ax — A)ul| = || Z(U~Ui)(Ak —Auf| <

3
D Il (A = A)uw]| < 3¢]|ull, (2.432)
i=1
therefore ||Ar — A||xy — 0, which, along with (2.429) gives (i). O
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The inner product on V and the vector product, as bilinear functions, are
continuous. In fact, given uy — u, vy — v, we have

lug v —u-v| <|ug-vp —u-vg| +|u-vp —u-v|,
e A v — w AV < i Ave — w A Vel + [laA Ve — A v] =
[(ur = w) Avi| +[luA (v, = V)| <
[l =l [ve]l + [[vi = I [lu].
Exercise 35. Prove that
(a) ¢1:Lin— R, p1(A) = |[A]],
(b) Ty :LinxV — V, T1(A,u) = Au,
(c) g2 :LinxV xV =R, ga(A,u,v) =Au-v,
(d) g5 :LinxV = R, g3(A, u) = |Aul,
(e) Ty :Linx Lin—Lin, To(A,B) = A + B,
(f) 75 :LinxR —Lin, T5(A, o) = A,
(g) Ty :Linx Lin— Lin, T4(A,B) = AB,
(h) Ts :Lin—Lin, T5(A) = AT,
(1) @4 :Lin— R, p4(A) =trA,
(G) @5 Lins B, p5(A) = det A,
(k) T :Inv—Inv, To(A) = A=, with Inv the set of all invertible tensors,

are continuous functions.

Solution.
(a) Given Ay — A, from the second triangle inequality (1.35) it follows that
ARl = [[A]l] < [[Ax — Al
(b) Given A, — A and u; — u,
|Arur — Au| < ||Aru, — Agul| + [[Agu — Aul| <

|A%] [k — u + [|Agu — Aul.

(c¢) Given Ay — A, up — u, v — v, we have
|Akuk SV — Au~v| < |Akuk -vi — Auy, ~Vk|+

|Aug - v — Au-vi| + |[Au- vy — Au-v|.
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(j) Let {e1,e2,e3} be an orthonormal basis of V with e3 = e; A ey and
A, — A, in view of (2.175) we have

|det Ay —det A| = |Aype; - (Arez A Ages) — Ae; - (Aex A Aes)|.

The thesis follows from (d) and from the continuity of the vector product and
inner product on V.

(k) By virtue of the Cayley-Hamilton theorem, T5(A) = m [A2—I;(A)A+

I,(A)I], therefore Tg is continuous because it is sum, product and quotient of
continuous functions.

2.20 Derivatives of functionals and vector and
tensor-valued functions

Put n = 3.
Exercise 36. Compute the derivative of the following functions.

(a) ¢:V — R defined by
p(v)=v-v, ve.

(b) F :Lin— Lin defined by

G(A)=A? Ac Lin. (2.433)

(¢) F :Lin—Lin defined by

F(A)=A® Ac Lin (2.434)

Solution.
(a) For v € V we have

pv+u)=(v+u)-(v+u)=v-v+2v.utu-u=

p(v)+2v-u+o(u) u—0, (2.435)

from which
Dy(v)[u] =2v-u, uev.

(b) For A €Lin we have
GA+U)=(A+U)(A+TU) =

A? + AU+ UA +U?=G(A)+AU+UA +0o(U), U—=0, (2.436)

where the last equality follows from the fact that the norm is submultiplicative,

o2 < o,
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From (2.436) we obtain
DG(A)[U] = AU + UA, U € Lin, (2.437)

and then DG(A) = AXTI+IX AT, The function DG :Lin— £(Lin,Lin) that
assigns to each A €Lin the fourth-order tensor DG(A) is continuous. To prove
the continuity, given Ay — A, we have to prove that DG(Aj) converges to
DG(A). In view of (2.437) we have

|DG(Ax) ~ DG(A)||y = sup ”DG(Ak)[fI']H DG(A)H]| _
el H

|AH+HA, — AH — HA| |AH — AH| + |HA, — HA|
< sup <

sup < <
HeLin || H| HcLin || H|
H=0 H=£0
ALH - AH HA, — HA
Ak Iy gup 1HA I < 9a, — Al (2.438)
HeLin HH” HecLin HHH
H-£0 H-0

This allows to conclude that G is of class C*.
(c)For A €Lin we have

F(A4+U) =A%+ AU+ UA? + AUA+

AU? + U?A + UAU + U3 =
F(A)+ A?U + UA? + AUA +0(U), U0, (2.439)

where we have taken into account the fact that
|AU? + U?A + UAU + U°|| < 3|A[| |U|* +|[UP°,

and then AU? 4 U2A + UAU + U? = o(U), U — 0.
From (2.439) it follows that DF(A) is the fourth-order tensor defined by

DF(A)[U] = AU + UA? + AUA, U € Lin, (2.440)
with DF(A) = A2RI+IK (AT + AR AT,

Exercise 37. Compute the deriwative of the following functions from Lin to
Lin:
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Solution.
(a) For every U €Lin we have

GA+U)=tr(A+U)(A+TU) =

tr(A)A +tr(U)A + tr(A)U + tr(U)U,

since ||tr(U)U| = [I-U| ||U|| < v3||UJ|?, we have that tr(U)U = o(U) for
U — 0, then,

DG(A)[U] =tr(U)A +tr(A)U, for each U € Lin

and
DGA)=AxI+(A-IL

(b) For every U €Lin we have
GAA+U)=(A+U)B(A+U) =
G(A) +UBA + ABU + UBU,
Since UBU = 0o(U), U — 0, we have
DG(A)[U] = UBA + ABU, for each U € Lin,

and
DG(A)=ABRI+IX(BA)'.

(¢) For every U €Lin we have
GA+U)=AT+UN)A+U) =
G(A)+ATU+UTA +UTU.
Since UTU = o(U), U — 0, we have
DG(A)[U] = ATU + UTA, for each U € Lin.

Theorem 21. Let ¢ be the functional defined on the subset Inv of Lin consti-
tuted by all invertible tensors

w(A) = det A. (2.441)
@ is of class C* and
Dp(A)[U] = (det A)tr(UA™Y),  for each U € Lin. (2.442)

Proof. Let us start by remarking that the set Inv= { A €Lin : det A = 0} is open
in Lin because it is the complement of the set Ninv= {A €Lin : det A = 0},
which is closed as it is the inverse image of the closed set {0} in R under the
continuous function det. Given B €Lin, from (2.232) and (2.233) with a = —1
we obtain

det(B+1I)=1+11(B)+ L(B) + I3(B). (2.443)
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From the relation det B = 1[(trB)3 — 3(trB)tr(B?) + 2tr(B?)], it follows that
1
|det B| < EHtrB\?’ + 3|trB| |tr(B?)| + 2|tr(B%)]] <

3
V3B + 3V3IBI + 2B (2444

then det B = 0o(B), B — 0 and
det(B+1I)=1+4+1(B)+0(B), B—0. (2.445)
Thus, for A €lnv fixed, for each U €Lin, we have
det(A +U) = det[(I+ UA HA] =

(det A)det(T+ UA ™) = (det A)[1 +tr(UA™ ") +0(U)], U — 0. (2.446)

Since the function U ~ tr(UA ™) is linear, from (2.446), (2.442) follows. More-
over, the continuity of the function D¢ from Inv to £(Lin,R), follows from the
continuity of the determinant and of the inverse. In particular, we have to prove
that if Ay — A, in Inv, then Dp(Aj) — De(A) in L£(Lin, R),

[Do(Ar)[H] — Do(A)[H]|

[De(Ak) — Dp(A)||n = sup =
HeLin [ H|
H#£0

|(det Ag)tr(HAL') — (det A)tr(HA™Y)|
sup =
HELin [[H|
H+#0

A HT A - AHT . A!
sup |(det Ay) . — (detA) | _

HecLin ||H||
H#0

HT . [(det Ap)A; ! — (det A)A!
Sup| [(det Ag)A, " — (det A)A™1]|

HeLin ||H|| B
H#0

[(det Ag)AL" — (det Ap) A~ |+
[|(det Ap)A™! — (det A)A™Y| =
|det Ay| A" — A7+ [|ATY| |det Ay — det A,

and the thesis follows from the continuity of the determinant (exercise 35 (j))
and the function Ty (exercise 35 (k)). O

From (2.442) and (2.192) it follows that the derivative of the determinant of
a tensor A €lnv coincides with its cofactor A*.

Exercise 38. Consider G :Inv— Lin such that G(A) = A~1. Assuming that G
18 differentiable, prove that

DG(A)H] = -A"'HA™', A< Lin. (2.447)
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Solution. Let us consider the linear function F' :Inv—Inv such that F(A) =
A. Let us consider the function product

F(A)G(A)=1, A €lnv. (2.448)
From the product rule it follows that
DF(A)H]G(A)+ F(A)DG(A)H] =0, H € Lin, (2.449)
from which
HA ' + ADG(A)H] =0, (2.450)
and then (2.447) is satisfied.

Exercise 39. Given v :Inv— R such that ¢(A) = det(A?), compute Di(A)
for each A €lnv.

Solution. Consider ¢ :Inv— R such that ¢(A) = det(A) and G :Inv—Inv
such that G(A) = A2. Taking into account that 1) = ¢ o G, for each H €Lin we
have

Dy(A)[H] = Dp(G(A))[DG(A)[H]] =
det(A?)tr(DG(A)[H]A™?) =
det(A?)tr((AH + HA)A~?) = 2det(A?)tr(HA ™). (2.451)

Exercise 40. Consider 1 :Inv— R such that 1(A) = (det A)tr(A~1), A €lnw.
Compute Dip(A).

Solution. Consider ¢ :Inv— R such that ¢(A) = det(A) and G :Inv—Inv
such that G(A) = A~ then, we have 1¥(A) = ¢(A)tr(G(A)). Therefore

Dy(A)[H] = Dp(A)[H]tr(G(A)) + ¢(A)Dtr(G(A))[DG(A)[H]] =
(det A)tr(HA Htr(A~1)+
(det A)tr(—ATTHA ™) =
(det A){tr(A~H)tr(HA™') — tr(HA™?)} =
(det A){tr(A")A™T — A7?T}.H, H € Lin. (2.452)

Exercise 41. Let I :Lin— R be the functional defined by Io(A) = [(trA)% —
tr(A?%)]. Compute DIy(A).

1
2

Solution.
L(A+H)= %[(tr(A +H))? —tr((A+H)?)] =
IL(A)+tr(A)tr(H) —tr(AH) + o(H), H — 0,
then
DI,(A)[H] = {tr(A)I- AT} . H, He€ Lin
and

DIy(A) = tr(A)T — AT,
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Exercise 42. Consider f :Lin— R defined by
f(K) = [Kol* = p?(trK), (2.453)

with Ko = K — (trK)I/3 the deviator of K and p : R — R a continuous and
differentiable function. Compute D f(K).

Solution. Let us remark that DKy(K)[U] = Uyp; having in mind that
|IKo||? = Ko - Ko, exploiting the chain rule, we obtain

Df(K)[U] = 2(Kq — p(trK)p' (trK)I)- U, for each U € Lin, (2.454)
where p’ denotes the derivative of p with respect to the independent variable.

Exercise 43. For each integer k > 1 let us consider the functional 1, :Lin— R
defined by 11,(A) = tr(A¥), with A* given in (2.9). Prove that

Drp(A) = k(AFHT, (2.455)

Solution. We can prove the following relation by induction

k—1
(A+H)F=AF+ Y AHA* " 1 o(H), H-O0. (2.456)

i=0
Calculating the trace of both sides of (2.456) we get that

Drp(A)[H] = k tr(HA*™'), H € Lin, (2.457)
from which the thesis follows.

Exercise 44. Given a second-order tensor L, for each integer k > 1 consider
the functional ¥y, :Lin— R defined by 11, (A) = tr(A*L). Compute Dy (A).

Solution. In view of (2.456) we have

k—1
Ur(A+H) =¢p(A) +tr(dAHAF L) 4 o(H), H—0, (2458)
=0
from which it follows that
k—1 )
Dy (A)H] =D (A'LA*'")T.H, He Lin. (2.459)
1=0

Now, we can prove the following proposition, which expresses the invariance
of the derivative of a function invariant with respect to a subset J COrth.
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Proposition 50. Let J be a subset of Orth, A an open set contained in a
subspace U of Lin, with A invariant with respect to J. Assume that G : A — Lin
is invariant with respect to J and of class C*. Then,

QDG(A)[U]Q" = DG(QAQ")[QUQ™], (2.460)
for each A € A,UelU,QeT.

Proof. Let us start by proving that U is invariant with respect to J. Take
UeceU,A e A Q € 7T, since Ais open, there exists a > 0 such that A+aU € A.
From

QA +aU)Q” = QAQT +QUQT c Ac U (2.461)

taking into account that I is a subspace, we get that QUQT e U.
Given A € A, U e U,Q € J, we have

G(Q(A +U)Q") = G(QAQ" +QUQT)

= G(QAQT) + DG(QAQT)[QUQ"] + o(U), U — 0; (2.462)

on the other hand, since G is invariant with respect to J we have
G(QA+U)Q") =QGA+1U)Q7, (2.463)
and
QG(A +U)QT = QG(A)QT + QDG(A)[UIQT +0o(U), U —0. (2.464)
Comparing the relations (2.462) and (2.464) we finally get (2.460). O
Exercise 45. Let T :Inv—Inv be the function defined by
T(V)=p(VVT —I) + \[(det V)2 — 1]I,  with p, A € R; (2.465)
compute DT (V).
Solution. We have
DT(V)[H] = p(VHT + HVT) + 2X(det V)’ I @ V-T[H], H € Lin. (2.466)
Let T :Lin—Lin be a differentiable function. For {ey, ..., e,} an orthonormal

basis of V and A € Lin, we want to calculate the components of the fourth-order
tensor DT[A]. Taking into account that

A= Z Aijei & €; (2467)

1,j=1

from the differentiability of T', we get

T(A +ae,®e)=T(A)+aDT(A)ler ®e] +o(a), a—0, (2.468)
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and,
(ei®e;) T(A+ae,Re)=(e;Re;) - T(A)

+a(e;®e;) - DT(A)ler ® €] +o(a), o —0, (2.469)

from which we get

T(A + aer ® el)ij — T(A)”

e, ®e; DT (A)ler @ ¢] = ill_&) 5 , (2.470)
and finally,
OT(A)y
DT (A)ij = ——. 2.471
( ) Jkl aAkl ( )

2.21 Derivatives of functions defined over an open
set of R
The following proposition follows directly from (1.159).
Proposition 51. Given an open set D of R let
¢ :D =R,
v,w:D =V,
A, B:D —Lin,

be functions of class C'. Then

(pv) = v + pv, (2.472)
(v-w) =v-wtv-w, (2.473)
(AB)" = AB + AB, (2.474)
(A-B)" =A - B+A-B, (2.475)
(Av)" = Av + Av, (2.476)
(VAW) =VAW+VAW, (2.477)
(VOWwW) =vAwW+vVOw, (2.478)
(PA)" = pA + PA. (2.479)
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For n = 3, let {ej,es,e3} be an orthonormal basis of V, given the vector
function v(t) and the tensor function A(t), we have

3 3

vit) = vit)en, Al =3 Ay()e@e;. (2.480)

i=1 ij=1

If A(t) is a non-null tensor function, for ¢(t) = ||A(t)||, we have

L AW)
o(t) = TAQ] A(t), (2.481)
from which we get the identity
. A y
(ra@1) = TAQ] A(t). (2.482)

Proposition 52. Let D be an open set of R and B : D —Lin a function of
class C*. We have

(BT)" = (B)”. (2.483)
Moreover, if B(t) is invertible for each t € D, we have
(det B) "~ = (det B)tr(BB~Y), (2.484)

and )
(B =-B'BB L (2.485)

Proof. Let L :Lin—Lin be the linear function defined by L(A) = AT, A €Lin.
Since DL(A) = L, from the chain rule it follows that

(B")" = (L(B))" = L(B) = (B)".

From the relations (1.161) and (2.442), for ¢(B) = det B we have

((B(1))" = D(B(1)[B(1)] = (det B(t))tr (B<t>B<t>-1) .

Exercise 46. Assume that Q : R — Orth is differentiable. Show that

Q(t)Q(t)T € Skw for eacht € R. (2.486)

Solution. Consider L :Lin—Lin such that L(A) = AT since Q(t)Q(¢) =1
for each t € R, differentiating with respect to ¢t we get

. . . . T
0=QQ" +QDL(Q)[Q] = QQ" +QQ , (2.487)

from which the thesis follows.
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