
1

Logical and physical data structures for Flash memories for lightweight, portable

databases

C. Bolchini, A. Giusti, F. Furfari, S. Lenzi

Abstract

This report presents the design and implementation of appropriate logical and physical data structures for

Flash EEPROM memories, developed to increase access performance, reduce power consumption ad improve the

device endurance. Such data structures have been exploited in the implementation of a driver for the physical

data management layer of a lightweight DataBase Management System (DBMS), developed for devices with Flash

memory storage. The DBMS has been designed from scratch to exploit the proposed logical and physical data

structures, with the aim of supporting the use of context-aware applications, running on a portable device, working

on a limited amount of data, which is opportunely selected based on the context.

I. INTRODUCTION

The large diffusion of portable consumer devices constituted by autonomous computational power,
connectivity, limited battery life and storage – like cell phones, Portable Digital Assistants, or other
devices such as the MIT 100$ laptop [11] – has led to the development of applications tailored for such
kind of devices, and among them, DataBase Management Systems (DBMS) play a significant role. In
fact, the resources of portable devices, although limited, allow the user to carry around a useful portion of
data, to be read as well as modified. Such data may be a portion of a larger system (e.g., an employee’s
workload and tasks’ data) or may be the unique copy of a user’s information (e.g., personal internet
access preferences and data): in both cases a portable DBMS is desirable as a back-end for accessing and
managing data. The requested features are actually only a subset of the typical functionalities offered by
traditional, full-size DBMS and applications; for instance, chances of having a concurrent access to data
from different user applications on a portable device are limited. In this context, the query processing
functionality providing the typical ACID properties plays a relevant role. On the other hand, it is important
that the application be aware of the peculiar characteristics of the device, to better exploit the available
resources without incurring in bottlenecks caused by the employed technology.

More precisely, these portable devices use Flash EEPROM memory as storage support and this kind of
memory provides a particular read/write access, which significantly impacts on performance. Read and
write operations can be performed with a bit/byte granularity, but data may be written only on previously
erased locations, and erasure operations can be performed only with a block granularity. Such constraints
affect both performance and power consumption, two aspects extremely important in battery-powered
portable devices. Furthermore, Flash memory blocks can only be erased a finite number of times (up to
500,000) before becoming unreliable and thus unusable. As a result, when developing a data management
application, particular attention should be devoted to the primitives accessing the storage medium.

In this scenario, we have developed specific logical and physical data structures for managing data
to be stored on portable devices equipped with Flash EEPROM storage, by means of a portable light
DBMS, dubbed PoLiDBMS [2]. The innovative contribution of this paper consists of an enhanced version
of the data structures presented earlier ([3]), together with the design and implementation of a driver
implementing the proposed policies. The initial proposed solutions have been re-designed to better exploit
the evolving technological characteristics of Flash memories, as discussed in the next sections. These
logical and physical data structures, together with the prototype PoLiDBMS are part of a more general
methodology for Very Small DataBases (VSDB), aimed at supporting the designer in the design and
management of limited context-aware data for mobile devices ([4]).

C. Bolchini, A. Giusti are with the Politecnico di Milano {bolchini,giusti}@elet.polimi.it
F. Furfari, S. Lenzi are with the CNR-ISTI {francesco.furfari, stefano.lenzi}@isti.cnr.it
This work has been partially supported by FIRB-MAIS project.

2

The rest of the paper is organized as follows. Section II presents an overview of other approaches
related to either data management on portable devices, or Flash memory access. Section III presents the
proposed logical and physical data structures constituting the lower level of the DBMS, implemented
in a driver written in C and discussed in detail in Section IV. Future developments conclude the paper.
Appendix A contains the source code related to the Sorted policy.

II. RELATED WORK

Nowadays the wide spread of portable devices has led to the development and use of several lightweight
applications, among them there are also the DataBase Management Systems and several commercial
producers have delivered scaled-down, reduced versions of well-known full-size DBMS, such as Oracle
Database Lite – 10g [12], IAnywhere UltraLite Database [8], IBM DB2 Everyplace [9], and Microsoft
SQL Server Mobile Edition [15]. An analysis of these systems highlighted a common factor among them:
an underlying client-server architecture, where the portable device hosting the light DBMS is a client, and
there is a full-featured server at the center of the architecture. Hence, the aim of these light DBMSes is to
scale down an existing tool to fit on the reduced resources, providing a traditional database management
system, built on top of the operating system of the portable device. As a result these applications do
not have a specific control of read/write/erasure operations, and do not necessarily adopt ad-hoc data
organization policies based on the identified peculiarities.

Nevertheless, when considering such a scenario and the limited resources, not all of the classical features
of a DBMS are necessary, especially when considering the possibly reduced data held on the device and
the fact that the SQL engine will serve a purpose of data access/manipulation rather than database creation,
administration with possibly no direct user access. Furthermore, the particular technological characteristics
of the storage medium suggest an accurate manipulation of the stored information to limit endurance
degradation, power consumption and to achieve good performance. The proposed approach focuses the
attention on these issues to design a light DBMS thought as a stand-alone system to provide the necessary
data management features, but taking into account the particular technology hosting the system and the
data.

An interesting survey on data structures and flash-specific file systems is presented in [6], [7], where
the authors analyze several different approaches to exploit the peculiarities of Flash EEPROM memories
as storage means. Most of the attention has been devoted, since the early 1990s, to the development of
techniques and methods to provide memory usage that could emulate traditional storage (e.g., magnetic
disks); some solutions for file system implementation are also reviewed, together with a few approaches
aimed at allowing high-level software to access the flash device as a simple rewritable block device.

GnatDb is an embedded database system designed to run on a wide range of appliances, sometimes
characterized by very limited resources and with relevant security issues [16]. The small footprint database
system has been designed to reduce code footprint as well as stack and heap memory usage; furthermore
the focus is on protecting data by means of security primitives integrated with log-sructured storage. No
query processing is though provided and thus no investigation is carried out on necessary data structures
except for the log-like one, which is suited for flash-memory-based storage.

PicoDBMS [13] is a database systems designed to be running on smart-cards, exceptionally limited-
resource devices, able to execute query processing with no secrecy/security features. The authors propose
an interesting data structure based on indexing to reduce the required memory space. The adoption of
indices and their management is though not optimal for flash memories where erasures (to keep track of
new index values) are both power- and performance-critical operations.

An open source DBMS is also available, sqlite [14], a small C library that implements a self-contained,
embeddable, zero-configuration SQL database engine. Although fit for use in cellphones, PDAs, set-top
boxes, and/or appliances, and usable as an embedded database in downloadable consumer applications,
no specific features for low level data access and management are provided, using the operating systems
primitive commands to read and write data.

3

Our contribution in this field consists in the design of appropriate data structures that can be used to for
representing data to be accessed by means of a database management system, through traditional relational
query processing, which exploit the technological characteristics of flash-memory storage. More precisely,
we have focused the attention on defining an enhanced log-like storage management strategy, which is
the most natural way for storing data on a Flash memory, suitable for tables in relational databases where
data are only appended; moreover heap and sorted logical data structures have been also designed to
“map” small unsorted and ordered data, respectively. Before introducing the proposed data structures, a
few details on the Flash EEPROM technology are presented, highlight the motivations and peculiarities
of the adopted solution; Section IV will then unveil the details of the implementation.

A. Flash memory issues

In general, two kinds of Flash memory implementations can be employed for portable device storage:
NOR and NAND, the former usually adopted as file system storage, the latter for common consumer
usage in the form of SmartMedia cards. Indeed NOR flash memories provides not much storage per chip,
not being very dense, and are costly and slow to write; NAND flash are increasingly dense, low cost
but have other limitations, so they are becoming more popular also for storage system implementations.
Program and erasure operations require particular effort with respect to classical magnetic disk or RAM
support, since a memory location needs to be erased before it can be programmed, independently of the
granularity allowed by the specific type of memory. More in detail, write operations can only modify 0s
to 1s, whereas changing 1s to 0s requires an erasure of the entire partition; moreover in NAND memories
a page may be programmed a maximum number of times.

III. LOGICAL AND PHYSICAL DATA

STRUCTURES

Classical, indexed data structures are often inappropriate for Very Small DataBases: the limited search
needs we have within the relatively small tables we deal with is not worth the overhead required for
managing and maintaining indexes; moreover, as we will show later, mantaining additional structures is
very expensive with the present storage technology. Therefore we propose simple record-based tabular data
structures, on which relational database operations can be easily mapped. Although these approaches have
been preliminarily presented in [2], [3], during their implementation improvements have been introduced,
and other interesting issues have also risen.

Logical data structures define how records are organized in the tables, whereas physical considerations
allow ad-hoc optimizations tailored on the specific constraints of the flash memory substrate. In order to
better understand the peculiarities and advantages of the proposed solutions, it is worth briefly analyzing
the kind of operations that will be provided for accessing data. More precisely, the set of such operations
we have envisioned and that are usually employed by the DBMS query processing engine to answer user’s
queries, are:

Scan returns all the records in the table;
Searchreturns only the records in the table which match a given condition; we support both equality

(field = value) and range (minValue ≤ field ≤ maxValue) constraints;
Updateupdates a record in a table, modifying one or more fields;
Insert inserts a new record in a table;
Delete deletes a record;

In the following, a presentation of the logical organization of data is presented.

A. Logical data structures

We implemented 3 different logical data structures: each one has its advantages and drawbacks, which
are mainly related to the relation’s cardinality, and to the relative frequency of record insertion or update

4

operations w.r.t. search operations. Thus, at design time the database designer needs to perform an
annotation task to characterize each table of the database with additional information to identify the
most promising data structure according to the stored data and the estimated workload ([3]).

1) Heaps: Heap relations store records without any specific ordering. This is a simple, straightforward
storage policy, useful if the relation’s cardinality is limited, or if record searches are foreseen as extremely
rare w.r.t. insert and update operations: infact, no overhead is imposed on operations which modify or
add records. On the other hand, since records are not sorted, searches must always scan the entire heap
of records instead of taking advantage of binary search algorithms.

2) Sorted tables: Sorted relations try to overcome these limitations: in a sorted relation, search opera-
tions can be completed in a very efficient manner if an equality or range condition is set on the sorting
field.

However, when the storage substrate is a flash memory, mantaining a sorted relation when insert or
update operations are issued is not easy: in the following, we will present the strategies we use in order
to avoid a block erasure for each insert or update operation when a sorted table is involved.

3) Circular lists: A circular list is log-like relation with a fixed maximum number of records: when a
new record is inserted, it is appended at the end of the existing list of records; if the maximum number
of records is reached, the oldest one is erased. This is an example of how the DBMS includes additional
knowledge related to the application/data being managed. Circular lists are usually sorted with respect to
date and time.

B. Physical data structures

The peculiar characteristics of flash memories require ad-hoc optimizations in order to avoid an expen-
sive block erasure operation when a record insertion, update or deletion is required.

1) deleted bit: Not all modifications of a flash memory block require a block erasure: in particular,
bits in a block can always be set from 0 to 1 with a simple write operation; setting a bit in a block from
1 to 0, on the other hand, always requires to erase the entire block.

Taking advantage of this behavior, we propose to reserve a single bit for each record, which we call
deleted bit. A deleted bit, initially 0, is set to 1 as soon as the associated record is deleted. The record
deletion operation is then mapped to a simple write operation of the related deleted bit, which is extremely
fast and inexpensive in terms of battery power. Scan and search operations simply ignore records with
their deleted bit set.

When a block erasure operation is performed, we “garbage collect” records in the table which are
marked as deleted, and permanently remove them.

This is an example of how performance of flash memory systems can be noticeably improved by
avoiding expensive operations.

Deleted bits require just one bit per record: this is a neglegible overhead even for the smallest realistic
record length: their use is therefore suggested even where delete operations are not very common.
Obviously, deleted bits are useless in scenarios where records are never deleted nor updated.

2) distributed dummy records: Mantaining a sorted relation when record insertions and updates are
involved, while avoiding block erasures is not straightforward. For example, if a new record must be
inserted between two adjacent records, a block erasure is often unavoidable.

We propose to counter this issue by interleaving actual records with dummy, unprogrammed records
which, being entirely composed by 0 bits, can be conveniently overwritten with a simple write operation.
Dummy records are differentiated w.r.t. ordinary programmed records by means of a programmed bit,
which is handled in the same way as the deleted bit we previously introduced.

The first step for inserting a new record is determining its position in the sorted table: if the new record
can be inserted in place of a dummy record, the record insertion operation does not need a block erasure.
On the contrary, if the records preceding and following the new one are adjacent and there is no available
dummy record, a block erasure takes place; in this occasion, deleted records are garbage collected, and
dummy records are redistributed.

5

Fig. 1. Top: computed positions for worst case. Bottom: after record redistribution.

The efficiency of this strategy is highly dependent on the distribution of the dummy records in the
table; in particular, we are evaluating the effectiveness of two strategies for record placement in the table,
the first one an incremental improvement over the proposal in [3], the second one being an innovative
version.

Hashing-function-driven strategy: Each record is associated with an “ideal” position in the table
by means of a hashing function, which reflects the expected distribution of the records. When an insert
operation is initiated, the ideal position of the new record is computed, and it is used as a base for its
placement. If sorting can not be mantained, a block reprogramming is needed.

Since in most real-world usage scenarios the distribution of the records is not uniform, a good selection
of the hashing function is of prominent importance. The hashing function should map the peculiar value
distribution of the records’ sorting field to a uniform distribution throughout the entire table, so that
dummy records keep evenly distributed; this maximizes the probability that a dummy record is available
for overwriting upon insertion of a new record.

If a sufficiently large example of the records the table has to deal with is available, the hashing function
could be determined offline and automatically from the inferred value distribution of the sorting field; else,
the VSDB designer should compose an appropriate function incorporating its knowledge of the application
scenario.

Binary-tree-based strategy: The objective of this strategy is to achieve maximum record scattering
also when a conflict arises because the ideal position is already occupied. In order to find the position
that maximizes space between records the main idea is to use a binary-search like algorithm.

An insert operation consists in a binary search that looks for a record with the same ordering key; when
the search ends we either (see figure 1):

• hit an empty location (dummy record), where we will write the record to be inserted: note that this
placement will leave the maximum space between the new record and the adjacent records, already
stored.

• find a record with the same key value, possibly immediately followed by other records with the same
key: thus we can append the new record to the group, if space is available; else, a record redistribution
is needed.

In figure 1, as an example, we report the computed positions for the worst case that occurs when
the sequence of data to be inserted is already ordered. It is straightforward to notice that after log

2
(N)

insertions, where N is the logical size of the table, the new record should ideally be placed among the
leaves of a tree whose depth is too high to be serialized on the table. In the figure the element that causes
the fault is “500”. In such situation, and others in which similar conflicts arise, we erase the block and
proceed to reorder the sorted data starting from the middle element and applying recursively the algorithm
to the left and right partition. In figure 1, bottom, we represent the element displacement after a block
erasure, where the initial middle element is “300”.

The algorithm just described has a couple of issues.

6

• If we delete a record the algorithm would not be able to find the right position to insert (search) a
new record anymore; this problem is easily circumvented, leveraging on the logical deletion policy
we introduced previously: a deleted record, which is still there but has the deleted bit set, can still
be used by the comparison step of the binary search. The record is not needed anymore after a block
erasure because of the reordering of the elements, so it can be safely garbage-collected.

• Since usually a table spans on more than one block, in order to maintain the elements ordered we
have to erase many blocks for each data reordering: we are currently investigating the possibility to
erase just the block where the conflict occurs.
In our current implementation, we apply the algorithm to each block independently; the cost for
partitioning the table into different blocks of sorted data does not increase the global computational
cost when the number of blocks k is not comparable to log

2
(N). We can populate each block gradually

putting all the incoming data in the first block and moving to the second one when a conflict arises or,
alternatively, distributing them among all the blocks in round robin fashion. The computational cost
for this solution for the operations introduced in the Section III-A is: O(N) for the scan operation
considering we have to merge ordered lists of data coming from the different blocks, O(log(n)) for
search (executed for each block), and O(log(N)) for insert, delete and update (considered as a delete
and insert combination) operations.

This strategy does not assume any knowledge of the distribution of the key values in the dataset, and
automatically adapts itself by means of the incremental record redistribution process.

3) Metadata mantainance: The different logical and physical structures need to mantain some metadata,
such as the number of records in the table and the position of the first record in a circular relation. However,
mantaining updated metadata could introduce a significant overhead, therefore a number of strategies have
been adopted:

a session-based mechanism:metadata are kept in RAM until the end of the session, when they are written to flash. While
efficient, this approach is dangerous because if the device is abruptly powered down before the
end of the session, the tables’ state is inconsistent;

ad-hoc optimizations for writing metadata:metadata can be kept in a dynamic list, where only the last of the inserted items is the “current”
one. By means of smart overwriting, we manage to avoid block erasures most of the times, and
keep an always-updated record of the current metadata.

IV. A PROTOTYPE DBMS
IMPLEMENTATION

A DBMS for portable devices has been implemented ([2]) and is currently being re-engineered, provid-
ing data management and processing features. The query processing engine is written in Java: this allows
rapid prototyping, and enables us to focus on algorithmic issues in a well-engineered modular system.
The underlying driver, which implements logical and physical structures on the flash memory, is being
implemented in C: we devoted much more attention to optimization, and provide a well-documented
interface which can be used in other projects not needing query processing functionality. We use the
familiar Linux distribution on the iPaq platform, since Linux allows easy low level interfacing with the
flash memory; more precisely the used platform is the following one: HP5400 and HP3900 ipaqs equipped
with a familiar linux distribution (0.7.2) [1] and a blackdown JVM version 1.3.1 [5].

A. Data Access Layer

A simplified view of the DBMS architecture is shown in figure 2. We focus on the Data Access Layer
(DAL), which provides access to the flash memory and implements an abstract layer to allow different
data storage implementations to be used. We used such mechanism during the initial testing of the entire
DBMS in order to use an alternative XML based storage driver.

8

Indeed, the peculiarity of the technological device suggests the definition and adoption of specific data
structures, to minimize the limitation constituted by the constraint of erasing memory locations before
re-writing them.

An entire methodology for designing and managing small amounts of data on portable devices has been
developed, based on the definition of appropriate logical and physical data structures. These proposed
solutions have been implemented and are currently being re-engineered and optimized in the lower layer
of a portable light DBMS (PoLiDBMS) to be hosted on mobile devices equipped with Flash EEPROM
memories.

VI. ACKNOWLEDGMENTS

We would like to thank our colleagues Proff. F. Rabitti, F. A. Schreiber and L. Tanca for the useful
discussions.

REFERENCES

[1] Java-linux. http://www.blackdown.org/.
[2] C. Bolchini, C. Curino, M. Giorgetta, A. Giusti, A. Miele, F. A. Schreiber, and L. Tanca. Polidbms: Design and prototype implementation

of a dbms for portable devices. In Proc. of the 12th Italian Symposium on Advanced Database Systems (SEBD), pages 166–177, S.
Margherita di Pula (CA) Italy, June 2004.

[3] C. Bolchini, F. Salice, F. A. Schreiber, and L. Tanca. Logical and physical design issues for smart card databases. ACM Trans.

Information Systems, 21(3):254–285, 2003.
[4] C. Bolchini, F. A. Schreiber, and L. Tanca. A methodology for very small database design. Information Systems, to appear.
[5] Handhelds.org. http://familiar.handhelds.org/.
[6] E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM Computing Survey, 37(2):138–163, 2005.
[7] E. Gal and S. Toledo. Mapping structures for flash memories: Techniques and open problems. In Proc. of the IEEE Int. Conf. on

Software - Science, Technology & Engineering (SWSTE), pages 83–92, Washington, DC, USA, 2005. IEEE Computer Society.
[8] UltraLita Database by IAnywhere. Sybase document. http://www.ianywhere.com/products/mobile.html.
[9] DB2 Everyplace by IBM. IBM document. http://www-306.ibm.com/soft--ware/data/db2/eve-

ryplace/index.html.
[10] S. Liang. Java(TM) Native Interface: Programmer’s Guide and Specification. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1999.
[11] One laptop per child project. http://laptop.org/.
[12] Oracle Database Lite - 10g. Oracle document. http://www.oracle.com/technology/products/lite

/lite_datasheet_10g.pdf.
[13] P. Pucheral, L. Bouganim, P. Valduriez, and C. Bobineau. Picodbms: Scaling down database techniques for the smartcard. VLDB

Journal, 10(2-3):120–132, 2001.
[14] Sqlite. http://www.sqlite.org/.
[15] Microsoft SQL Server Mobile Edition. Microsoft document. http://www.microsoft.com/sql/ce/productinfo/

SQLMobile.asp.
[16] R. Vingralek. Gnatdb: A small-footprint, secure database system. In Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB),

pages 884–893, Hong Kong, China, August 2002.

/*
 * $Revision: 0.1 $
 * $Date: 2003/10/01 12:29:59 $
 * $Author montesissa

5 *
 * $Revision: 2.0.0 $
 * $Date: 2006/01/13 12:00:00 $
 * $Author: Bruno Bacci (bruno@bacci)
 * $Author: Francesco Furfari (francesco.furfari@isti.cnr.it)

10 * $Author: Stefano "Kismet" Lenzi (kismet−sl@users.sourceforge.net)
 *
 * Copyright (C) 2003 Politecnico di Milano
 * Dipartimento di Elettronica e Informazione − Milano (Italy)
 * All rights reserved.

15 *
 * vsdb_dummy_sorted.c: Distributed Dummy Records Implementation for Sorted Logi
cal!
 *
 *
 *

20 *
 * NOT YER COMPILED WITH GCC NOR TESTED ON ARM AND X86!!
 *
 */

25

#include <errno.h>
#include <string.h>
#include <unistd.h>

30 #include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <linux/mtd/mtd.h>

35 #include " vsdb_define.h"
#include " vsdb_metainfo.h"
#include " vsdb_ipaq.h"
#include " vsdb_basic.h"
#include " vsdb_dummy_sorted.h"

40 #include " vsdb_dummy_heap.h"
#include <stdio.h>
#include <stdlib.h>

/**
45 * This module contains all the function required to manage a table

 * implementing an sorted relation.
 * More later.......
 */

50

/***
*************/
/* UTILITY FUNCTION */
/***
*************/

55 /**
 * This function return the first PROGRAMMED and not DELETED Record inside the T
able that have
 * index Equal or Greater/Lesser(depend of the value speciefied by Direction) th
an the RecordNumber
 *
 * @param Flash: is the flash device we are working on (thah is the MTD storing
the VSDB database).

60 * @param DBHandle is the data structure maintaining all the metadata informatio
n.
 * @param Table is the pointer to the TableInfo data structure containing the me
tadata inforrmation
 * related to the table from which we want extract a record.
 * @param RecordNumber is the position of the record inside the table represente
d by TableInfo
 * that will used as starting position.

65 * @param RecordBuffer preallocated memory area used to store the record read fr
om the table.
 * @param UpToIndex is the limit to use for searching for a valid Record
 * @param Direction if SEARCH_LEFT will search for valid record that has index t
hat is Equal or Greater,
 * if SEARCH_RIGHT will search for valid record that has index th
at is Equal or Lesser
 *

70 * @return the index of the found record, UpToIndex+1 if no record are found, or
 negative value on error
 *
 * @note RecordBuffer must be pre allocated with dimension Table−>RowSize
 * @note No free will be call by this function
 */

75 inline int GetNextValidRecord(int Flash, struct VSDBInfo *DBHandle, struct Table
Info *Table,

long RecordNumber, void *RecordBuffer, long UpToIndex, short Direction)
{

int ret;

80 while(RecordNumber ≤UpToIndex){
 if ((ret = GetRecordFromTable(Flash, DBHandle, Table, RecordNumber, Recor

dBuffer)) ≠ VSDB_SUCCESSFUL) { /* Error reading a record */
return ret;

 }
if(GetRecordStatus(RecordBuffer, Table →RowSize) ≡ VSDB_PROGRAMMED)

85 return RecordNumber;

RecordNumber+=Direction;
}

90 return RecordNumber;
}
/**
 * Use the binary search to find the location near to value to search.
 * Near because it return alway a index even if the value searched is not

95 * present.
 *
 * The function assume that:
 * − If during a binary search I find a empty location that one should be
 * the one perfect for the insert so every record with lower index have low
er

100 * value and every record with higher index have higher value
 * − If I find the record that exactly the position that I was looking for savi
ng I have
 * only to check for some island of the same value
 * − If I don’t find the value it means that last pivot is the value nearest
 *

105 *
 * @param Flash
 * @param DBHandle
 * @param Table
 * @param ValueToMatch

110 * @param Start
 * @param End
 * @param Direction //TODO Remove useless
 *
 * @return the position near to the given value

115 *
 */
long SearchNearestPositionSorted(int Flash, struct VSDBInfo *DBHandle, struct Ta
bleInfo *Table,

void *ValueToMatch, int Start, int End, short Direction)
{

120 int Last,First,Middle,ret;
unsigned char *RecordBuffer;

/*
 * Makes room for the buffer used to read a record from the table.

125 */
if ((RecordBuffer = (unsigned char *)malloc(Table →RowSize*Table →UsedBlocks)

) ≡ NULL) /* Failed to allocate memory */
 return VSDB_NOT_ENOUGH_MEM;

Last=End;
130 First=Start;

while(Start ≤ End){

vsdb_dummy_sorted.c
/* Starting binary like research */
Middle=(Start + End) / 2;

135 if((ret=GetRecordFromTable(Flash, DBHandle, Table, Middle, RecordBuffer))
 ≠ VSDB_SUCCESSFUL) return ret;

switch(GetRecordStatus(RecordBuffer,Table →RowSize)){
case VSDB_EMPTY:{

/* Return the position of the non−empty record, based on the option
of the caller */

if(Direction ≡ SEARCH_RIGHT) return End;
140 else return Start;

} break;
case VSDB_DELETED: case VSDB_PROGRAMMED:{

switch (CompareKeyRecords(ValueToMatch,RecordBuffer,Table)){
case −1: { /* We have to select the upper(left) part of the block

 */
145 End = Middle − 1;

} break;
case 1:{ /* We have to select the lower(right) part of the block

*/
Start = Middle + 1;

} break;
150 case 0:{

return Middle;
} break;

}
} break;

155 }
}
return Middle;

}

160 /**
 * This function is used to get data related to one of the field of the Record
 *
 * @param Record pointer to buffer that contain a record
 * @param Field pointer to metadata related to field that we want get the value

165 *
 * @return pointer (within the buffer given)to value of specified Field
 */
inline unsigned char * GetSortedData (unsigned char * Record, struct Field * Fi
eld)
{

170 return (void *) (Record + Field →offset);
}

/**
 * This function is used to compare two Record on the sorting key

175 * @param ra pointer to first record
 * @param rb pointer to second record
 * @param Table pointer to metadata related to Table that contain those record
.
 *
 * @return 0 if the kay of the record have same value,

180 * −1 if the key of ra is lower than the key of rb
 * 1 if the key of ra is greater than the key of rb
 *
 */
inline int CompareKeyRecords(void * ra, void * rb, struct TableInfo * Table)

185 {
struct Field * MatchField;
void *raKey, *rbKey;
MatchField=Table →ExtendedInfo.Sorted.SortedField;

190 raKey=GetSortedData(ra,MatchField);
rbKey=GetSortedData(rb,MatchField);

return SearchCompare(raKey,rbKey,rbKey,MatchField →domain);
}

195

/**
 *
 * Is implementaion of the algorithm to rewrite data on the just erased bloack s
o that it will leave the maximum space within block.
 * The idea of the algorithm is:

200 * Because the MegaBuffer is an ordered vector we can read it as an BinarySearch
Tree, and the Toot of the Tree is the "mediana" of the
 * whole vector, and the Root of each SubTree is the moda applied to vector that
 conatin all the element of that Tree.
 * For Example consider the following data:
 *
 * *−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*

205 * | 2 | 5 | 7 | 12| 31| 45| 51| 55| 65| 66| 70| 80|
 * *−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*−−−*
 *
 * you can see the above that as the following tree
 * *−−−*

210 * | 45|
 * *−−−*
 * *−−−* | *−−−*
 * | 7 |<−−−−−−−−−−−−−−−−−>| 65|
 * *−−−* *−−−*

215 * *−−−* | *−−−* *−−−* | *−−−*
 * | 2 |<−−−−−−−−−−−>| 12| | 51|<−−−−−−−−−−>| 70|
 * *−−−* *−−−* *−−−* *−−−*
 * | *−−−* *−−−* | | *−−−**−−−* | *−−−*
 * −−−>| 5 | | 31|<−−− −−−>| 55|| 66|<−−−−−−>| 80|

220 * *−−−* *−−−* *−−−**−−−* *−−−*
 *
 * and the above view of the vector can be built by applying the algorithm.

 * The algorithm act as follow:
225 *

 * @param Flash is the file descriptor of the MTD device. The device need to be
 * open befor this function is called.
 * @param DBHandle is the data structure holding metadata information.
 * @param Table Metadata of the table that is used for reading and storing opera
tion

230 * @param BlockStart Index of the first Record of the Block involeved in Garbagi
ng
 * @param BlockEnd Index of the last Record of the Block involeved in Garbaging
 * @param MegaBuffer Pointer to the buffer storing all the Record that must rest
ore on inside the Table
 * @param Start Starting point of the MegaBuffer to use
 * @param End End point of the MegaBuffer to use

235 *
 * @return VSDB_SUCCESSFUL if and only if there is no error and all the record a
re been written back.
 * On error may be possible that part of the block is now used
 *
 */

240 int GarbageSortedDummyOnWrite(
int Flash, struct VSDBInfo * DBHandle, struct TableInfo *Table,
int BlockStart, int BlockEnd, unsigned char * MegaBuffer, int Start, int End

)
{

245 int Middle,Left,Right,MiddleBlock, ret;

if(Start>End) return VSDB_SUCCESSFUL;

/* FIX Critical Error Data losses */
250 if((BlockStart<0) ∨(BlockStart>BlockEnd)) return VSDB_SORTED_NOSPACE;

/* Root of the Tree of starting at Start and ending at End */
Middle=(Start+End)/2;
Left=Middle−1;

255 Right=Middle+1;

/* Middle of the Block */
MiddleBlock=(BlockStart+BlockEnd)/2;

260 if((ret=WriteRecordToTable(Flash,DBHandle,Table,MiddleBlock,&(MegaBuffer[Mid
dle]))) ≠ VSDB_SUCCESSFUL) return ret;

MiddleBlock−−;
/* Iterating on the Left SubTree*/
if((ret=GarbageSortedDummyOnWrite(Flash,DBHandle,Table,BlockStart,MiddleBloc

k,MegaBuffer,Start,Left)) ≠ VSDB_SUCCESSFUL) return ret;

265 MiddleBlock=(BlockStart+BlockEnd)/2;
MiddleBlock++;

vsdb_dummy_sorted.c

/* Iterating on the Right SubTree*/
if((ret=GarbageSortedDummyOnWrite(Flash,DBHandle,Table,MiddleBlock,BlockEnd,

MegaBuffer,Right,End)) ≠ VSDB_SUCCESSFUL) return ret;

270 return VSDB_SUCCESSFUL;
}

/**
275 *

 * @param Flash
 * @param DBHandle
 * @param Table
 * @param MetaInfo

280 * @param Block
 * @param NewRecord
 *
 * @return VSDB_SUCCESSFUL if and only if no error are occurred.
 */

285 int GarbageSortedDummy(
int Flash, struct VSDBInfo * DBHandle, struct TableInfo *Table,
struct SortedTableInfo *MetaInfo, int Block, void *NewRecord

)

290 {
 int ValidRecords, i, ret,EndRecord,StartRecord;
 unsigned char *MegaBuffer, *RecordBuffer;
 struct FlashBlock *CurrentBlock;

295 /*
 * The RecordBuffer is used to store a generic record read from
 * the table. If the record is valid thet it will be copied
 * into the MegaBuffer.
 */

300 if ((RecordBuffer = (unsigned char *)malloc(Table →RowSize)) ≡ NULL)
return VSDB_NOT_ENOUGH_MEM;

 /*
 * This buffer holds valid record only, that is

305 * record that are not marked as deleted.
 */
 if ((MegaBuffer = (unsigned char *)malloc((MetaInfo →Blocks[Block].ValidRec
ord+1) * (Table →RowSize))) ≡ NULL){
 free(RecordBuffer);

return VSDB_NOT_ENOUGH_MEM;
310 }

 /*
 * Select from the table only valid records.
 * We scan all the table (and thus all the blocks to

315 * find all the valid records.
 */
 ValidRecords = 0; /* Initialize the number of records that we must write bac
k */
 (MetaInfo →Blocks[Block].ValidRecord)++; /* I’ll consider even the new Recor
d that must be inserted */
 for(i=0; i<MetaInfo →Blocks[Block].ValidRecord; i++) {

320 /*
 * Read the record in the position "i"
 */
if ((ret = GetRecordFromTable(Flash, DBHandle, Table, i, RecordBuffer)) ≠ VSD

B_SUCCESSFUL) { /* Something wrong reading the i−th record */
 free(RecordBuffer);

325 free(MegaBuffer);
 return ret;
}
if(GetRecordStatus(RecordBuffer, Table →RowSize) ≡ VSDB_PROGRAMMED) { /* The

 record is programmed and not deleted so we save it */
if(CompareKeyRecords(NewRecord,RecordBuffer,Table) ≥0){

330 memcpy((void *)(MegaBuffer+(ValidRecords*Table →RowSize)),NewRecord,Ta
ble →RowSize);

 ValidRecords++; /* Update the number of valid record. */
 break;
}

 memcpy((void *)(MegaBuffer+(ValidRecords*Table →RowSize)),RecordBuffer,Ta
ble →RowSize);

335 ValidRecords++; /* Update the number of valid record. */
}

 }
 /* I’ll add the remaining Record after the insertion of the NewRecord */
 for(; i<MetaInfo →Blocks[Block].ValidRecord; i++) {

340 /*
 * Read the record in the position "i"
 */
if ((ret = GetRecordFromTable(Flash, DBHandle, Table, i, RecordBuffer)) ≠ VSD

B_SUCCESSFUL) { /* Something wrong reading the i−th record */
free(RecordBuffer);

345 free(MegaBuffer);
 return ret;
}
if(GetRecordStatus(RecordBuffer, Table →RowSize) ≡ VSDB_PROGRAMMED) { /* The

 record is programmed and not deleted so we save it */
 memcpy((void *)(MegaBuffer+(ValidRecords*Table →RowSize)),RecordBuffer,Ta

ble →RowSize);
350 ValidRecords++; /* Update the number of valid record. */

}
 }
 /*
 * Erase block used to store the table data.

355 */
 CurrentBlock=&(Table →Blocks[Block]);

if((ret = EraseBlock(Flash, CurrentBlock)) ≡ −1) { /*erase it */
 free(RecordBuffer);
 free(MegaBuffer);

360 return ret;
}

 /*
 * STARTING WRITING BACK

365 *
 * Write back the valid records collected into the
 * MegaBuffer buffer.
 */

370 /*Finding the first record index within the block*/
StartRecord = Table →NumberRecordPerBlock * Block;

/*Finding the last record index within the block*/
EndRecord = Table →NumberRecordPerBlock * Block + Table →NumberRecordPerBlock

 − 1;
375

 if ((ret = GarbageSortedDummyOnWrite(Flash,DBHandle,Table,StartRecord,EndRec
ord,MegaBuffer,0,ValidRecords)) ≠ VSDB_SUCCESSFUL){

 free(MegaBuffer);
 free(RecordBuffer);
 return ret;

380 }
 free(MegaBuffer);
 free(RecordBuffer);

 /*
385 * We need to update the metadata information.

 * In this case the number of valid, programmed and used
 * record is equal to ValidRecord.
 */
 (Table →ValidRecords)++;

390 (Table →UsedRecords)++;
 Table →ProgrammedRecords = Table →ProgrammedRecords − MetaInfo →Blocks[Block]
.ProgrammedRecord + ValidRecords;
 MetaInfo →Blocks[Block].ProgrammedRecord = ValidRecords;
 MetaInfo →Blocks[Block].ValidRecord = ValidRecords;

395 /*
 * This will be used when we decide to
 * add support to journaling.
 */
 /*AddDynamicCommand(DBHandle,Table−>Number, CMD_CHANGE_NPR, Table−>Programme
dRecords,0);

400 AddDynamicCommand(DBHandle,Table−>Number, CMD_CHANGE_NVR, Table−>ValidReco
rds,0);

vsdb_dummy_sorted.c
 AddDynamicCommand(DBHandle,Table−>Number, CMD_CHANGE_NUR, Table−>UsedRecor
ds,0);
 */
 return VSDB_SUCCESSFUL;
}

405

/**
 * This function is used to find the sorting Field of a Table

410 *
 * @param Table a struct TableInfo * of which we want to know which Field is use
d as sorting key
 * @return a struct Field * that point to the Field of the given Table that is
used as sorting key
 */
struct Field * GetSortedField(struct TableInfo * Table)

415 {
/*
 * Used static field to be able to cache the order field used for the table
 */
static int i = −1;

420 struct Field * SortedField = 0;

if(SortedField ≡0)
return SortedField;

425 for(i=0;i<Table →FieldsNumber; i++){
if(Table →Fields[i].sorted ≡1){

SortedField=&(Table →Fields[i]);
return SortedField;

}
430 }

return 0;
}

435 /**
 * This function is in charge of inserting a new record on an heap table.
 * If there is not room for the record but there are some record marked as
 * deleted, a garbage collection is performed. If record marcked as
 * deleted are not found, the insertion fails.

440 *
 * @param Flash is the file descriptor of the MTD device. The device need to be
 * open befor this function is called.
 * @param DBHandle is the data structure holding metadata information.
 * @param Table is the position of the table we are working on inside the array
Tables

445 * mantained in the DBHandle data structure.
 * @param MetaInfo pointer to metadata that we are using
 * @param Block is the block to use for the insertion
 * @param NewRecord is the new record we must insert inside the table defined by
 TableNumber
 * @param RecordBuffer is the new buffer that can store even status information
of the NewRecord

450 *
 * @return >0 if and only if the the record is been inserted and the number mea
ns to location where
 * the record is been stored. Any lesser than 0 value means error
 *
 * @note No check is done for identify the Table to be a SortedTable

455 * @note This method do not free any memory localtion and do not allocate any me
mory location
 */
inline int InsertSortedDummyOnBlock(

int Flash, struct VSDBInfo *DBHandle, struct TableInfo *Table,
struct SortedTableInfo *MetaInfo, int Block,

460 void *NewRecord, void * RecordBuffer){

int StartRecord,EndRecord,MiddleRecord,InsertPosition,ret;
unsigned char * BaseAddr;

465 /* InserPositio will cotain the position of the record or −1 if no free space
 are available −2 means not initialized */

InsertPosition=−2;

/*Finding the first record index within the block*/
StartRecord = Table →NumberRecordPerBlock * Block;

470

/*Finding the last record index within the block*/
EndRecord = Table →NumberRecordPerBlock * Block + Table →NumberRecordPerBlock

 − 1;

while(StartRecord ≤ EndRecord ∧ InsertPosition ≡ −2){
475 /* Starting binary like research */

MiddleRecord=(StartRecord + EndRecord) / 2;

if((ret=GetRecordFromTable(Flash, DBHandle, Table, MiddleRecord, RecordBu
ffer)) ≠ VSDB_SUCCESSFUL) return ret;

switch(GetRecordStatus(RecordBuffer,Table →RowSize)){
480 case VSDB_EMPTY:{ /* If free space found we use that record as destinat

ion */
InsertPosition=MiddleRecord;

} break;
case VSDB_DELETED: case VSDB_PROGRAMMED:{ /* If non−free space we itera

te on half of block */
switch (CompareKeyRecords(NewRecord,RecordBuffer,Table)){

485 case −1: case 0:{ /* We have to select the upper(left) part of th
e block */

EndRecord = MiddleRecord − 1;
} break;
case 1:{ /* We have to select the lower(right) part of the block

*/
StartRecord = MiddleRecord + 1;

490 } break;
}

} break;
}

}
495

if(InsertPosition>−1){
 /*
 * Copies the record that must be inserted in the RecordBuffer and add th

e
 * bytes satting that the record is programmed. Finally write the record

500 * in to the flash.
 */
 memcpy(RecordBuffer, NewRecord, Table →RowSize − 2);
 BaseAddr = (unsigned char *)RecordBuffer + (Table →RowSize −2);
 *BaseAddr = VSDB_TRUE_BYTE;

505 if ((ret=WriteRecordToTable(Flash, DBHandle, Table, InsertPosition, Recor
dBuffer)) ≠ VSDB_SUCCESSFUL) return ret;

 return InsertPosition;
} else{

return VSDB_SORTED_NOSPACE;
510 }

}

/***
*************/
/* STORING FUNCTION */

515 /***
*************/

/**
520 * This function is in charge of inserting a new record on an heap table.

 * If there is not room for the record but there are some record marked as
 * deleted, a garbage collection is performed. If record marcked as
 * deleted are not found, the insertion fails.
 *

525 * @param Flash is the file descriptor of the MTD device. The device need to be
 * open befor this function is called.
 * @param DBHandle is the data structure holding metadata information.
 * @param TableNumber is the position of the table we are working on inside the
array Tables
 * mantained in the DBHandle data structure.

530 * @param NewRecord is the new record we must insert inside the table defined by

vsdb_dummy_sorted.c

 TableNumber
 *
 * @note No check is done for identify the Table to be a Sorted
 */
int InsertSortedDummy(int Flash, struct VSDBInfo *DBHandle, unsigned int TableNu
mber, void *NewRecord)

535 {
 int ret,i;
 struct TableInfo *Table;
 unsigned char *RecordBuffer;
 struct SortedTableInfo *MetaInfo;

540 unsigned long MaxRecords;

 /*
 * Find the metadata information related to the table
 * having position TableNumber inside the array of table

545 * mantained in the DBHandle data structure.
 */
 Table = &(DBHandle →Tables[TableNumber]);
 MetaInfo = &(Table →ExtendedInfo.Sorted);

550 /*
 * Computes the maximum number of record that can be stored
 * inside the table, including the deleted one.
 */
 MaxRecords = Table →NumberRecordPerBlock * Table →UsedBlocks;

555
 /*
 * If the number of valid record is equal to the maximum
 * number of records that can be stored inside the table
 * we return a table full and the operation fails.

560 */
 if(Table →ValidRecords ≡ MaxRecords)

return VSDB_TABLE_FULL;

 /*
565 * There is room to store a new record so

 * we can perform the operation. First of all
 * we allocate memory for a temporary record.
 */
 if((RecordBuffer = (unsigned char *)malloc(Table →RowSize)) ≡ NULL)

570 return VSDB_NOT_ENOUGH_MEM;

 /*
 * There are three possible situation:
 * 1) There is free space on the block and the correct position on the curre
nt block is free => we have just to insert the record

575 * 2) There is no space for the correct position on the current block => we
try to insert on the next block
 * 3) There is no space but all the block do not have the correct position f
ree => garbaging one of the block and try to insert there
 */
 for(i=0;i<4;i++){
 if(MetaInfo →Blocks[MetaInfo →CurrentBlock].ProgrammedRecord < Table →Numb
erRecordPerBlock) { /* I’ll if is not full by ProgrammedRecord*/

580 if((ret=InsertSortedDummyOnBlock(Flash,DBHandle,Table,MetaInfo,MetaInf
o→CurrentBlock,NewRecord,RecordBuffer)) ≥ 0) break;
 }

 MetaInfo →CurrentBlock = (MetaInfo →CurrentBlock + 1) % Table →UsedBlocks;
 }

585 if(ret ≡VSDB_SORTED_NOSPACE){/* All the block do not have an hole for the inse
rtation, we have to do garbaging and trying to insert agin */

for(i=0;i<4;i++){
if(MetaInfo →Blocks[MetaInfo →CurrentBlock].ValidRecord < Table →Number

RecordPerBlock) { /* I’ll if is not full by ValidRecord */
if((ret=GarbageSortedDummy(Flash,DBHandle,Table,MetaInfo,MetaInfo →Cur

rentBlock,NewRecord)) ≡ VSDB_SUCCESSFUL) {
 break;

590 }}
 MetaInfo →CurrentBlock = (MetaInfo →CurrentBlock + 1) % Table →UsedBloc

ks;
}

/* Regardless that record is been inserted we have to free memory */
595 free(RecordBuffer);

return ret;
}

600 if(ret ≥0){ /* Means that I have inserted the record so I have to updated meta
data */

 (Table →ValidRecords)++;
 (Table →UsedRecords)++;
 (Table →ProgrammedRecords)++;

605 /* We change the next record to insert, so we can do interleaving on orde
r stream that is the worst situation for this algorithm*/

(MetaInfo →Blocks[MetaInfo →CurrentBlock].ProgrammedRecord)++;
(MetaInfo →Blocks[MetaInfo →CurrentBlock].ValidRecord)++;
MetaInfo →CurrentBlock = (MetaInfo →CurrentBlock + 1) % Table →UsedBlocks;

610 /* TODO Every X insertion we should select the less used block as next ins
ertion block */

ret=VSDB_SUCCESSFUL;
}

615 /*

 * We will use these commd when we implement the
 * journaling support.
 */
 /* AddDynamicCommand(DBHandle,TableNumber, CMD_CHANGE_NPR, Table−>Programmed
Records,0);

620 AddDynamicCommand(DBHandle,TableNumber, CMD_CHANGE_NUR, Table−>UsedRecords,0
);
 return AddDynamicCommand(DBHandle,TableNumber, CMD_CHANGE_NVR, Table−>ValidR
ecords,0); */

/* Regardless that record is been inserted we have to free memory */
free(RecordBuffer);

625 return ret;

}

630 /**
 * This function is in charge of retriving from an ordered list of record, from
 * a all the blocks of the table were record are stored between StartPosition[b]
 * and EndPosition[b] where b is the block index
 *

635 * The algorithm used is a standard multi list merge sort. Where we use a ValidB
locks
 * array to store information related to the status of each head of the list:
 * −1 head reached the tail, no more record to read
 * 0 head is valid and can be used
 * 1 head is not valid because was been used, but we can search for next elemen
t

640 * The algorithm have 2 phase:
 * 1 − Till there is 2 or more head valid
 * 1.1 − Init all the head
 * 1.2 − Find the minium of the head and attach to the result buffer
 * 2 − If there is one head valid read and copy the value of all the valid recor
d

645 * to the result buffer
 *
 * @params Flash is the file descriptor related to the VSDB we are working on.
 * @param DBHandle is the pointer to metadata information describing the VSDB we
 are working on.
 * @param TableNumber is the information that allows to find the table where get
 record.

650 * @param StartPositions is an array of length equal to the number of block of t
he table
 * and contain information related which is the first position of the reco
rd that
 * that we have to inspect
 * @param EndPositions is an array of length equal to the number of block of the
 table
 * and contain information related which is the last position of the recor
d that

vsdb_dummy_sorted.c
655 * we have to inspect

 * @param OutputBuffer a buffer big enough to store all the result. A safe value
 can be
 * ValidRecord metadata of the used table.
 *
 * @return number of readen record on success or <0 on error;

660 */
int GetSortedOutput(int Flash, struct VSDBInfo *DBHandle, unsigned char TableNum
ber,

long *StartPositions, long *EndPositions, void * OutputBuffer)
{

665 struct TableInfo *Table;
long ValidRecords, ret;
unsigned char *RecordBuffer, *OutputCurrent,*CurrentBuffer,*MinimumRecord;
int i,*ValidBlocks,minimum,NumValidBlocks;

670 /*
 * First of all gets all the information describing
 * the table we are working on.
 */
Table = &(DBHandle →Tables[TableNumber]);

675

/*
 * Makes room for the buffer used to read a record from the table.
 */
if ((RecordBuffer = (unsigned char *)malloc(Table →RowSize*Table →UsedBlocks)

) ≡ NULL) /* Failed to allocate memory */
680 return VSDB_NOT_ENOUGH_MEM;

/*
 * Makes room for vector that indicate which block are still usable and if we

 need to read more record from them
 */

685 if ((ValidBlocks = (int *)malloc(sizeof(int)*Table →UsedBlocks)) ≡ NULL){ /*
Failed to allocate memory */

free(RecordBuffer);
 return VSDB_NOT_ENOUGH_MEM;
} else{

/* Initializing the vector to all the first record of each block */
690 /*

 * ValidBlocks contains the following value:
 * −1 => No more valid record can be retrived from the block with same ind

ex
 * 0 => A record is been read from the block and can be readed from Recor

dBuffer
 * 1 => The record inside RecordBuffer that was read now can be overwritt

en because it was used
695 */

NumValidBlocks=0;
for(i=0;i<Table →UsedBlocks;i++){

/* Only blocks where START is less equal than END are valid */
if(StartPositions[i] ≤ EndPositions[i]){

700 ValidBlocks[i] = 1;
NumValidBlocks++;

} else{
ValidBlocks[i] = −1;

}
705

}

}

710 /*
 * Start a loop where we scan all the record using the merge sort algorithm w

ithin
 * the used blocks of the table
 */
ValidRecords = 0;

715 OutputCurrent=OutputBuffer;

/* PHASE 1 */
while(NumValidBlocks > 1 ∧ ValidRecords < Table →ValidRecords) {

/* PAHSE 1.1 Init all the head − Reading all the RecordBuffer that are con
sumed */

720 for(i=0;i<Table →UsedBlocks;i++){
/* Means not consumed or reach end of block */
if(ValidBlocks[i] ≤0) continue;
/*TODO Read only record that are been consumed */
/*??? It’s better calculate CurrentBuffer on−demand or keep it up−to−da

te and increase it every time we increase i */
725 CurrentBuffer = RecordBuffer + (i * Table →RowSize);

if ((ret = GetNextValidRecord(Flash, DBHandle, Table, StartPositions[i]
, (void *) CurrentBuffer,EndPositions[i],SEARCH_RIGHT)) < 0){

free(RecordBuffer);
free(ValidBlocks);
return ret;

730 } else if(ret ≡ (EndPositions[i] + 1)){
/**
 * No valid record found we set the block as ended
 */
ValidBlocks[i]=−1;

735 NumValidBlocks−−;
/* The insertion of the last block will be performed on next cycle *

/
if(NumValidBlocks ≡ 1) break;

} else{
/*

740 * We update the star position because we have just read from block
 * tha may mean that StartPositions[i] now is greater than EndPositi

ons[i]
 * if we read the last available record from block.
 */
StartPositions[i] = ret+1;

745 ValidBlocks[i]=0;
}

}
/*
 * PHASE 1.2

750 *
 * minimum index is preserved as the previus
 * There is always at least a ValidBlocks because otherwise it means that

I should be exited at
 * the previus loop iteration because ValidRecords == Table−>ValidRecords
 *

755 * We usa loop to find which Blocks contain the valid record.
 */

for(i=0;i<Table →UsedBlocks;i++){
if(ValidBlocks[i]<0) continue;

760 minimum=i;
break;

}
/* Finding minum of the key */
MinimumRecord=RecordBuffer + (minimum * Table →RowSize);

765 CurrentBuffer=RecordBuffer;
for(i=0;i<Table →UsedBlocks;i++){

/* Skip non valid record and avoid comparison between "me and me"*/
if(ValidBlocks[i]<0 ∨ minimum ≡i){

CurrentBuffer += Table →RowSize;
770 continue;

}
if(CompareKeyRecords(MinimumRecord,CurrentBuffer,Table) ≡1){

minimum = i;
MinimumRecord = CurrentBuffer;

775 }
CurrentBuffer += Table →RowSize;

}

 /*

780 * Now we copy to record to the output buffer
 */

memcpy(OutputCurrent, MinimumRecord, Table →RowSize−2);
OutputCurrent += (Table →RowSize−2);
ValidRecords++;

785 /* Set record as consumed */
ValidBlocks[minimum]=1;

}

/**

vsdb_dummy_sorted.c

790 * PHASE 2
 *
 * Reading all the reamin record from only block that is no more empty
 * So we assume that only one ValidBlocks is available or none are available
 */

795 CurrentBuffer=RecordBuffer;
for(i=0;i<Table →UsedBlocks;i++){

if(ValidBlocks[i]<0) continue;
minimum=i;
break;

800 }
while(NumValidBlocks ≡ 1 ∧ ValidRecords < Table →ValidRecords) {

if ((ret = GetNextValidRecord(Flash, DBHandle, Table, StartPositions[minim
um], (void *) CurrentBuffer,EndPositions[minimum],SEARCH_RIGHT)) < 0){

free(RecordBuffer);
free(ValidBlocks);

805 return ret;
} else if(ret ≡ (EndPositions[i] + 1)){

/**
 * No valid record found we set the block as ended
 */

810 NumValidBlocks−−;
} else{

/*
 * We update the star position because we have just read from block
 * tha may mean that StartPositions[i] now is greater than EndPositions

[i]
815 * if we read the last available record from block.

 */
StartPositions[minimum] = ret+1;
memcpy(OutputCurrent, CurrentBuffer, Table →RowSize−2);
OutputCurrent += (Table →RowSize−2);

820 ValidRecords++;
}

}
free(RecordBuffer);
free(ValidBlocks);

825 return ValidRecords;
}

/**
 * This function is in charge of load all the valid records (i.e record that are

830 * programmmed but not delete) in the memory.
 * It return the records in the same order were they are store on the physical l
ayer.
 *
 * @param Flash is the file descriptor we are working on
 * @param DBHandle is the data structure holding all the metadata information

835 * @param TableNumber the table number in the array of tables
 * @param Records the scanned records are stored in tyhis variable (not allocate
d from the caller).
 * @return the number of valid record loaded in to Record on sucees, an integer
< 0 otherwise.
 */
int ScanRawSortedDummy(int Flash, struct VSDBInfo *DBHandle, unsigned char Table
Number, void **Records)

840 {
/*
 * Because there is no differnce between how record are stored inside the phy

sical layer
 * and how they are read with the Scan we can use the default Scan
 */

845 return ScanHeapDummy(Flash, DBHandle, TableNumber, Records);
}

/**
 * This function is in charge of retriving all the valid record stored in a circ
ular relation.

850 *
 * @params Flash is the file descriptor related to the VSDB we are working on.
 * @param DBHandle is the pointer to metadata information describing the VSDB we
 are working on.
 * @param TableNumber is the information that allows to find the table where we
will insert
 * a new record.

855 * @param Records is the buffer where all the valid records will be stored.
 *
 * @return number of readen record on success or <0 on error;
 */
int ScanSortedDummy(int Flash, struct VSDBInfo *DBHandle, unsigned char TableNum
ber, void ** Records)

860 {
struct TableInfo *Table;
long *StartPositions,*EndPositions, ValidRecords;
unsigned char *OutputBuffer;
int i;

865

/*
 * First of all gets all the information describing
 * the table we are working on.
 */

870 Table = &(DBHandle →Tables[TableNumber]);

/*
 * We know that there are ValidRecords records
 * stored in to the tables. Note: we do not return

875 * to the caller delete and programmed byte.
 */
if((OutputBuffer = (unsigned char *)malloc((Table →RowSize − 2) * (Table →Val

idRecords))) ≡ NULL) { /* Error allocating memory */
return VSDB_NOT_ENOUGH_MEM;

}
880

/*
 * Makes room for vector that point to head of each block;
 */
if ((StartPositions = (long *)malloc(sizeof(long)*Table →UsedBlocks)) ≡ NULL)

{ /* Failed to allocate memory */
885 free(OutputBuffer);

 return VSDB_NOT_ENOUGH_MEM;
} else{

/* Initializing the vector to all the first record of each block */
/* TODO We can use a better start position based on the number of

890 * available records that is BlockStart + (NumberRecordForBlock / (2^Use
dRecordOfThisBlock))

 */
for(i=0;i<Table →UsedBlocks;i++){

StartPositions[i]=Table →NumberRecordPerBlock * i;
}

895 }

/*
 * Makes room for vector that point to end of each block;
 */

900 if ((EndPositions = (long *)malloc(sizeof(long)*Table →UsedBlocks)) ≡ NULL){
/* Failed to allocate memory */

free(OutputBuffer);
free(StartPositions);

 return VSDB_NOT_ENOUGH_MEM;
} else{

905 /* Initializing the vector to all the first record of each block */
/* TODO We can use a better end position based on the number of
 * available records that is BlockEnd − (NumberRecordForBlock / (2^UsedR

ecordOfThisBlock))
 */
for(i=0;i<Table →UsedBlocks;i++){

910 EndPositions[i]=Table →NumberRecordPerBlock * (i+1) −1;
}

}

ValidRecords=GetSortedOutput(Flash,DBHandle,TableNumber,StartPositions,EndPos
itions,OutputBuffer);

915

if(ValidRecords<0) free(OutputBuffer);
else *Records=(void *)OutputBuffer;
free(StartPositions);
free(EndPositions);

920

return ValidRecords;
}

vsdb_dummy_sorted.c
/**

925 * This function is in charge of erasing a record from the table.
 * The erasing operation is a logical one, that is the record is marked
 * as deleted and will be physically erased when a garbage operation is
 * performed.
 *

930 * @param Flash is the file descriptor of the MTD device. The device need to be
 * open befor this function is called.
 * @param DBHandle is the data structure holding metadata information.
 * @param TableNumber is the position of the table we are working on inside the
array Tables
 * mantained in the DBHandle data structure.

935 * @param RecordToDelete is the position of the record inside the table. It is w
hort noticing
 * that this number is relative to the valid record, that is record marke
d as deleted
 * are not considered. Said in another way, if RecordToDelete is 10, then
 we must count 10 valid
 * record, without considering the deleted records.
 *

940 * @return VSDB_SUCCESSFUL if and only if there was no error occur and a record
is been deleted,
 * VSDB_NO_RECORD_FOUND if and only if no error happend but no record are
been deleted
 *
 */
inline int DeleteSortedDummy(int Flash, struct VSDBInfo *DBHandle, unsigned char
 TableNumber, long RecordToDelete)

945 {
 struct TableInfo *Table;
 long CurrentRecord,ValidRecords,nur,Position,Start,End;
 int ret,block;
 unsigned char *RecordBuffer;

950
 /*
 * Get the table metadata we need to delete
 * the record.
 */

955 Table = &(DBHandle →Tables[TableNumber]);

 /*
 * Allocate temporary memory to store the record
 * we read from the flash. In fact we need to load a record

960 * and check if it is programmed or not. If is programmed than
 * we consider to reach the record to delete (that is we increment
 * the ValidRecord variable), else we ignore it.
 */
 if((RecordBuffer = (unsigned char *)malloc(Table →RowSize)) ≡ NULL)

965 return VSDB_NOT_ENOUGH_MEM;

 /*
 * This was a nasty bug as we supose that the user
 * start to count index from 0 so also ValidRecords

970 * mus strat from −1. The original code follows.
 * ValidRecords = 0;
 * CurrentRecord = −1;
 */
 ValidRecords = −1;

975 CurrentRecord = −1;
 nur = Table →UsedRecords;
 Start = 0;
 End = Table →NumberRecordPerBlock * Table →UsedBlocks − 1;
 while(ValidRecords ≠ RecordToDelete) { /* Scans the reord until we found Reor
dToDelete valid records */

980 Position=GetNextValidRecord(Flash,DBHandle,Table,Start,(void *)RecordBuffe
r,End,SEARCH_RIGHT);
 if(Position<0) /* Error found */
 return Start;
 if(Position>End) /* No more record available inside the Table */
 break;

985 Start=Position+1;
 ValidRecords++;
 }

 /*

990 * If we found RecordToDelete valid records then
 * CurrentRecord is the position of the record we want delete.
 * Otherwise we didn’t found the record.
 */
 if(ValidRecords ≠ RecordToDelete) {

995 free(RecordBuffer);
return VSDB_NO_RECORD_FOUND;

 }

 /*
1000 * Set the delete byte to signal that the record is

 * programmed but not valid.
 */
 if((ret=SetDeletedByte(Flash, DBHandle, Table, Position)) ≠ VSDB_SUCCESSFUL)
 /* Something wrong deleting the record */

return ret;
1005

 /*
 * Update the number of valid record (that is
 * record that are programmed but not deleted).
 */

1010 (Table →ValidRecords)−−;
 /*I’ve only to updated the specialized MetaData information*/
 block=RecordToDelete / DBHandle →Tables[TableNumber].NumberRecordPerBlock;
 (DBHandle →Tables[TableNumber].ExtendedInfo.Sorted.Blocks[block].ValidRecord
)−−;

1015 /*
 * We will use command when we will implement
 * the journaling.
 */
 /* AddDynamicCommand(DBHandle,TableNumber, CMD_CHANGE_NVR, Table−>ValidRecor
ds,0); */

1020
 free(RecordBuffer);
 return VSDB_SUCCESSFUL;
}

1025 /**
 * This function is in charge of change one or more filed of a record.
 *
 * @param Flash the file descriptor where the VSDB is sitored.
 * @param DBHandle is the data structure holding all the metadata information.

1030 * @param TableNumber the table number in the array of tables.
 * @param RecordToUpdate is the order number of the recrd to be updated.
 * @param UpdatedRecord is the new record to be inseted (takes the place of the
previous one).
 *
 * @return VSDB_SUCCESSFUL if and only if there was no error

1035 *
 */
int UpdateSortedDummy(int Flash, struct VSDBInfo *DBHandle, unsigned char TableN
umber, long RecordToUpdate, void *UpdatedRecord)
{
 int ret;

1040

 if ((ret = DeleteSortedDummy(Flash, DBHandle, TableNumber, RecordToUpdate))
≠ VSDB_SUCCESSFUL)

return ret;

 return InsertSortedDummy(Flash, DBHandle, TableNumber, UpdatedRecord);
1045 }

/**
 * This function is in charge of retriving all the records having in the field i
dentified by MatchFieldNumber
 * a velue included in the interval identified by ValueMinToMatch and ValueMaxTo
Match.

1050 * The resuls are stored in the buffer Records.
 *
 * @param Flash is the file descriptor of the flash partition where we are worki
ng on.
 * @param DBHandle is the pointer to the metadata information related to the VSD
B we are working on.

vsdb_dummy_sorted.c

 * @param TableNumber idenifies the table wher we are executing the operation.
1055 * @param MatchFieldNumber identifies the field used to discriminate if a field

will be included in the computed result.
 * @param ValueMinToMatch is the left value of the interval.
 * @param ValueMaxToMatch is the right value of the interval.
 * @param Records holds all the records that match the condition.
 *

1060 * @return on success the number of record found, <0 on error
 */
int SearchRangeSortedDummy(int Flash, struct VSDBInfo *DBHandle, unsigned char T
ableNumber, unsigned int MatchFieldNumber,

 void *ValueMinToMatch, void *ValueMaxToMatch, void **Records){

1065

struct TableInfo *Table;
long *StartPositions,*EndPositions, ValidRecords,s,e;
unsigned char *OutputBuffer;
short i;

1070 struct SortedTableInfo *MetaInfo;

 /*
 * Find the metadata information related to the table
 * having position TableNumber inside the array of table

1075 * mantained in the DBHandle data structure.
 */
 Table = &(DBHandle →Tables[TableNumber]);
 MetaInfo = &(Table →ExtendedInfo.Sorted);

1080 if(MatchFieldNumber ≠MetaInfo →SortedFieldIndex){
return SearchRangeHeapDummy(Flash,DBHandle,TableNumber,MatchFieldNumber,Va

lueMinToMatch,ValueMaxToMatch,Records);
}

/*
1085 * We know that there are ValidRecords records

 * stored in to the tables. Note: we do not return
 * to the caller delete and programmed byte.
 */
if((OutputBuffer = (unsigned char *)malloc((Table →RowSize − 2) * (Table →Val

idRecords))) ≡ NULL) { /* Error allocating memory */
1090 return VSDB_NOT_ENOUGH_MEM;

}

/*
 * Makes room for vector that point to head of each block;

1095 */
if ((StartPositions = (long *)malloc(sizeof(long)*Table →UsedBlocks)) ≡ NULL)

{ /* Failed to allocate memory */
free(OutputBuffer);

 return VSDB_NOT_ENOUGH_MEM;
} else{

1100 /* Initializing the vector to all the first record of each block */
for(i=0;i<Table →UsedBlocks;i++){

StartPositions[i]=Table →NumberRecordPerBlock * i;
}

}
1105

/*
 * Makes room for vector that point to end of each block;
 */
if ((EndPositions = (long *)malloc(sizeof(long)*Table →UsedBlocks)) ≡ NULL){

/* Failed to allocate memory */
1110 free(OutputBuffer);

free(StartPositions);
 return VSDB_NOT_ENOUGH_MEM;
} else{

/* Initializing the vector to all the first record of each block */
1115 for(i=0;i<Table →UsedBlocks;i++){

EndPositions[i]=Table →NumberRecordPerBlock * (i+1) −1;
}

}

1120 /**
 * Refeing the start and end by searching min and max value with the followin

g idea:
 * if we are searching for all X where A<=X<=B but inside our table do not co

ntain one
 * of exteme value, let’s assume A is missing so we search all X wher A’<=X<=

B
 * where A’ is the minimum value contained in the table greater than A.

1125 */
for(i=0;i<Table →UsedBlocks;i++){

s=StartPositions[i];
e=EndPositions[i];
/*

1130 * Leverange the previus example now we search for A’ of each block
 * So we use the SEARCH_RIGHT option
 */
StartPositions[i]=SearchNearestPositionSorted(Flash, DBHandle, Table, Valu

eMinToMatch, s, e, SEARCH_RIGHT);
/*

1135 * Leverange the previus example now we search for B’ of each block
 * Please note that this time we are looking for the maximum value
 * contained inside the table lesser than B so we use SEARCH_LEFT option
 */
EndPositions[i]=SearchNearestPositionSorted(Flash, DBHandle, Table, ValueM

axToMatch, s, e, SEARCH_LEFT);
1140 }

ValidRecords=GetSortedOutput(Flash,DBHandle,TableNumber,StartPositions,EndPos
itions,OutputBuffer);

if(ValidRecords ≤0) free(OutputBuffer); /* <0 means error, =0 means no record
found */

1145 else *Records=(void *)OutputBuffer;
free(StartPositions);
free(EndPositions);

return ValidRecords;
1150

}

vsdb_dummy_sorted.c

