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Abstract: An efficient combination of remotely-sensed data and in situ measurements is needed
to obtain accurate 3D ocean state estimates, representing a fundamental step to describe ocean
dynamics and its role in the Earth climate system and marine ecosystems. Observations can either
be assimilated in ocean general circulation models or used to feed data-driven reconstructions and
diagnostic models. Here we describe an innovative deep learning algorithm that projects sea surface
satellite data at depth after training with sparse co-located in situ vertical profiles. The technique is
based on a stacked Long Short-Term Memory neural network, coupled to a Monte-Carlo dropout
approach, and is applied here to the measurements collected between 2010 and 2018 over the North
Atlantic Ocean. The model provides hydrographic vertical profiles and associated uncertainties
from corresponding remotely sensed surface estimates, outperforming similar reconstructions from
simpler statistical algorithms and feed-forward networks.

Keywords: artificial intelligence; machine learning; deep learning; neural networks; Earth
observations; ocean dynamics; sea surface temperature; sea surface salinity; altimetry; hydrography

1. Introduction

Remote monitoring of ocean processes represents a relevant and challenging goal, as ocean
dynamics comprise several processes (inter)acting over a wide range of spatial and temporal scales,
which may influence the Earth climate and drive significant marine ecosystem changes. Notably,
several crucial processes contributing to the transport of momentum, energy, chemicals and marine
organisms cannot be fully understood unless repeated views of the 3D ocean state and surface forcings
are available. This is particularly relevant for processes in the ocean mesoscale to sub-mesoscale range,
given their intrinsic 3D nature [1–3]. In turn, the dynamical response and feedbacks of these processes
to natural and anthropogenic pressures also remains largely uncertain. However, given both the
theoretical and practical limitations of available technologies, observations can only provide partial
views of the ocean state, especially if analysed separately. Ingenious approaches are thus needed to
project, at depth, remotely sensed data acquired from instruments looking at the sea surface from
space, taking advantage of the sparse in situ measurements collected throughout the water column.

Scientists have followed two main complementary approaches to project surface data at depth
and provide a description of the 3D ocean state: the assimilation of observations in numerical models
and the combination of purely data-driven reconstructions and diagnostic models. Both strategies are
affected by strengths and weaknesses, though.

The data assimilation in prognostic models can guarantee the ocean state to evolve in a consistent
way with the physics represented by the model [4–6]. Models, however, are affected by uncertainties
in initialization and forcings, and need parameterizations of sub-grid scale processes, which may lead
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to inaccurate representations of the physics, especially when aiming to reconstruct long timeseries for
decadal/climatological studies (due to grid size limitations and subsequent need to parameterize also
mesoscale processes—e.g., [7]). In general, models’ abilities to reproduce non-assimilated observations
is further hindered by the difficulty to properly account for model and observation representativeness
and errors.

Data-driven approaches are based on a synergic use of different satellite, in-situ measurements
and diagnostic models. They can reduce the differences between reconstructed and independent
observations (for 2D examples see [8–10]), but usually allow only a much simpler description of
the dynamics with respect to general circulation models (sometimes limited to zero or first order
balances, such as geostrophy and quasi-geostrophy, or simple Ekman models). Data-driven 3D
reconstruction techniques that found a systematic application are based on purely empirical and/or
statistical regressions/analyses [11–21], eventually coupled to dynamical diagnostic tools (for full 3D
examples, see [22,23]). Methodologies derived within the surface quasi-geostrophy framework make
much stronger assumptions on the ocean vertical stratification, though providing interesting theoretical
perspectives [24–29]. More recently, mixed approaches have also been explored [30].

All data driven approaches share the objective to project surface information at depth, starting
from synoptic satellite observations and some prior knowledge of the hydrography. Despite the
recent advancements in machine learning algorithm implementation and a growing interest in the
possibilities opened by artificial intelligence for data science, only few attempts have been carried
out until now to address this specific objective with artificial neural networks (e.g., in [31–37]), either
based on generalized regression neural networks, self-organizing maps, support vector machines,
decision trees or feed-forward neural networks. Models based on neural networks have also been
proposed to “augment” observed vertical profiles with variables that have not been directly measured
(e.g., in [38–40]).

In this paper, a stacked Long Short-Term Memory network (LSTM, [41]) is coupled to a Monte Carlo
dropout approach and used to project satellite surface data at depth after training with sparse co-located
in situ vertical profiles. LSTM is a deep learning algorithm particularly suited to exploit sequential
information as those present in hydrographic profiles. Dropout provides both a regularization strategy,
when applied during training, and a "Bayesian" inference approximation if applied during both training
and testing [42]. As such, the technique proposed here is able to provide both vertical hydrographic
profiles and uncertainties on the predicted values.

This work was carried out within the European Space Agency World Ocean Circulation project
(ESA-WOC), as a preparatory step for the development of a daily 3D reconstruction of the dynamics in
the North Atlantic (down to 1500 m depth) at 1/10◦ spatial resolution, covering the period between 2010
and 2018. As such, the network was trained and tested, taking as target (output) the measurements
collected by Argo profilers and CTD casts within a wide portion of the North Atlantic over that
period. Co-located satellite-derived sea surface temperature, sea surface salinity and absolute dynamic
topography values (extracted from operational and experimental products) were used as input data.

The performance of the proposed LSTM network has been assessed by keeping part of the
in situ profiles as independent reference observations during test. Root mean squared errors were
estimated from LSTM profiles, from climatological data and multivariate Empirical Orthogonal Function
reconstructions (mEOF-r, as in [16]), as well as from the output of simpler feed-forward networks.

2. Materials and Methods

2.1. Data: Surface Measurements

The SST used in the present study was the level 4 (L4—i.e., interpolated) multi-year reprocessed
Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) developed by the U.K.
Met Office and distributed (upon free registration) through the Copernicus Marine Environment
Monitoring Service (CMEMS, http://marine.copernicus.eu/services-portfolio/access-to-products/,
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product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_010_011). OSTIA combines the reprocessed
ESA SST CCI, C3S, EUMETSAT, REMSS and OSPO satellite data, and in situ data from HadIOD and
provides daily maps of foundation SST (i.e., not affected by the diurnal cycle). The analysis runs an
optimal interpolation (OI) algorithm on a 1/20◦ regular grid [43]. OSTIA was sub-sampled here to 1/10◦

resolution, and resulting grid was also used for the pre-processing of the other surface datasets (see the
SST example in Figure 1a).
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The SSS data were developed within ESA-WOC project [44]. They were obtained by adapting to
the 1/10◦ North Atlantic grid the multidimensional optimal interpolation algorithm used to retrieve
CMEMS global dataset (http://marine.copernicus.eu/services-portfolio/access-to-products/, product_id:
MULTIOBS_GLO_PHY_REP_015_002, dataset_id: dataset-sss-ssd-rep-weekly). This algorithm
interpolates SMOS observations and in situ SSS observations considering a space–time-thermal
decorrelation function, estimated by including information from high-pass filtered daily SST data [45,46].
This multivariate approach effectively increases the SSS resolution by using satellite SST differences to
constrain the surface patterns (see Figure 1b). Here, we ingested the SMOS L3OS 2Q debiased daily
salinity disseminated by the Centre Aval de Traitement des Données SMOS (CATDS, 2017), OSTIA SST
data and CORA5.2 surface values (see Section 2.2) as input data, and used the CMEMS weekly SSS
dataset to build our background field (linearly interpolating it in time between the 1/10◦ grid through a
cubic spline). All other interpolation parameters were set as in [47].

The Absolute Dynamic Topography (ADT) data considered here were based on the altimeter Sea
Level Anomaly (SLA) product provided by SSALTO/Data Unification and Altimeter Combination
System (DUACS). They are obtained by adding a Mean Dynamic Topography [48] to the SLA
field, and are distributed by CMEMS as reprocessed data (http://marine.copernicus.eu/services-
portfolio/access-to-products/, product_id: SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047).
ADT has been upsized here to the ESA-WOC 1/10◦ × 1/10◦ grid through a cubic spline (see example
in Figure 1c). ADT data were pre-processed to make them consistent with in situ steric heights.
The adjustment was carried out as in [16], namely by regressing steric heights and co-located ADT
data in the neighbourhood of each grid point, considering matchups within a temporal window of
±10 days.

2.2. Data: In Situ Vertical Profiles

The vertical hydrographic profiles were taken from the quality controlled Argo and CTD profiles
produced by CMEMS CORA 5.2 (http://marine.copernicus.eu/services-portfolio/access-to-products/,
product_id: INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b) [49]. The data considered here were
to the 2010–2018 period, and were interpolated through a spline on a regularly spaced vertical grid
(with 10 m intervals). Steric heights were computed taking 1500 m as reference level.

2.3. Data: Climatology

Temperature and salinity monthly climatological fields computed by the World Ocean Atlas 2013
were used to convert all daily observations to anomaly fields (see Section 3). These climatologies are
estimated on a 1/4◦ × 1/4◦ grid by applying an objective analysis algorithm [50,51]. The values in the
first 1500 m, provided on 125 levels, were interpolated through a spline on a regularly spaced vertical
grid (with 10 m intervals), and upsized to the 1/10◦ ESA-WOC grid through a cubic spline.

2.4. Methods: Multivariate Empirical Orthogonal Function Reconstruction (mEOF-r)

The multivariate Empirical Orthogonal Function reconstruction (mEOF-r) was taken as reference
for the retrieval of the 3D hydrographic fields. This methodology was applied in many previous
studies [16,18,52–54], and it is thus only briefly recalled hereafter. It starts by building a state vector
by concatenating (normalized and interpolated on a regular vertical grid) temperature, salinity
and steric heights anomaly profiles, and decomposing its variability in EOF modes (thus called
multivariate EOF—for an example of multivariate EOF modes in the North Atlantic, see Figure 3
in [18]). Anomalies are defined with respect to monthly WOA13 data (linearly interpolated in time
between the central day of each month, and through a cubic spline horizontally). The EOFs were
computed from available in situ observations, and the decomposition was truncated to a maximum
of three modes. The three elements in the state vector reconstructed from the truncated EOF that
correspond to the surface are equated to the anomalies of SST, SSS and adjusted ADT. In this way,
a linear system is obtained, the unknowns being the three EOF amplitudes. Once solved through a
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http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/


Remote Sens. 2020, 12, 3151 5 of 14

trivial matrix inversion, full profiles associated with each mode can be estimated and finally summed
up to get the synthetic vertical reconstruction.

In order to account for local differences in the dynamics, the configuration proposed in [16] has
also been adopted here, as detailed as follows. The North Atlantic domain is divided into subdomains
with a maximum extension of 30◦ both in latitude and in longitude. Multivariate EOFs are estimated
considering only the in situ profiles collected within ±20 days with respect to the reconstruction
day. To remove eventual discontinuities in the reconstruction, all neighbouring subdomains are
overlapped by one half of their latitudinal and longitudinal extensions. In the grid points where
multiple reconstructions are available, these are averaged out by bilinearly weighting them with the
inverse of the distance to each subdomain centre. In some cases, two modes (or even one mode) may
be sufficient to retrieve most of the variability and the reconstruction error may increase if more modes
are added (more than 95% of the variance is generally explained by the selected modes). Consequently,
the optimal number of modes for the 3D reconstruction is chosen by evaluating the mean hindcast
error within each subdomain, so as to minimize the root mean square difference between the input
profiles and the synthetic profiles reconstructed from corresponding in situ surface measurements.

2.5. Methods: Feed-Forward Neural Networks

Feed-forward networks represent the simplest type of artificial neural networks and consist of one
input layer (the input vector) and one output layer (the output vector) connected through a variable
number of hidden layers (if that number is >1 we speak about a “deep network”). Each of the layers is
made up by a variable number of units: the elements of the vectors in the case of the input/output
layers, and the artificial “neurons” (or computing nodes) in the hidden layers. Each of the units in
one layer is connected to all units in the following layer through weights that are estimated during
the network training, and each computing node processes the sum of its weighted input by passing it
through an activation function, which provides the neuron’s output. FFNN networks are designed to
model complex flows of information from the input to the output and are common candidates to solve
non-linear regression problems. The definition of a proper model for each specific problem, however,
requires optimizing the choice of several “hyper-parameters”, starting from the number of hidden
layers, the number of units within each hidden layer, to the activation function to apply within each
hidden layer. For a given architecture, network training also implies a number of additional choices.
In fact, training is performed by minimising some model loss functions, while iteratively feeding the
network with several input–output samples. Various algorithms exist to this aim, and the same network
trained in a different way on the same data may indeed lead to different results (“local” optima).
Different results can be obtained depending also on the number of iterations (epochs) considered.

Large feed-forward networks (in terms of number of layers/units) are prone to over-fitting,
as distinct sets of neighbouring neurons might adjust to reproduce individual samples, leading to
complex co-adaptations which would not allow us to generalize the network to unseen data. Again,
different strategies can be followed to avoid co-adaptation: the dropout approach followed here is
described in Section 2.7.

In our tests, two different input/output vectors have been initially considered. In the first
case, somehow imitating simple multilinear regression approaches, the input vector was made
up of the target depth for the retrieval, the anomalies of SST, SSS and adjusted ADT (same as in
mEOF-r), the latitude, and longitude, and the day of the year projected on a circle (as in [34], namely
day1 = cos

(
2π
365 day o f the year

)
+ 1, day2 = sin

(
2π
365 day o f the year

)
+ 1), while the output included the

co-located values of temperature, salinity and steric heights anomalies at the target depth. In the second
configuration, the depth was dropped from the input data and the concatenated temperature, salinity
and steric heights anomaly profiles were taken as output (same as mEOF-r state vector). All vectors
was preliminary normalized through min–max algorithm (namely rescaling the range of features to
scale within the [0, 1] range).
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Several preliminary hyper-parameter tuning tests were carried out, considering one to three
hidden layers, and a variable number of units within each, ranging between 5 and 50, with a 5-unit
increase step. The sigmoid performed better than the hyperbolic tangent as an activation function.
“Adam” was selected as the network optimizer, taking the mean squared error as loss metrics. In total,
15% of input samples were randomly kept as a holdout validation dataset at each iteration. The number
of optimal training epochs was found by monitoring model performance (early stopping).

The performance of the first set of models (those retrieving values at individual depths) never
improved with respect to the climatology, while a visible improvement was found in the second
configuration, especially when the choosing two hidden layers. The successive tests were thus restricted
to this latter configuration, significantly increasing the number of hidden units (tests were run with
up to 5000 units per layer). The final FFNN architecture considered (which further improved the
reconstruction accuracy) included 1000 units in each of the two hidden layers, (hereafter, FFNN
(1000–1000)). Above that, the number of hidden units and performance substantially stabilized.

2.6. Methods: Long Short-Term Memory Networks

Recurrent neural networks (RNN) can be described as sequences of sub-networks (also called
“cells”) designed to include information from the previous cell in a sequence as input to the successive
one. This makes them particularly fit to model ordered sequences of data. Simple recurrent networks,
however, are not able to efficiently process information from cells that lie too far along the sequence,
due to vanishing/exploding values in the gradient-descent based optimizations.

Long Short-Time Memory (LSTM) network is a particular type of RNN, that is specifically designed
to avoid vanishing/exploding gradients and preserve the relevant information flow throughout the
network [41]. Within LSTM cells, the external input vector (xi) is concatenated to the previous cell
hidden state (hi−1) and then passed through different “gates”, each one aimed at carrying out a specific
task to update both the hidden state itself (hi) and a cell state (Ci), that is directly transmitted to the
next cell and basically acts as a network “memory”. The LSTM cell specifically includes a forget gate,
an input gate, and an output gate, as depicted in Figure 2a: whose equations thus read:

fi = σ
(
W f [hi−1, xi] + b f

)
(1)

Ii = σ(WI[hi−1, xi] + bI) (2)

C̃i = tanh(WC[hi−1, xi] + bC) (3)

Oi = σ(WO[hi−1, xi] + bO) (4)

Ci = fi ∗Ci−1 + Ii ∗ C̃i (5)

hi = Oi ∗ tanh(Ci) (6)

where σ and tanh represent the sigmoid and hyperbolic tangent activation functions, respectively,
and Wx and bx represent model weights and biases.

LSTM networks can include a single layer of LSTM cells or multiple LSTM layers stacked one
on top of the other, potentially leading to quite deep architectures. The number of cells in each
layer matches the length of the sequence by definition, but the number of hidden units still needs to
be configured.

Here, the sequential information to exploit is provided by a multivariate output state vector
comprising temperature, salinity and steric height anomaly profiles. In practice, each cell in the
sequence considers in input the same values (i.e., the anomalies of SST, SSS and adjusted ADT, plus
latitude, longitude and cyclic day as in previous section), but takes the output values at increasing
depths (with depth “acting” as time in more standard applications of LSTM). As for FFNN models,
all vectors are scaled within the 0–1 range before feeding the network.
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The number of hidden units considered ranged between 5 and 50, with a 5-unit increase step,
and three different network architectures were tested: a simple LSTM and two stacked LSTMs (with 2
and 3 layers each). The optimization algorithm and related parameters were exactly the same as those
used for the FFNN reconstruction training, as well as the dropout strategy applied to avoid overfitting
and obtain reconstructed profile uncertainties (see next Section).

The best performance was obtained with a 2-layer stacked network, including 35 hidden units in
each LSTM layer (hereafter, LSTM (35–35)), as depicted in Figure 2b.
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2.7. Monte-Carlo Dropout

Standard dropout consists in randomly excluding a percentage of units during network training.
Dropout provides a very efficient regularization strategy if applied during training, significantly
reducing the risk of co-adaptation, thus limiting overfitting and improving model performance [55,56].
Moreover, dropout also provides an extremely simple and powerful approach to quantify a neural
network uncertainty, if applied during both training and testing. In fact, running a regression neural
network several times with dropout during testing generates different outputs for the same input.
It was shown mathematically that these outputs are equivalent to Monte-Carlo sampling [42]. Hence,
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ensemble mean and variance provide the network’s output values and related uncertainty, respectively.
During learning, 20% of the units were dropped here.

2.8. Code Availability

The LSTM/FFNN codes used here are released under the terms of the GNU General Public Licence
v3 and available at the following address: https://github.com/bbuong/3Drec.

3. Results

The assessment of the techniques was performed by estimating temperature and salinity root
mean squared differences (RMSD) with respect to randomly selected independent test data (Figure 3).
To this aim, 15% of the 35,344 in situ profiles collected in the area (totalling 5125 profiles) were excluded
from the network training. The data used for the technique assessment can be found at [57].
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Figure 3. RMSD between temperature (a) and salinity (b) climatological and reconstructed profiles,
estimated from independent test data. RMSD confidence intervals (one σ, displayed here as shadowed
areas) have been estimated through a Monte Carlo approach—i.e., as the standard deviation of the
statistics computed from 1000 resampling with replacement [58].

All techniques considered process anomalies with respect to WOA13 data, and are thus intended
as corrections to the climatological profiles. Climatological temperature RMSD attains around 1.5 ◦C
at the surface, reaches a maximum of up to 1.7 ◦C at ~100 m depth (at the base of the upper mixed
layer) and then gradually decreases to the minimum error <0.25 ◦C at 1500 m, with a wide secondary
maximum positioned around 500 m, characterized by errors >1 ◦C down to 800 m. The temperature
retrieved with mEOF-r shows a moderate improvement in the upper 100 m and then in the 200–900 m
layer, but then significantly degrades the climatology below 900 m. Conversely, both the deep FFNN
(1000–1000) and the stacked LSTM (35–35) significantly improve the reconstruction all along the water
column. Noticeably, LSTM (35–35) clearly outperforms any of the other methodologies, with a RMSD
never exceeding 1 ◦C, and attaining below 0.75 ◦C already at a 200 m depth. Salinity RMSD show
similar behaviours, with the climatological estimates reaching up to ~0.5 g/kg, and remaining above 0.2
in the upper 600 m, the mEOF-r displaying only a partial improvement in the upper 100 m (keeping its
error close to that associated with the surface input data—i.e., around 0.25 g/kg), and FFNN (1000–1000)
and LSTM (35–35) reducing the RMSD to almost one half, the LSTM (35–35) further improving in the
200–800 m layer (Figure 3b).

https://github.com/bbuong/3Drec
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To further assess the model performance, we map the temperature and salinity differences
(in absolute values) with respect to test observations, considering both mEOF-r and LSTM (35–35)
reconstructions and focusing on two depths: 100 m and 500 m, which are the most impacted by upper
mixed layer and thermocline depth variability, respectively.

At 100 m, both temperature and salinity retrieved with mEOF-r present large absolute differences
in a wide area along the Gulf Stream, but also all along the southeastern border of the domain
(Figure 4a,b). LSTM (35–35) displays quite smaller overall differences, which are also mostly confined
to the areas where mesoscale variability is strongest (i.e., the Gulf Stream) and surface temperature and
salinity input data are affected by the largest interpolation errors (Figure 4c,d). Indeed, the surface data
used here are level 4 data—i.e., they are interpolated in space and time to fill in data voids present in
satellite data due to clouds, rain, and/or other instrumental/orbital/coverage limitations. As such, they
are less accurate in areas characterized by intense variability, as shown by the error fields provided
within the products taken here as input (see Section 2.1). Errors in surface satellite data projection at
depth thus clearly reflect the discrepancy between co-located satellite and in situ surface data in these
highly energetic areas.
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As anticipated, the neural network methods coupled with Monte-Carlo dropout present another
significant advantage with respect to mEOF-r and similar statistical reconstruction techniques, being
able to deliver not only retrieved values, but also associated uncertainties. Figure 4e,f thus present the
RMSD predicted by the LSTM (35–35), which shows patterns that are consistent with the observed
differences between test and synthetic reconstructions at 100 m. As the network has been directly
trained with satellite-derived surface input data, it is likely that these patterns derive from the increased
errors in surface satellite data along the western boundary of the domain. It cannot be excluded,
though, that increased uncertainties also reflect the presence of more complex vertical patterns caused
by dynamical factors, which could eventually lead to the need for additional predictor variables not
considered (or not available) here.

At 500 m, the largest mEOF-r differences are mainly found over a wide area centred over the Gulf
Stream, and also close to the North Africa eastern boundary upwelling system, though less evident
than at 100 m (Figure 5a,b). LSTM (35–35) shows significantly smaller differences with respect to
mEOF-r, which are mainly seen close to the core of the Gulf Stream (Figure 5c,d). Again, these patterns
closely match with the predicted errors (Figure 5e,f).
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4. Discussion

Being able to monitor the ocean’s interior structure is crucial to assess the impact of ocean dynamics
on the Earth climate and marine ecosystems. However, available observations, acquired either from
satellite sensors looking at the sea surface from space or from sparse in situ measurements of the
water column, can only provide partial views of the 3D ocean state if analysed separately, due to their
instrumental and sampling limitations. Several different techniques have thus been proposed to exploit
satellite remote sensing data in combination with information extracted from in situ observations,
either based on simple empirical correlations or more advanced statistical regressions [11–21]. Most of
these methodologies are based on (multi)linear regressions or decompositions in empirical modes,
which are not suited to properly disclose and model non-linear relations among available predictor and
target variables. Conversely, artificial neural network modelling actually provides a wealth of almost
unexplored algorithms that can be adapted to efficiently handle these kinds of problems. The deep
learning algorithm presented here combines two advanced features that allow us to significantly
improve the reconstructions with respect to those obtained from simpler empirical and feed-forward
neural network architectures. First of all, it is based on a recurrent network scheme (Long Short-Term
Memory) that is specifically designed to efficiently extract information from ordered sequences of
data. While this is usually interpreted as a time series analysis tool, it can equally be applied to spatial
sequences of data (such as vertical profiles here). Additionally, the algorithm is designed in such a
way that a pre-defined percentage (20%) of neural connections is randomly excluded during both
training and testing [50,51]. This dropout approach is equivalent to a Monte-Carlo sampling [38] and
makes it possible not only to accurately retrieve target variables, but also to associate uncertainties
with individual estimates.

The best performing LSTM model developed here includes two hidden (stacked) layers with
35 hidden units each. The RMSD of the profiles reconstructed with this technique vs. independent
observations is reduced to as much as 50% with respect to reference reconstructions (climatological and
mEOF-r profiles) and >20% with respect to a properly tuned deep feed-forward network (including 2
hidden layers with 1000 units each). Future work will thus focus on a more systematic application of
LSTM to develop advanced 3D observation-based products, as well as on investigating the impact of
additional predictor variables that could be estimated from available remote sensing data.

5. Conclusions

We have developed an innovative deep learning algorithm to project sea surface satellite
observations at depth after learning from sparse co-located in situ hydrographic data. The proposed
technique, based on a stacked Long Short-Term Memory neural network, coupled to a Monte-Carlo
dropout approach, provides vertical profiles and associated uncertainties, outperforming both neural
network reconstructions based on simpler feed-forward networks and multivariate EOF reconstruction.
This technique will find immediate application for the development of a 3D product covering the
North Atlantic in the framework of the European Space Agency World Ocean Circulation project
(ESA-WOC). The work described here, however, covers only the development and assessment of the
LSTM reconstruction methodology based on presently available data, as a new training of the network
will be needed once updated ADT estimates will be made available by the project.

Remarkably, the adaptation of this technique to other areas/periods is easy and straightforward.
Simultaneous availability of uncertainties associated with individual profiles also suggests that this
deep learning methodology could be tested to extend present data assimilation approaches in numerical
models by ingesting consistent remotely sensed sea surface data and synthetic profile estimates.

Funding: This research was partly funded by the European Space Agency through the World Ocean Current
project (ESA Contract No. 4000130730/20/I-NB /WOC_Subcontract_Odl_CNR).

Acknowledgments: I thank Daniele Ciani for providing upsized ADT data remapped over the study area,
and Michela Sammartino and Francesca Elisa Leonelli for helpful discussions at the initial stage of the study.



Remote Sens. 2020, 12, 3151 12 of 14

Conflicts of Interest: The author declares no conflict of interest.

References

1. Stukel, M.R.; Aluwihare, L.I.; Barbeau, K.A.; Chekalyuk, A.M.; Goericke, R.; Miller, A.J.; Ohman, M.D.;
Ruacho, A.; Song, H.; Stephens, B.M.; et al. Mesoscale ocean fronts enhance carbon export due to gravitational
sinking and subduction. Proc. Natl. Acad. Sci. USA 2017, 114, 1252–1257. [CrossRef] [PubMed]

2. McWilliams, J.C. A survey of submesoscale currents. Geosci. Lett. 2019, 6. [CrossRef]
3. Pilo, G.S.; Oke, P.R.; Coleman, R.; Rykova, T.; Ridgway, K. Patterns of vertical velocity induced by Eddy

Distortion in an ocean model. J. Geophys. Res. Oceans 2018, 123, 2274–2292. [CrossRef]
4. Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data assimilation in the geosciences: An overview of

methods, issues, and perspectives. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, 1–50. [CrossRef]
5. Moore, A.M.; Martin, M.J.; Akella, S.; Arango, H.G.; Balmaseda, M.; Bertino, L.; Ciavatta, S.; Cornuelle, B.;

Cummings, J.; Frolov, S.; et al. Synthesis of ocean observations using data assimilation for operational,
real-time and reanalysis systems: A more complete picture of the state of the ocean. Front. Mar. Sci. 2019, 6,
1–6. [CrossRef]

6. Stammer, D.; Balmaseda, M.; Heimbach, P.; Köhl, A.; Weaver, A. Ocean data assimilation in support of
climate applications: Status and perspectives. Ann. Rev. Mar. Sci. 2016, 8. [CrossRef] [PubMed]

7. Forget, G.; Campin, J.M.; Heimbach, P.; Hill, C.N.; Ponte, R.M.; Wunsch, C. ECCO Version 4: An integrated
framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 2015, 8,
3071–3104. [CrossRef]

8. Rio, M.-H.; Santoleri, R.; Bourdalle-Badie, R.; Griffa, A.; Piterbarg, L.; Taburet, G. Improving the
altimeter-derived surface currents using high-resolution sea surface temperature data: A feasability study
based on model outputs. J. Atmos. Ocean. Technol. 2016, 2769–2784. [CrossRef]

9. Ubelmann, C.; Cornuelle, B.D.; Fu, L.-L. Dynamic mapping of along-track ocean altimetry: Method and
performance from observing system simulation experiments. J. Atmos. Ocean. Technol. 2016, 33, 1691–1699.
[CrossRef]

10. Ciani, D.; Rio, M.; Buongiorno Nardelli, B.; Etienne, H.; Santoleri, R. Improving the altimeter-derived surface
currents using sea surface temperature (SST) data: A sensitivity study to SST products. Remote Sens. 2020,
12, 1601. [CrossRef]

11. Guinehut, S.; Le Traon, P.Y.; Larnicol, G.; Philipps, S. Combining argo and remote-sensing data to estimate the
ocean three-dimensional temperature fields—A first approach based on simulated observations. J. Mar. Syst.
2004, 46, 85–98. [CrossRef]

12. Guinehut, S.; Dhomps, A.-L.; Larnicol, G.; Le Traon, P.-Y. High resolution 3-D temperature and salinity fields
derived from in situ and satellite observations. Ocean Sci. 2012, 8, 845–857. [CrossRef]

13. Uchiyama, Y.; Kanki, R.; Takano, A.; Yamazaki, H.; Miyazawa, Y. Mesoscale reproducibility in regional ocean
modelling with a three-dimensional stratification estimate based on aviso-argo data. Atmos. Ocean 2018, 56,
212–229. [CrossRef]

14. Hutchinson, K.; Swart, S.; Meijers, A.; Ansorge, I.; Speich, S. Decadal-Scale thermohaline variability in the
atlantic sector of the southern ocean. J. Geophys. Res. Oceans 2016, 121, 3171–3189. [CrossRef]

15. Meijers, A.J.S.; Bindoff, N.L.; Rintoul, S.R. Estimating the Four-Dimensional structure of the southern ocean
using satellite altimetry. J. Atmos. Ocean. Technol. 2011, 28, 548–568. [CrossRef]

16. Meinen, C.; Watts, D. Vertical structure and transport on a transect across the North Atlantic current near
42◦N: Time Series and Mean. J. Geophys. Res. Oceans 2000, 105, 21869–21891. [CrossRef]

17. Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D. Southern
ocean mixed-layer seasonal and interannual variations from combined satellite and in situ data. J. Geophys.
Res. Oceans 2017, 122, 10042–10060. [CrossRef]

18. Buongiorno Nardelli, B.; Mulet, S.; Iudicone, D. Three Dimensional Ageostrophic Motion and Water Mass
Subduction in the Southern Ocean. J. Geophys. Res. Oceans 2018, 23, 1533–1562. [CrossRef]

19. Buongiorno Nardelli, B.; Guinehut, S.; Pascual, A.; Drillet, Y.; Ruiz, S.; Mulet, S. Towards high resolution
mapping of 3-d mesoscale dynamics from observations. Ocean Sci. 2012, 8, 885–901. [CrossRef]

20. Jeong, Y.; Hwang, J.; Park, J.; Jang, C.J.; Jo, Y.H. Reconstructed 3-D ocean temperature derived from remotely
sensed sea surface measurements for mixed layer depth analysis. Remote Sens. 2019, 11, 3018. [CrossRef]

http://dx.doi.org/10.1073/pnas.1609435114
http://www.ncbi.nlm.nih.gov/pubmed/28115723
http://dx.doi.org/10.1186/s40562-019-0133-3
http://dx.doi.org/10.1002/2017JC013298
http://dx.doi.org/10.1002/wcc.535
http://dx.doi.org/10.3389/fmars.2019.00090
http://dx.doi.org/10.1146/annurev-marine-122414-034113
http://www.ncbi.nlm.nih.gov/pubmed/26473335
http://dx.doi.org/10.5194/gmd-8-3071-2015
http://dx.doi.org/10.1175/JTECH-D-16-0017.1
http://dx.doi.org/10.1175/JTECH-D-15-0163.1
http://dx.doi.org/10.3390/rs12101601
http://dx.doi.org/10.1016/j.jmarsys.2003.11.022
http://dx.doi.org/10.5194/os-8-845-2012
http://dx.doi.org/10.1080/07055900.2017.1399858
http://dx.doi.org/10.1002/2015JC011491
http://dx.doi.org/10.1175/2010JTECHO790.1
http://dx.doi.org/10.1029/2000JC900097
http://dx.doi.org/10.1002/2017JC013314
http://dx.doi.org/10.1002/2017JC013316
http://dx.doi.org/10.5194/os-8-885-2012
http://dx.doi.org/10.3390/rs11243018


Remote Sens. 2020, 12, 3151 13 of 14

21. Takano, A.; Yamazaki, H.; Nagai, T.; Honda, O. A method to estimate three-dimensional thermal structure
from satellite altimetry data. J. Atmos. Ocean. Technol. 2009, 26, 2655–2664. [CrossRef]

22. Buongiorno Nardelli, B. A multi-year timeseries of observation-based 3D horizontal and vertical
quasi-geostrophic global ocean currents. Earth Syst. Sci. Data 2020, 12, 1711–1723. [CrossRef]

23. Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R. A new estimate of the global 3D geostrophic
ocean circulation based on satellite data and in-situ measurements. Deep Sea Res. Part II Top. Stud. Oceanogr.
2012, 77–80, 70–81. [CrossRef]

24. Liu, L.E.I.; Xue, H.; Sasaki, H. Reconstructing the ocean interior from high-resolution sea surface information.
J. Phys. Oceanogr. 2019, 49, 3245–3262. [CrossRef]

25. Lapeyre, G. Surface quasi-geostrophy. Fluids 2017, 2, 7. [CrossRef]
26. LaCasce, J.H.; Wang, J. Estimating subsurface velocities from surface fields with idealized stratification.

J. Phys. Oceanogr. 2015, 45, 2424–2435. [CrossRef]
27. Wang, J.; Flierl, G.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the ocean’s interior from

surface data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [CrossRef]
28. Isern-Fontanet, J.; Hascoët, E. Diagnosis of high-resolution upper ocean dynamics from noisy sea surface

temperatures. J. Geophys. Res. Oceans 2014, 119, 121–132. [CrossRef]
29. Fresnay, S.; Ponte, A.L.; Le Gentil, S.; Le Sommer, J. Reconstruction of the 3-D dynamics from surface variables

in a high-resolution simulation of North Atlantic. J. Geophys. Res. Oceans 2018, 123, 1612–1630. [CrossRef]
30. Yan, H.; Wang, H.; Zhang, R.; Chen, J.; Bao, S.; Wang, G. A Dynamical-statistical approach to retrieve the

ocean interior structure from surface data: SQG-mEOF-R. J. Geophys. Res. Oceans 2020. [CrossRef]
31. Lu, W.; Su, H.; Yang, X.; Yan, X.H. Subsurface temperature estimation from remote sensing data using a

clustering-neural network method. Remote Sens. Environ. 2019, 229, 213–222. [CrossRef]
32. Bao, S.; Zhang, R.; Wang, H.; Yan, H.; Yu, Y.; Chen, J. Salinity Profile estimation in the pacific ocean from

satellite surface salinity observations. J. Atmos. Ocean. Technol. 2019, 36, 53–68. [CrossRef]
33. Wu, X.; Yan, X.H.; Jo, Y.H.; Liu, W.T. Estimation of subsurface temperature anomaly in the North Atlantic

Using a self-organizing map neural network. J. Atmos. Ocean. Technol. 2012, 29, 1675–1688. [CrossRef]
34. Sammartino, M.; Marullo, S.; Santoleri, R.; Scardi, M. Modelling the vertical distribution of phytoplankton

biomass in the mediterranean sea from satellite data: A neural network approach. Remote Sens. 2018, 10,
1666. [CrossRef]

35. Gueye, M.B.; Niang, A.; Arnault, S.; Thiria, S.; Crépon, M. Neural Approach to inverting complex system:
Application to ocean salinity profile estimation from surface parameters. Comput. Geosci. 2014, 72, 201–209.
[CrossRef]

36. Su, H.; Yang, X.; Lu, W.; Yan, X.-H. Estimating subsurface thermohaline structure of the global ocean using
surface remote sensing observations. Remote Sens. 2019, 11, 1598. [CrossRef]

37. Su, H.; Wu, X.; Yan, X.H.; Kidwell, A. Estimation of subsurface temperature anomaly in the indian ocean
during recent global surface warming hiatus from satellite measurements: A support vector machine
approach. Remote Sens. Environ. 2015, 160, 63–71. [CrossRef]

38. Bittig, H.C.; Steinhoff, T.; Claustre, H.; Fiedler, B.; Williams, N.L.; Sauzède, R.; Körtzinger, A.; Gattuso, J.P.
An alternative to static climatologies: Robust estimation of open ocean CO2 variables and nutrient
concentrations from T, S, and O2 data using bayesian neural networks. Front. Mar. Sci. 2018, 5, 1–29.
[CrossRef]

39. Sauzède, R.; Bittig, H.C.; Claustre, H.; de Fommervault, O.P.; Gattuso, J.P.; Legendre, L.; Johnson, K.S.
Estimates of Water-column nutrient concentrations and carbonate system parameters in the global ocean:
A novel approach based on neural networks. Front. Mar. Sci. 2017, 4, 1–17. [CrossRef]

40. Ballabrera-Poy, J.; Mourre, B.; Garcia-Ladona, E.; Turiel, A.; Font, J. Linear and non-linear T-S models for
the Eastern North Atlantic from argo data: Role of surface salinity observations. Deep. Res. Part I Oceanogr.
Res. Pap. 2009, 56, 1605–1614. [CrossRef]

41. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

42. Gal, Y.; Ghahramani, Z. Dropout As a Bayesian Approximation: Representing Model Uncertainty in Deep
Learning. In Proceedings of the 33rd International Conference On Machine Learning, New York, NY, USA,
19–24 June 2016; Volume 48, pp. 1050–1059.

http://dx.doi.org/10.1175/2009JTECHO669.1
http://dx.doi.org/10.5194/essd-12-1711-2020
http://dx.doi.org/10.1016/j.dsr2.2012.04.012
http://dx.doi.org/10.1175/JPO-D-19-0118.1
http://dx.doi.org/10.3390/fluids2010007
http://dx.doi.org/10.1175/JPO-D-14-0206.1
http://dx.doi.org/10.1175/JPO-D-12-0204.1
http://dx.doi.org/10.1002/2013JC009176
http://dx.doi.org/10.1002/2017JC013400
http://dx.doi.org/10.1029/2019JC015840
http://dx.doi.org/10.1016/j.rse.2019.04.009
http://dx.doi.org/10.1175/JTECH-D-17-0226.1
http://dx.doi.org/10.1175/JTECH-D-12-00013.1
http://dx.doi.org/10.3390/rs10101666
http://dx.doi.org/10.1016/j.cageo.2014.07.012
http://dx.doi.org/10.3390/rs11131598
http://dx.doi.org/10.1016/j.rse.2015.01.001
http://dx.doi.org/10.3389/fmars.2018.00328
http://dx.doi.org/10.3389/fmars.2017.00128
http://dx.doi.org/10.1016/j.dsr.2009.05.017
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276


Remote Sens. 2020, 12, 3151 14 of 14

43. Roberts-Jones, J.; Fiedler, E.K.; Martin, M.J. Daily, Global, high-resolution SST and sea ice reanalysis for
1985–2007 Using the OSTIA System. J. Clim. 2012, 25, 6215–6232. [CrossRef]

44. Buongiorno Nardelli, B. ESA-WOC North Atlantic Sea Surface Salinity maps from a multivariate combination
of satellite and in situ surface measurements (2010–2018) (Version v1.0), [Data set]. Zenodo 2020. [CrossRef]

45. Droghei, R.; Buongiorno Nardelli, B.; Santoleri, R. Combining in-situ and satellite observations to retrieve
salinity and density at the ocean surface. J. Atmos. Ocean. Technol. 2016, 33, 1211–1223. [CrossRef]

46. Buongiorno Nardelli, B. A Novel approach for the high-resolution interpolation of in situ sea surface salinity.
J. Atmos. Ocean. Technol. 2012, 29, 867–879. [CrossRef]

47. Droghei, R.; Buongiorno Nardelli, B.; Santoleri, R. A new global sea surface salinity and density dataset from
multivariate observations (1993–2016). Front. Mar. Sci. 2018, 5, 1–13. [CrossRef]

48. Rio, M.; Mulet, S.; Picot, N. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry,
gravimetry, and in situ data provides new insight into geostrophic and ekman currents. Geophys. Res. Lett.
2014, 41, 8918–8925. [CrossRef]

49. Szekely, T.; Gourrion, J.; Pouliquen, S.; Reverdin, G. The CORA 5.2 dataset for global in situ temperature and
salinity measurements: Data description and validation. Ocean Sci. 2019, 15, 1601–1614. [CrossRef]

50. Locarnini, R.A.; Mishonov, A.V.; Antonov, J.I.; Boyer, T.P.; Garcia, H.E.; Baranova, O.K.; Zweng, M.M.;
Paver, C.R.; Reagan, J.R.; Johnson, D.R.; et al. World Ocean Atlas 2013. Volume 1: Temperature; Levitus, S.,
Mishonov, A., Eds.; NODC: Silver Spring, MD, USA, 2013; Volume 73, p. 40.

51. Zweng, M.M.; Reagan, J.R.; Antonov, J.I.; Mishonov, A.V.; Boyer, T.P.; Garcia, H.E.; Baranova, O.K.;
Johnson, D.R.; Seidov, D.; Bidlle, M.M. World Ocean Atlas 2013, Volume 2: Salinity; NODC: Silver Spring, MD,
USA, 2013; Volume 119, pp. 227–237.

52. Buongiorno Nardelli, B.; Cavalieri, O.; Rio, M.-H.; Santoleri, R. Subsurface geostrophic velocities inference
from altimeter data: Application to the Sicily Channel (Mediterranean Sea). J. Geophys. Res. 2006, 111.
[CrossRef]

53. Buongiorno Nardelli, B.; Santoleri, R. Methods for the reconstruction of vertical profiles from surface data:
Multivariate analyses, residual GEM, and variable temporal signals in the North Pacific Ocean. J. Atmos.
Ocean. Technol. 2005, 22, 1762–1781. [CrossRef]

54. Buongiorno Nardelli, B. Vortex waves and vertical motion in a mesoscale cyclonic eddy. J. Geophys. Res. Oceans
2013, 118, 5609–5624. [CrossRef]

55. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

56. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskeverm, I.; Salakhutdinov, R. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

57. Buongiorno Nardelli, B. Developing a deep Learning network to retrieve ocean hydrographic profiles in the
North Atlantic from combined satellite and in situ measurements: Test datasets. (Version v1.0), [Data set].
Zenodo 2020. [CrossRef]

58. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: New York, NY, USA, 1993;
Volume 153.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/JCLI-D-11-00648.1
http://dx.doi.org/10.5281/zenodo.3943813
http://dx.doi.org/10.1175/JTECH-D-15-0194.1
http://dx.doi.org/10.1175/JTECH-D-11-00099.1
http://dx.doi.org/10.3389/fmars.2018.00084
http://dx.doi.org/10.1002/2014GL061773
http://dx.doi.org/10.5194/os-15-1601-2019
http://dx.doi.org/10.1029/2005JC003191
http://dx.doi.org/10.1175/JTECH1792.1
http://dx.doi.org/10.1002/jgrc.20345
http://dx.doi.org/10.5281/zenodo.3943700
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data: Surface Measurements 
	Data: In Situ Vertical Profiles 
	Data: Climatology 
	Methods: Multivariate Empirical Orthogonal Function Reconstruction (mEOF-r) 
	Methods: Feed-Forward Neural Networks 
	Methods: Long Short-Term Memory Networks 
	Monte-Carlo Dropout 
	Code Availability 

	Results 
	Discussion 
	Conclusions 
	References

