
1. Introduction
To define opportunities of investing in the Sentinel-10/CHIME, the hyperspectral satellite candidate mission by 
the European Space Agency (ESA) (Rast et al., 2019) the knowledge of soil texture variability is a key factor 
for (a) site-specific farming management, (b) more efficient use of water and fertilizers, and (c) reducing costs 
and environmental impacts (Castaldi et al., 2016). The estimation and mapping of soil texture, expressed as the 
relative proportion of clay, sand and silt, is one of the main users' requirements for the Agriculture and Food 
Security application domain within the European Union (EU) Copernicus Earth Observation (EO) and monitor-
ing program. Furthermore, the majority of the institutional stakeholders involved in the user-driven requirements 
collection expressed the need for consolidating algorithms and mapping products for both soil texture and soil 
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endmembers is broken into categories to find intervals having a spatial relation with texture components in 
terms of fine (clay and silt) or coarse (sand) abundance. The fraction maps obtained show similar spatial 
patterns to the USDA soil texture classification, obtained with a geostatistical approach. Specifically, 
AVIRIS CHIME-like FAM1 > 0.45 presented an agreement of 86% with clay and/or silt higher than 45% 
which, according to the United Stated Agriculture Department (USDA) intervals, correspond to loam-clay 
loam classes. Similar results are obtained with PRISMA with FAM2 0.20–0.35, overlapping 63% of the 
kriging-based USDA clay-loam class. The fractional abundance categories showing the highest overlap 
percentages are correlated with the short-wave infrared spectral range, showing average coefficients of 0.7 
where wavelengths are over 1,500 nm. From 1700 nm, CHIME-like shows values of 0.8. In conclusion, this 
exploratory research and results leverage the opportunity of extending the processing chain to a larger number 
of case studies to better understand the physical relation between the spectral reflectance captured by new 
spaceborne hyperspectral sensors and the spatial patterns of soil texture classes.

Plain Language Summary In the current context led by the constant availability, almost in near-
real time, of remote sensing data with high spatial, spectral and temporal resolutions, the monitoring of soil 
properties should no longer be solely limited to field data observations. There is a growing need of knowledge 
for preserving and exploiting soils and the upcoming generation of hyperspectral satellite remote sensing has 
popped up new opportunities for developing and adapting algorithms that break up the image pixels into several 
spectral behaviors that correspond to different soil properties. This paper contributes to the application of these 
image analysis techniques to soil texture classes retrieval considering the United Stated Agriculture Department 
model. The paper uses the principles of the spectral mixture concept to explore the opportunity of detecting 
soil textures in two farmland units and provides some highlights on the observational requirements needed to 
integrate the future satellite missions' architecture within the agriculture and food security application domain.
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organic content (Taramelli et  al.,  2020) These requirements are related to the monitoring of the impacts and 
the effects of agricultural and environmental policies (Taramelli et al., 2019), such as the European Common 
Agricultural Policy (CAP) for 2021–2027. In this framework, the CHIME Requirements Consolidation Study 
(RCS), funded by ESA jointly with the EU, was specifically tasked on evaluating whether the development of 
a new Copernicus Sentinel hyperspectral satellite mission could satisfy these users' requirements with specific 
observational sensor characteristics (Rast et al., 2019).

Soil is essential for life and vital to solving global environmental challenges such as food and water security, 
climate change adaptation and biodiversity protection (Arrouays et al., 2017).

Precision agriculture is becoming the major opportunity for improving food security through optimal manage-
ment and sustainable use of arable lands. One of the most relevant soil properties to be considered in precision 
agriculture is the soil texture since it determines the degree of water penetration and retention, nutrient absorption, 
susceptibility to erosion, germination and rooting of agricultural crops (Phogat et al., 2015). Soil water content 
is also influenced by texture and organic carbon contents. It has been demonstrated that low organic matter 
content enhances the water retention capacity in sandy soils while high organic content determines increases 
in water retention for all textures even if larger in sandy and silty soils (Rawls et al., 2003). Optimal irrigation 
management practices require estimation of soil–water retention for many crops since it is essential for optimiz-
ing the water use considering soil infiltration, hydraulic conductivity and the available water holding capacity of 
plants. Sandy-textured soils hold less water and drain relatively faster than clayey-textured soils. In sandy soils, 
most of the pores drain shortly after a rainfall or irrigation and the capillary conductivity in these soils becomes 
negligibly small at high soil–water matric potentials compared to clayey soils (Jabro et al., 2009). There is an 
increasing gradient of water and nutrient holding capacity from coarse to finer texture classes and clayey soils are 
usually less prone to wind and rain erosion because of the degree of particles aggregation and the higher presence 
of organic content that supports sealing properties. Given that, the importance of soil texture for resistance to 
erosive factors is evident, particularly in arid and semi-arid regions, where the soils are predominantly calcareous 
with low organic matter content and weakly aggregated structures which are more susceptible to water erosion 
processes (Vaezi et al., 2016).

Globally, soil degradation and erosion are expected not only to have an impact on the vulnerability of soil condi-
tions but also on soil biodiversity, with 6.4% (for soil macrofauna) and 7.6% (for soil fungi) of vulnerable areas 
coinciding with regions with high soil biodiversity (Guerra et al., 2020). Soil biological communities (i.e., micro-
bial bacteria, fungi and protists together with invertebrates macrofauna), having a key role in a wide range of 
soil related biogeochemical cycles and organic matter decomposition, are the invisible base of biodiversity and 
they are constrained by soil organic content and soil abiotic properties, as pH, moisture and texture (Seaton 
et al., 2020). Soil abiotic properties, such as pH, moisture and texture, directly affect soil biodiversity through 
their effects on plant communities, which are known to maintain soil biomes by concentrating resources, biomass 
and litter. Moreover, bacteria, are constrained by soil pH and carbon availability, preferring the biofilms around 
stable and fine-textured soils (Ding & Eldridge, 2022).

In the agricultural sector, a better understanding of soil properties, including texture, is essential to face ongoing 
challenges concerning the production of safe, high-quality, affordable, nutritious, and diverse food (UN Sustain-
able Development Goals 2 and 12) (Bouma et al., 2021). The potential importance of the range of soil particles 
stimulate the exploration of emerging technologies and new analytical methods in retrieving soil texture, soil 
organic content and soil moisture.

The use of optical remote sensing and in particular the exploitation of the visible, near-infrared and shortwave 
infrared (VIS-NIR-SWIR, 400–2,500 nm) spectral region, is very effective for the study of physical and chemi-
cal topsoil properties, allowing for reducing the need of extensive sampling campaigns and laboratory analyses 
(Ben-Dor et al., 2018; Safanelli et al., 2020). VIS-NIR hyperspectral imaging techniques are mostly based on the 
study of the specific vibrations of chemical bonds between molecules (Mohamed et al., 2018). Within the VIS 
(400–700 nm) spectral region, the electronic transitions produce wide absorption bands caused by the chromo-
phores that influence the soil color, while in the NIR – SWIR (700–2,500 nm) spectral region, weak shades 
and combinations of vibrations are generated, due to the stretching and bending of the OH, CH and NH bonds 
(Viscarra Rossel et al., 2006). Topsoil properties (i.e., soil texture and organic content) are thus difficult to be esti-
mated with broadband multispectral data as the absorption peculiarities cannot be fully resolved due to the coarse 
spectral resolution in the 1,100–2,400 nm spectral range. NIR-SWIR spectral ranges correspond  to  the spectral 
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regions most affected by the topsoil chromophores (Ben-Dor et al., 2009; Castaldi et al., 2016). Bare  soils have 
shown considerable potential for the estimation of topsoil texture and the finer bandwidth offered by hyperspec-
tral in comparison to multispectral data, allows for developing physically based approaches (Casa et al., 2013). 
The other side of the retrieval is strictly related to the spatial resolution because few studies provide a solid discus-
sion on the issue and it seems that 5–30 m gave similar performance of prediction, for instance for clay (Gomez 
et al., 2015). In Casa et al. (2020), comparable results were obtained for clay estimation at 20 and 30 m, whereas 
the retrieval accuracy for sand, silt, and soil organic carbon (SOC) was slightly worse than for clay.

Nowadays the number of satellite hyperspectral missions for environmental monitoring is rapidly increasing. 
Already orbiting hyperspectral satellites are the Italian PRISMA (PRecursore IperSpettrale della Missione 
Applicativa), launched in 2019 (Cogliati et  al.,  2021), and the German EnMAP (Environmental Mapping 
and  Applications Program) launched in 2022 (Bachmann et al., 2021). The panorama of spaceborne hyperspec-
tral imagers, is enriched by operational sensors on the International Space Station (ISS) as the recently launched 
(2022) NASA's EMIT (Earth Surface Mineral Dust Source Investigation) (Green & Thompson, 2021), DESIS 
(German Aerospace Center (DLR) Earth Sensing Imaging Spectrometer) launched in 2018 as a precursor instru-
ment for EnMAP (Krutz et al., 2019) and the Japanese HISUI (Hyperspectral Imager Suite), operational on ISS 
since 2020 (Matsunaga et al., 2022). These monitoring programs will be soon enlarged by the candidate satellite 
missions HyspIRI (Hyperspectral InfraRed Imager) supported by the US-NASA SBG initiative (Surface Biology 
and Geology) (Lee et  al.,  2015) and by CHIME (Copernicus Sentinel 10) supported by the European Union 
through ESA (Nieke & Rast, 2018).

These hyperspectral imagers cover wavelengths from 400 to 1,000 nm (VNIR) and from 900 to 2,500 nm (SWIR) 
with high spectral resolutions spanning from 7 to 12 nm. With continuous narrow bands, particularly in the SWIR 
region, these sensors provide the possibility of enhancing the accuracy of soil texture, moisture and organic 
content retrieval (Castaldi et al., 2016). Moreover, users' benefit is improved by the diversity of data sources and 
resolutions. Hyperspectral imagery, with the continuous spectral sampling, coupled with the wider spatial cover-
age, spatial resolution and short revisit time of multispectral sensors, like Sentinel 2 and Landsat 8–9, represent 
an unprecedented synergy for topsoil properties retrieval (Guanter et al., 2015).

By side to this availability of spaceborne hyperspectral sensors, there is a parallel increase in the development 
of methods for the generation and delivery of soil thematic products to the geoscience community (Chabrillat 
et al., 2019; Mzid et al., 2022). Currently, for soil thematic mapping, most of the existing products are highly 
dependent on field and laboratory radiometric measurements, making the retrieval algorithms still very locally 
accurate. In this sense, there is an increasing interest in the potential of global standardized soil spectral librar-
ies databases (e.g., LUCAS—Land Use/Land Cover Area Frame Survey) that could support globally applica-
ble methodologies suitable to process the spectral data into practical soil properties models (Viscarra Rossel 
et al., 2016).

The aggregate effects of high spectral mixed variance an the spatial composition within each pixel can be 
modeled by treating the observed reflectance, as a linear mixture of a small set of generic endmembers (EMs) 
spectra (Sousa et al., 2022). The high spectral dimensionality of hyperspectral data could be associated with an 
EMs collection representing either the spatial homogeneity or the heterogeneity of bare soil agricultural units 
and allowing the implementation of linear spectral mixture models within each pixel of the scene (Valentini 
et al., 2020). Linear Spectral Mixture Analyses (LSMA) is generally limited when the reflectance behavior of the 
EMs captured by the mixing space are less than in the reality or when the reality is rich of many unknown physi-
cal targets (Sousa & Small, 2018). Nevertheless, when the application of the mixture models is constrained to fit a 
small number of endmembers (EMs), such as the retrieval of sand, silt and clay, the high number of spectral bands 
enables to capture the spatial dimensionality of the system and a technique like the LSMA provides a stimulating 
opportunity to support topsoil texture retrieval at an agricultural farmland unit scale.

Within CHIME High Priority Products, the soil textural composition has been consolidated using multivariate 
modelling like Partial Least Squares Regression (PLSR) and Random Forests (RF) algorithms. Results of these 
models were based on existing local or regional soil spectral libraries and on field samples for the calibration 
and the validation of the models. Some good result was obtained for clay estimation, whereas for sand, silt, and 
soil organic carbon (SOC) the retrieval accuracy was slightly worse (Casa et al., 2020) determining the need for 
further research in the field of soil texture retrieval. The purpose of testing LSMA is then to open new windows 
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on soil texture detection having consequent optimization and improvement of retrieval schemes and fulfilling the 
objectives of the CHIME mission by tuning different retrieval models including secondary algorithms.

This study explores a novel view in techniques for hyperspectral image analysis to treat the dimensionality prob-
lem taking into account both the spectral and spatial properties of the data. The LSMA, is used in its basic 
geometric formulation and exploits an expert “user-supplied” collection of EMs spectra, without introducing any 
automatism but using only the image captured variance. In this way the physical dimension of the problem is 
always interpretable and suitable of understanding the existence of a relation between the spectral fractions and 
the spatial distribution of textures. This approach is aimed at including in the hyperspectral imaging data process-
ing the spatial dimension of the variability in topsoil texture retrieval. The study explores the opportunities 
offered by spectral mixture models to fully exploit the VIS-NIR-SWIR spectrum and to estimate fractions of soil 
texture classes within farmland units of bare soils. Specifically, it compares image based LSMA with the standard 
USDA soil classification obtained by interpolating and thresholding ground truthing data. The hypothesis is that 
the spectral dimensionality captured by hyperspectral resolution could be associated more easily to the  spatial 
patterns of soil at class level when working at agricultural units' scale instead of retrieving the composition of 
each pixel in terms of percentage of sand, silt and clay. The analysis is also oriented towards the detection of 
specific wavelengths, and synergies among hyperspectral and multispectral sensors including airborne data from 
AVIRIS NG sensor, resampled according to the spectral configurations of CHIME and Sentinel 2 (CHIME-like, 
Sentinel 2-like), and original satellite data from PRISMA and Sentinel-2.

2. Materials and Methods
2.1. Study Areas

The topsoil texture retrieval was tested on the bare soil units of two cropland areas in Central Western Italy 
(Figure 1). The two areas have a Mediterranean climate, characterized by mild and humid winters and hot and 
dry summers.

Figure 1. Study areas: with blue box: Braccagni cropland boundaries and field sampling points. The base map is a RGB composite from Sentinel 2 of 14 May 2020; 
with red box, Maccarese cropland and field sampling points. The base map is a RGB composite from PRISMA of 8 February 2020. On the right the view of the field 
condition at the time of image acquisition.
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The Braccagni test area (Grosseto municipality, Central Italy, 42°49′47.02′′N 11°04′10.27′′E; elev. 2 m a.s.l.) 
included an irrigated field of 70 ha where maize is cultivated in summer as fodder, following a winter ryegrass 
crop harvested in early June. During the winter, the minimum night temperatures are commonly below 0°C while 
in the summer days the maximums are above 30°C (Silvestro et al., 2021). The annual temperature is around 
15°C and the average annual rainfall is 640 mm (Candiani et al., 2022). The shape of the field in the study area 
is circular due to the pivots, self-propelled irrigation systems with mobile towers that ensure uniformity of water 
distribution through high-frequency watering but with reduced volumes. The soils in Grosseto are classified as 
Luvisols (Food and Agriculture Organization of the United Nations, 1998) prevailingly falling in the silty clay 
loam and silt loam texture classes. Soil moisture measurements at the time of image collection are not available. 
Regarding the soil textures, the field is mainly divided in 2 areas: a clay-rich soil zone in the west portion and a 
fertile area in the east part.

The Maccarese area (Rome municipality, Central Italy, 41°52′18″ N, 12°14′05″ E; elev. 8 m a.s.l.) is very close to 
the coast and it is mainly cultivated with maize, durum and winter wheat, fodder crop and broad bean. The climate 
is characterized by an average annual temperature of 15.5°C and annual rainfall of 734 mm (Xie et al., 2018). 
The study area underwent reclamation works from marshland to agriculture in the early 1920s, and according 
to a recent regional soil map the parent materials of the northeastern part of the farmland are alluvial deposits 
of the Arrone river. The Maccarese soil is classified as Cutanic Luvisol (FAO-ISRIC-ISSS, 2007), with sandy 
clay loam texture, becoming more clayey toward the north-east of the site. Soil parent materials are flat inshore 
deposits (Pleistocene). There is no carbonate soil in the site while it is possible to identify shell remains on the 
dunes (Mzid et al., 2022) because the Maccarese croplands are characterized by the proximity to groups of beach 
ridges corresponding to eight homogeneous complexes that are part of the delta of the river Tevere.

2.2. Workflow

The methodology used to retrieve textural classes from each image data set starts with the image preprocessing 
that includes both geometric and radiometric analyses.

Each image data set is then processed using the Linear Spectral Mixture Analyses (LSMA), a soft classification 
that provides sets of Fractional Abundance Maps (FAMs). After computing FAMs standardization, the process-
ing chain includes the definition of thresholds based upon the frequency distribution of continuous values of these 
FAMs classifying them into discrete intervals (i.e., low, medium, high values).

Parallel to the image processing, the ground truthing data set is classified following the same intervals used for the 
FAMs, providing the classes for implementing the validation with the confusion matrix. The validation provided 
different level of accuracy for each FAM intervals and the best results were selected for masking specific FAMs.

Moreover, the ground truthing data set is interpolated to obtain three raster layers with the spatial distribution of 
each texture (sand, silt, clay) and used to build a USDA soil classification map. This classification provides the 
classes to compute zonal statistics with masked-FAMs and, as first output of the analyses, the estimates of the 
spatial relation between the masked-FAMs and the USDA classes in terms of overlapping soil texture surfaces.

The last step of the processing chain is oriented to the definition of the relevant spectral bands for the soil classes 
retrieval and it is based on the use of a correlative approach between each masked-FAM and each sensor wave-
band (Figure 2).

2.2.1. Field Sampling

In both croplands, field campaigns were constrained to completely or quite completely bare soils. All samples 
were analyzed to determine the clay, silt and sand composition using the pipette method and classified according 
to the USDA texture class thresholds, with the values 0.002, 0.05, and 2 mm (Blott & Pye, 2012) as upper limits 
for the clay, silt, and sand fractions, respectively. For all the samples, the soil organic carbon and the water content 
were also determined in the laboratory using standard protocols.

In Braccagni, the in situ acquisitions were carried out in June and July 2018, matching the hyperspectral airborne 
AVIRIS-NG acquisitions planned by ESA specifically for CHIME studies on 6 June 2018. The field was mainly 
plowed: only a subfield in the central part of the pivot was already sown; plants had already emerged in this 
part of the field with an average height of just a few centimeters. A stratified targeted sampling scheme based 
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Figure 2. Workflow representing the processing chain and the output of the analyses. The acronyms stand for: LSMA—Linear Spectral Mixture Analyses; FAMs—
Fractional Abundance Maps; USDA—United States Department of Agriculture.
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on ancillary data and the LUCAS protocol was adopted for the selection of 95 samples 
distributed in Elementary Sampling Units (ESU) of 10 m. The pivot irrigation system was 
operating at the time of the AVIRIS acquisition (Figure 1).

In Maccarese, the in situ acquisitions were carried out on 11 November 2019, 28 January, 
and 17 February 2020, matching the hyperspectral satellite PRISMA overpasses tasked by 
the Italian Space Agency (ASI) specifically for PRISMA calibration and validation activi-
ties. Only completely bare soil fields were selected for field sampling, consisting of 97 ESU 
considering also some sub-ESU for better fitting the Sentinel 2 spatial resolution (Mzid 
et al., 2022). All the ESU were located in the central eastern units of the farmland (Figure 1).

2.2.2. Block Kriging

Since the soil ground sampling had a support size of about 4 m (bulked samples collected 
in a circle with 4 m diameter), the ground data could not be related to increasing resolu-
tion of the images, having pixel sizes of 20 and 30 m. Therefore, the spatialization of the 
in situ soil properties, using a block kriging technique, was carried out at the different 
spatial resolutions tested, that is, 3.6 m (as for the original AVIRIS NG airborne image's), 
20 m (as for Sentinel's) and 30 m (as for CHIME-like's and PRISMA's). Both isotropic and 
anisotropic spherical variogram models were fitted to the experimental variogram, and the 
model chosen for the block kriging was selected on the basis of the cross-validation results 
using the Gstat package in R (Pebesma, 2004). A Box-Cox transformation was carried out 
to correct non-normality of the data and the fitting model selected was Matern, M. Stein's 
parameterization in all cases (Casa et al., 2020).

The textural designation determined from the block kriging provided three raster layers with 
the relative proportion of silt, clay and sand content. Following the USDA classification, those 
three layers have been classified into soil texture classes. The USDA system classifies soils 
into 12 soil texture classes represented using the ternary diagram (Davis & Bennett, 1927) 
with three broad primary textural groups of sand, silt and clay percentage. The USDA clas-
sification has been implemented using the Soil Texture Wizard Package (Moeys, 2018) in 
R environment obtaining discrete classes useful for a subsequent zonal statistical analysis.

2.2.3. Remote Sensing Data

Our analyses are based on the use of different hyperspectral data and the study of the syner-
gies among different sensors, namely hyperspectral satellite data from the PRISMA mission 
(ASI), multispectral satellite data from the Sentinel 2 mission (ESA) and hyperspectral 
airborne data from AVIRIS-NG (NASA) resampled to CHIME and Sentinel 2 spatial 
and spectral features. The hyperspectral sensors, PRISMA and AVIRIS NG, similarly to 
CHIME, with more than 200 wavebands, cover the spectral range from 400 to 2500 nm 
with a spectral resolution of about 10 nm. PRISMA offers a spatial resolution of 30 m in 
the VNIR-SWIR spectral region, and it is quite comparable with CHIME, which should 
have a target spatial resolution between 20 and 30 m. The MultiSpectral Instrument (MSI) 
sensor onboard Sentinel 2 offers 13 wavebands in the VNIR and SWIR and the potential for 
data fusion to leverage the spectral resolution of hyperspectral sensors and the spatial and 
temporal resolution of multispectral constellations (Table 1).

As part of the CHIME RCS project, ESA, during the year 2018, funded specific airborne 
hyperspectral acquisitions with AVIRIS-NG as a mission performance simulator. The image 
that captured the Braccagni area on 21 June 2018 has been used in our analyses since it 
represents a good compromise between low cloud cover and the extensive presence of bare 
soils within the farm. AVIRIS-NG data on Braccagni farm was corrected from the atmos-
pheric and water vapor effect directly from the provider and for this study, it was resampled 
following a CHIME-like (30 m, 211 bands) and S2-like (20 m, 13 bands) configuration.

PRISMA and Sentinel 2 data were used as hyperspectral and multispectral input data in 
Maccarese. PRISMA image that captured the Maccarese farmland on 2022 was acquired Pl
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from the ASI catalog client (https://prisma.asi.it/) in the Hierarchical Data Format–Earth Observing System 5 
(HDF-EOS5) with pre-processed Level 2C (ground reflectance without geometric correction). Sentinel 2 image 
was acquired from Theia catalog (https://www.theia-land.fr/en/typeofproduct/sentinel-2/) in Level 2A, which are 
corrected from the atmospheric effects using the MACCS-Atcor Joint Algorithm (MAJA).

2.2.4. Pre-Processing

The AVIRIS-NG image that captured the Braccagni farmland on June 2018 was resampled into a CHIME-like 
image with 211 bands and 30 m spatial resolution using the CHIME's spectral and spatial configurations. The 
image was also resampled to the 13 Sentinel 2 spectral bands and to a spatial resolution of 20 m to obtain a Senti-
nel 2-like configuration.

A Gaussian spectral resampling model was used, based on the spectral response function (SRF) provided by ESA 
for both CHIME and Sentinel 2 and by using an ASCII wavelengths file containing the full-width-half-maxi-
mums (FWHM) for each band. The spatial resampling from 3.6 m resolution to 30 and 20 m was performed using 
a Nearest Neighbor algorithm implemented in ENVI 5.5.2. software (L3Harris Technologies). To complete the 
pre-processing steps of the AVIRIS data set, the noisy bands affected by atmospheric water absorption have been 
removed from the SWIR wavelengths (Table 2).

The Level 2-C PRISMA images were corrected by the residual geospatial shift (related to lack of the Ground 
Control Points within the standard geocoding process), using the contemporary acquired Sentinel 2 images as 
references for orthorectification in ENVI 5.6 PRISMA toolkit (L3Harris Geospatial Technologies). Before merg-
ing PRISMA VNIR and SWIR hyperspectral band set into a single layer stack, it was needed to remove the over-
lapping reflectance bands in the 930–998 nm spectral range and the removal of bands affected by atmospheric 
water absorption noise (Table 2). Few more bands determining spikes effects in the spectral signatures and having 
stripes were also removed manually. Finally, the band removal related to Signal to Noise Ratio (SNR) was manual 
and based on the rising of SNR from green (≈200) to far-red (≈400) and NIR-SWIR (≈500), with the lowest 
values at wavelengths larger than 2000 nm (≈100) (Table 2) (Cogliati et al., 2021).

2.2.5. Linear Spectral Mixture Analysis

The hyperspectral and multispectral data were used to identify topsoil texture classes following the USDA classi-
fication. The application of a sub-pixel analysis technique was based on the consolidated approaches proposed by 

Study site Sensor Date Cloud coverage Noisy bands

Braccagni AVIRIS-NG CHIME-like 21 June 2018 0% Removed 26/211: SWIR: 1,379.5–1,439.5 (99–105), 
1,809.5–1,929.5 (142–154), 2449.5–2498.6453 

(206–211)

AVIRIS-NGS2-like 21 June 2018 0% –

Maccarese PRISMA 14 July 2022 0.005% Removed: 93/234

VNIR: SNR low: 402.4–463.7 (1–9)

Bands with random spike: 770.5 (44); 913.4 (57); 
944.6 (60); 967.0 (62)

Bands in overlapping zone: 929.3 (59); 951.3 (61); 
972.6 (63)

SWIR: Bands in overlapping zone: 942.9–998.4 (3–9)

Bands with random spike: 1,120.7–1,196.2 (21–28); 
1,553.8–1,544.2 (59–60); 1,803.6 (86)

Atmospheric water absorption: 1,328.1–1,522.9 
(40–58); 1,812.8–2052.7 (87–114)

SNR low 2420.9–2496.9 (162–173)

Sentinel 2 14 July 2022 1.7% Removed 1/13: 1,373.5 (10)

Note. In the Noisy bands column, the removed bands are expressed in wavelengths in nm and with the original band number (enclosed in brackets).

Table 2 
Input Images Used
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Boardman (1995), Sousa and Small (2018), and Valentini et al. (2020). Several approaches have been developed 
for determining the relative value of individual endmembers for representing the spectral variability captured by 
an image. In our approach, the endmembers (EMs) selection is based on the analysis of the multi-dimensional 
space obtained with the Principal Component Analysis (PCA) of each spectral configuration (CHIME-like, 
PRISMA and Sentinel) after noisy band removal.

With the Principal Component Analysis (PCA) we first obtained the reduction of the dimensionality of the hyper-
spectral bands by projecting them into N orthogonal directions or eigenvectors (PCs). Second, the EMs selection 
was obtained in correspondence with the orthogonalized pixel clouds by exploring the spatial distribution of 
the pixels in two-dimensional PCs mixture spaces (2D scatterplots). The manual selection of the EMs in the 
two-dimensional PCs mixture space is an expert based image-based extraction of the spectral variance captured 
by each pixel (Plaza et al., 2002).

To overcome the uncertainties related to the variation of the spectral signal within each endmember collection, we 
assumed that there are not differences in illumination within the field unit captured by the images since both crop-
lands are in relatively flat areas and hence the only difference between image pixels reflectance could be in terms 
of moisture. We also assumed that in cultivated soils, due to repeated tillage operations, soil properties, including 
texture, organic content and mineralogy, are usually quite uniform over the tilled layers; therefore they can be 
estimated from the bare soil surface reflectance (Casa et al., 2013). After performing the unconstrained unmixing, 
to have sets of fractional maps representing the linear abundance percentage in each pixel, first, a standardization 
of values from 0 to 1 has been applied. As second step, a sum constraint to 1 was applied implementing a simple 
proportion using the FAMs as a pixel's data frame and by dividing the columns by the sum of the rows (Equation 1).

𝑋𝑋𝑖𝑖𝑖𝑖𝑖norm =
𝑋𝑋𝑖𝑖𝑖𝑖𝑖

𝑛𝑛
∑

𝑘𝑘=1

𝑋𝑋𝑖𝑖𝑖𝑖𝑖

 (1)

where

X = FAMs value.

i, j = FAMs.

n = FAMs number.

2.2.6. Accuracy Assessment

The last step of the LSMA was the validation of FAMs through the confusion matrix technique using the field 
data. Both the field data and the FAMs were classified into three intervals following the general criteria of equal 
breakdown distribution. For the FAMs, as a consequence of the standardization and normalization, values were 
ranging from 0 to 1 with different maximum values and some empirical adjustment was introduced to redefine 
the interval limits. The intervals identified with this thresholding method, offered the opportunity of validating 
the overall accuracy of each FAM on the base of the ground truthing data (i.e., soil textures). Moreover, this 
confusion matrices, provided an estimate of the accuracy of each FAMs interval with specific ground truthing 
texture interval highlighting the potential amount of each texture class captured by FAMs. A total of 36 confusion 
matrices has been computed (2 sites × 2 sensors × 3 FAMs × 3 intervals). Once defined the accuracy for each 
interval, the less accurate part of each FAM has been removed by masking.

2.2.7. Zonal Statistics

A comparative analysis to test the spatial patterns of USDA kriging-based classifications and each masked-FAM 
was performed exploiting a zonal statistics operation. The zonal statistics, follow a raster-based method where 
the zones are defined by USDA textural classes while the statistics comes from masked-FAMs value. It returns as 
output, a table where the overlapping zones are reported in terms of surfaces and number of pixels, allowing the 
attribution of each masked-FAM to the different USDA textural classes.

2.2.8. Relevant Spectral Bands

To exploit the LSMA results in understanding the performances of different spectral wavelengths' ranges with 
respect to the detection of soil texture classes, correlation matrices, including as input variables the masked-
FAMs and wavebands of each sensor, have been implemented. The linear Bravais-Pearson correlation between 
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the variables was analyzed with regard to the sign (i.e., positive or negative) 
and the magnitude (i.e., values from −1 to 1).

3. Results
The results description follows the workflow presented in Figure 2. To ease 
readability, a selection of the most relevant results is presented hereunder for 
each of the two study areas and for each sensor configuration whereas all the 
processing results are reported in the Supporting information.

3.1. Braccagni Farmland: CHIME-Like Data Set

3.1.1. Field Variability

The 95 field samples over the farmland provided the proportion of sand, 
silt and clay expressed as texture percentages. The most abundant texture 
over the whole area was silt, resulting in minimum and maximum values of 
38.70% and 67.30%, followed by clay with 12.30% and 43.90%, and sand 
with 7.70% and 34.90%. The respective averages were 54.96%, 26.83%, and 
18.21% (Table 3).

3.1.2. USDA Soil Texture Classification

The block kriging technique was applied to the entire set of field measurements obtaining robust estimations of 
the topsoil properties for the two spatial resolutions, namely 30m for fitting CHIME-like and 20m for Sentinel 
2-like (Figure 3). The block kriging estimation maps of sand, silt and clay were based on variogram models 
resulting similar for silt and clay. These two models were also very similar to the one provided by the soil organic 
carbon content (Figure S1 in Supporting Information S1).

The USDA soil classification thresholds applied to the estimation maps of clay, silt and sand provided five USDA 
texture classes. With this classification, the soil of the area resulted dominated by clay loam and loam classes. 
Only in the southern-west part there was a higher abundance of the Clay class (Figure 3).

3.1.3. Linear Spectral Mixture Analyses

In the multidimensional space identified by the first two or three Principal Components (PCs'), through the 
manual apex's selection of the 2D scatterplots, four EMs were identified. The spectral profiles of EM1, EM3 and 
EM4 of CHIME-like and Sentinel 2-like were associated with topsoil typologies. The two sensor configurations 
identified similar EMs collections with a bundle of spectral signatures of comparable shape differing mostly in 
terms of intensities. EM2 has been associated to the soil moisture absorption effect having the lowest reflectance 
values (<0.01) even with a typical soils shape (Figures 4a–4d).

In CHIME-like configuration, the LSMA has a RMSE of 0.23 and the abundance maps, FAM1 and FAM3, have 
a spatial pattern recognizing the presence of two complementary areas where values of FAMs are around 60%. In 
Sentinel 2-like data, the mean RMSE is of 0.13 and FAM1, which shows values greater than 40% in the central 

Clay Silt Sand SOC

Mean 26.83 54.96 18.21 1.36

Standard error 0.70 0.63 0.63 0.02

Median 26.20 55.60 17.20 1.34

Standard deviation 6.81 6.15 6.14 0.15

Variance 46.31 37.88 37.73 0.02

Kurtosis −0.15 −0.16 −0.27 0.28

Skewness 0.33 −0.45 0.49 0.12

Range 31.60 28.60 27.20 0.79

Minimum 12.30 38.70 7.70 0.93

Maximum 43.90 67.30 34.90 1.72

Count 95 95 95 95

Table 3 
Braccagni Field Sample Basic Statistics

Figure 3. Estimation maps of clay, silt and sand obtained by applying block kriging for the Braccagni farmland. The last map represents the USDA Soil Texture 
Classification based on estimation maps.
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Figure 4. Endmembers (EMs) collection and position in the multidimensional space for CHIME-like (left, a–c) and Sentinel 2-like (right, d–f). Red lines are used to 
facilitate the readability of the 2D scatterplots' shape; the circles are to identify the position of the EMs and the color of the circles on the scatterplots correspond to the 
color of the EMs in the spectral graphs (a and d).
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portion of the pivot, has a similar spatial pattern to the FAM1 of CHIME-like. FAM2 and FAM4 show lower 
fractional cover values (<40%) and lower spatial variance over the area for both configurations (Figure S2 in 
Supporting Information S1).

3.1.4. Accuracy Assessment

The retrieval accuracy is based on the overall accuracy (OA) and the producer accuracy (PA) obtained with the 
confusion matrix between all ground truthing field sample and FAMs. Both datasets have been classified into 
three classes by thresholding their distributions in three abundance intervals: low, medium and high. All the 
thresholds are reported in Table 4. For both the configurations FAM2 has been excluded from the validation data 
set because it has been associated with the moisture-darkness effect.

Considering the CHIME-like configuration, the FAM3 has the highest OA (41.3%), mostly determined by the 
class medium sand (PA  =  43.24%). Similarly, FAM1 shows high OA (39.1%) determined by the class high 
sand (PA = 86.5%), while FAM4 presents the lowest values of OA (27.2%) determined by the class medium silt 
(PA = 36.2%).

In Sentinel 2-like configuration, FAM4 shows the lowest accuracy and all the FAMs show the highest OA for 
silt with different intervals. The FAM3 has the highest OA (55.8%), mostly determined by the class medium 
silt (PA = 68.6%). FAM1 shows high OA (45.3%) determined by the class high silt (PA = 86.5%) while FAM4 
presents the lowest values of OA (35.7%) determined by the class medium silt (PA = 48.6%) (Table S1 in Support-
ing Information S1). Considering all the validation results, CHIME-like configuration provided a wider set of 
validated FAMs than Sentinel 2-like. The multispectral resolution was in fact accurate only with silt (Data Set S1).

The confusion matrix results have been used to set the intervals deemed suitable for texture classes (i.e., USDA 
soil texture classification) retrieval (Figure 5).

3.1.5. Soil Texture Surfaces

The zonal statistics allowed to retrieve from each FAM the overlapping zones with the different classes of the 
kriging-based USDA map (Table 5). In CHIME-like, FAM1 > 0.45 covers the 50% of the study area and the great-
est overlap is with the clay loam class (86%). Also the FAM4 0.20–0.45, that covers only the 22% of  the  study 
area, is overlapping for the 66% of its surface, the clay loam class. The FAM3 > 0.45 is the smallest in terms of 
surface and it overlaps almost the loam class (70%). Since both FAM1 and FAM3 are validated by class high 
sand (20%–35%) from the confusion matrix, it is reliable that the attribution of FAMs to texture classes are the 
proportion of silt and clay. In fact, according to the USDA intervals, there are similar sand values in the loam class 
(52% or less) and clay loam (45% or less), while they differ in the amount of clay (7%–27% in Loam, 27%–40% 
in Clay Loam) and silt (28%–50% in Loam) (Ditzler et al., 2017).

In the Sentinel 2-like configuration, the zonal statistics provided different FAMs overlap with the USDA texture 
classes compared to the CHIME-like. Both FAM1 > 0.40 and FAM3 0.15–0.30 show the majority of surface overlap-
ping the Silty Clay class. The FAM4 0.15–0.30 covers about the 50% of the USDA map and it overlaps the Clay class 
for the 32%. The driver soil property is silt as already verified with the confusion matrix, because in the USDA thresh-
olds, silt is present with different percentages in Silty Clay (40% or more) and in Clay (40% or less). In fact, from the 
confusion matrix, FAM1 is validated with high values (>60%) of silt, while FAM3 with medium values (40%–60%).

3.1.6. Relevant Spectral Bands

Spectral correlation between the relevant masked FAMs and the original wavebands of each sensor configura-
tion (i.e., CHIME-like and Sentinel 2-like) provided some ranges of spectral wavelengths of high correlation. 

Field thresholds CHIME-like thresholds Sentinel 2-like thresholds

Class Clay Silt Sand FAM1 FAM3 FAM4 FAM1 FAM3 FAM4

Low <15 <40 <10 <0.2 <0.2 <0.2 <0.2 <0.15 <0.15

Medium 15–30 40–60 10–20 0.2–0.45 0.2–0.45 0.2–0.45 0.2–0.4 0.15–0.3 0.15–0.3

High >30 >60 >20 >0.45 >0.45 >0.45 >0.4 >0.30 >3

Table 4 
Thresholds Used for Validation Purposes
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CHIME-like FAM1 > 0.45 shows in the VIS wavelength range of 509–709 nm, an average correlation value of 
0.45. This value is lower than Sentinel 2-like FAM1 > 0.40, which reaches an average of 0.85. With the SWIR 
spectral region, we observed two areas of high correlation: in the wavelength range of 1,449–1,609 nm, the aver-
age correlation value is 0.65 for CHIME-like FAM1 > 0.45 and is 0.68 for Sentinel 2-like FAM1 > 0.40; in the 
wavelength range of 1,939–2,019 nm, the average correlation value is 0.85 for CHIME-like FAM1 > 0.45 and is 
0.78 for Sentinel 2-like FAM1 > 0.40 (Figure 6) (Data Set S2).

3.2. Maccarese Farmland: PRISMA Data Set

3.2.1. Field Variability

The field samples analysis provided the percentage of different topsoil properties resulting in minimum and 
maximum values for clay of 18.37% and 50.24%, silt of 14.16% and 38.32% and sand of 23.10% and 64.42%, 
with the respective averages of 37.16%, 25.29%, and 37.55%. The highest abundance was observed for sand over 
the whole area (Table 6). The block kriging technique was applied to field measurements to obtain clay, silt and 
sand estimation maps (Figure 7).

Figure 5. Summary table of the suitable intervals selected for masking FAMs values in the Braccagni area. In the last column the FAMs are masked on the base of the 
intervals obtained by the validation and represented with the red highlight on the histogram.
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3.2.2. USDA Soil Texture Classification

The distribution of the soil properties is homogeneous throughout the area 
with a more abundant presence of sand in the north-east than of silt or clay. 
However, silt is the less represented soil property while the sand is the most 
abundant. The USDA Soil Texture Classification applied to the block krig-
ing estimates has provided a thematic map characterized by three texture 
classes: the area is mostly represented by the clay loam class, while in the 
central part there are zones with Clay class and in the north-eastern part 
there is a small area characterized by the sandy clay loam class (Figure 7).

3.2.3. Linear Spectral Mixture Analysis

The multidimensional space of PRISMA and Sentinel 2 provided a 
bundle of three EMs for each sensor. The spectral signatures of both 
spectral configurations were associated to a typical soil spectral profile. 
In PRISMA, EM1 and EM3 have a similar shape differing only in the 
reflectance intensity. The spectral profile of EM1 and EM3 change in 
intensity values over 1,400 nm, showing an inversion of the relative posi-
tions (Figure 8a).

The spectral profiles of EM1 and EM3 in Sentinel 2 have similar shapes 
with small differences in the absorption features in the NIR-SWIR 
wavelengths. EM2 has the lowest intensity (reflectance < 0.40) for both 
sensors, but in Sentinel 2 the shape of the spectral profile in the red edge 
could suggest the presence of sparse senescent vegetation.

For PRISMA, the LSMA with a mean RMSE of 0.17, retrieved FAM1 as 
the most representative in terms of cover percentage (>60%). The FAM2 
presents lower coverage values between 30% and 50% and shows a distri-
bution of fractional abundances complementary to FAM1. Although 
FAM3 presents low values of fractional coverage over the whole area, this 
fraction identifies two different zones in the farmland unit with higher 
values in the northern portion reaching 50% (Figure S3 in Supporting 
Information  S1). This zonation could be associated to the presence of 
sparse residual Non Photosynthetic Vegetation (NPV) in the northern 
portion.

In the Sentinel 2 image, acquired on the same day of PRISMA acquisi-
tion, the RMSE was 0.1. The FAMs retrieved with multispectral config-
uration do not show significant patterns in the fractional abundance even 
if FAM1 has values >50% on the whole area. What appears evident in 
all the FAMs, are the alternating parallel stripes of low and high cover 
values. As in PRISMA retrieval, FAM3 identifies two distinct areas that 
could be explained, given the signature of the EM3, with the presence of 
dead vegetational residues in the southern portion (Figure S3 in Support-
ing Information S1).

3.2.4. Accuracy Assessment

The retrieval accuracy is based on the confusion matrix between the 
ground truthing field sample and FAMs. Of the 97 samples for comput-
ing the validation, only 92 have been selected because some of them 
overlapped the border of the farmland unit. Both datasets, FAMs and 
field, were classified by thresholding their distributions in three abun-
dance intervals: low, medium and high. All the intervals are reported in 
(Table 7).

Considering the PRISMA configuration, the FAM2 has the highest OA 
(45,5%), mostly determined by the class medium sand (PA  =  66%). 
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FAM1 shows an OA (42.4%) determined by the class high silt (PA = 48.8%), while FAM3 presents the lowest 
values of OA (23.3%) determined by the class low sand (PA = 68.8%).

In Sentinel 2 configuration, as happen in PRISMA, the FAM1, the one with the highest OA (52.7%), is mostly 
influences by the class high silt (PA = 80%). FAM2 shows high OA (47.8%) determined by the class medium clay 
(PA = 62.2%) (Table S2 in Supporting Information S1) (Data Set S1).

The confusion matrix results have been used to set the intervals deemed suitable for soil texture surfaces (i.e., 
USDA soil texture classification) analyses (Figure 9).

3.2.5. Soil Texture Surfaces

In the PRISMA configuration all the FAMs show the greatest overlap with the clay loam class with surface areas 
of 61% for FAM1 > 0.5, 63% for FAM2 0.20%–0.35% and 62% for FAM3<0.20 (Table 8).

The same observation is made for the Sentinel 2 configuration in which all 
the masked FAMs cover the majority of the study area and overlap clay loam 
class with surfaces of 56%.

In PRISMA the spatial patterns of FAM1 > 0.5 and FAM2 0.20–0.35 could 
be associated respectively to fine and coarse texture classes. In particular 
FAM1 > 0.5 on medium values was validated by high silt class (25%–38%) 
conversely, medium values of FAM2 0.20–0.35 were validated by medium 
sand class (30%–40%) fitting the  clay loam USDA class (27%–40% clay 
20%–46% sand). For Sentinel 2 considering the high spatial resolution it is 
evident the effect of the stripes, probably due the geometry of the plowing 
practices.

3.2.6. Relevant Spectral Bands

Spectral correlations between the relevant masked FAMs and original wave-
bands of each sensor configuration (i.e., PRISMA and Sentinel 2) provided 
similar results to CHIME-like and Sentinel 2-like for the SWIR wavelength 
range. PRISMA FAM1 > 0.5 shows in the VIS wavelength range, negative 
average correlation value of −0.35 while Sentinel 2 > 0.5 has positive but 
very low correlation (0.12). Both sensors have the highest positive values 

Figure 6. In blue correlations of CHIME-like FAM1 > 0.45 and the 185 CHIME-like spectral bands (wavelengths); in cyan 
correlation of Sentinel 2-like FAM1 > 0.40 and the 12 Sentinel 2-like spectral bands.

Clay Silt Sand

Mean 37.16 25.29 37.55

Standard error 0.69 0.46 0.86

Median 37.08 25.91 35.93

Standard deviation 6.82 4.50 8.48

Variance 46.47 20.25 71.83

Kurtosis 0.08 0.33 1.12

Skewness −0.29 −0.20 1.02

Range 31.87 24.17 41.31

Minimum 18.37 14.16 23.10

Maximum 50.24 38.32 64.42

Count 97 97 97

Table 6 
Field Sample Basic Statistics of Maccarese Farmland Unit
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for the SWIR wavelengths over 1,500 nm, but PRISMA correlations are higher than Sentinel 2. Considering the 
nearest spectral range of high correlation obtained with CHIME-like FAM1 > 0.4 (1,449–1,609 nm, R = 0.65; 
1,939–2019 nm, R = 0.85) in the SWIR, with PRISMA FAM1 > 0.5, for wavelength range of 1,554–1,616 nm, 
the average correlation value is 0.74 and for wavelength range of 1,784–2061 nm is 0.68. It has to be noted that 

Figure 7. Estimation maps of clay, silt, and sand obtained by applying block kriging for the Maccarese farmland. The last map represents the USDA Soil Texture 
Classification based on estimation maps.

Figure 8. Endmembers (EMs) collection and position in the multidimensional space for PRISMA (left, a and b) and Sentinel 2 (right, c–f). The circles are to identify 
the position of the EMs and the color of the circles on the scatterplots correspond to the color of the EMs in the spectral graphs (b and d).
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in the wavelength range from 1939 to 2019 nm, CHIME-like FAM1 > 0.4 shows a peak of correlation but in 
PRISMA spectral bands of this range were removed after noisy band filtering (Figure 10).

The negative correlations are probably due to the presence of some dry vegetation laying on the bare soils and to 
the presence of small irrigation channels (width < 30 m), paths and vegetated edges in the field unit. Further, the 

Field thresholds CHIME-like thresholds Sentinel 2-like thresholds

Class Clay Silt Sand FAM1 FAM3 FAM4 FAM1 FAM3 FAM4

Low <30 <20 <30 <04 <0.2 <0.2 <0.3 <0.2 <0.3

Medium 30–40 20–25 30–40 0.4–0.5 0.2–0.35 0.2–0.4 0.3–0.5 0.2–0.4 0.3–0.5

High >40 >25 >40 >0.5 >0.35 >0.4 >0.5 >0.4 >0.5

Table 7 
Thresholds Used for Validation

Figure 9. Summary table of the suitable intervals selected for masking FAMs values in the Maccarese area. In the last column the FAMs are masked on the base of the 
intervals obtained by the validation and represented with the red highlight on the histogram.
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unit is divided into two subareas with different reflectance, as can be seen from all the FAMs 
spatial patterns (Figure 9) (Data Set S2).

4. Discussion
The main goal of the present work was to test the potential of hyperspectral data for the detection 
of topsoil texture properties with linear spectral unmixing models. Soil texture is an important 
property related to physical, chemical and biological soil processes, and the potential of soil 
texture thematic mapping in relation to the development of the Copernicus Land Monitoring 
Service is one of the main goals to be reached with the upcoming hyperspectral Copernicus 
satellite mission (CHIME), a mission that will be capable of imaging agricultural areas glob-
ally and at a regular cadence. Hyperspectral imaging for topsoil properties prediction has very 
limited applications outside research but with the new sensors' generation, it could be a valid 
support for image-based detection.

The analyses presented assume that, for bare soils agricultural units, the physical variability of 
reflectance mixtures captured by an image could depend on (a) the soil moisture and organic 
matter content, that generally determine absorption effects; or (b) the slightly variation of soil 
textures classes distributions within the unit. These statements are based on the idea of having 
homogenous mineralogical composition within single agricultural units because of the continu-
ous plowing that makes soils well mixed.

The use of a image data point model for the EMs estimation based on the PCA to orthogonalize 
bands, allows the estimation of mixtures within pixels using only the mixed data themselves. The 
EMs selection based on the concepts of convex geometry allows the linear mixture problem to be 
treated using the linear inverse theory (Boardman, 1995), and the formal definition of the EMs, 
corresponds to the vertices of a convex set that covers the image data. To further understand the 
validity of this method it is necessary the exploration of other case studies and to test unsuper-
vised methods of EMs selection. The critical step of determining the EMs used as the references 
for the unmixing process is widely discussed in literature for large scale datasets (Veganzones & 
Graña, 2008) but basically the transformation of the image data are the predominant techniques. 
The relationship between spectral responses and the chance of scaling the method to large areas 
could of course be affected by strong non-linearities due to the involvement of multiple factors. 
The retrieval results of this study are in fact, even with good accuracy for some FAM interval, 
constrained by (a) the low variability identified with only two case studies; (b) by the manual 
expert based selection of the EMs; (b) the empirical thresholding of FAMs intervals.

In Braccagni, CHIME-like configuration provided a wider set of validated FAMs than Sentinel 
2-like, and the multispectral resolution resulted accurate only with medium and high silt inter-
vals. In CHIME-like, FAM1 > 0.45 has the greatest overlap with the clay loam class (86%) and 
both FAM1 and FAM3 are validated by high sand class (20%–35%) revealing that the two are 
detecting the relative proportions of silt and clay. Indeed, dark soils, soil moisture content and 
parental material generally contain higher clay and lower sand than soils with light shades, with 
greater presence of sand (Castaldi et al., 2016; Viscarra Rossel et al., 2011, reported that the 
estimate of silt from spectral data is less accurate than that of clay and sand. This is a conse-
quence of its variability, generally much smaller than that of the other two classes. However, they 
suggest that, in a practical situation, silt can better be obtained as a complement to 100 of the 
other soil fractions rather than with an independent estimate. Thus, it must be considered  that 
the Braccagni farmland is characterized by a homogeneous spatial distribution of silt, which 
made it difficult to capture its contribution to the spectral variability of each pixel. Moreover, 
in this area, the best spectral performances of Sentinel 2-like configurations are only for the 
VIS wavelengths (r  =  0.85) where the multispectral has most of the bands and the highest 
spatial resolution. In the SWIR wavelengths instead, average values of correlation coefficient for 
CHIME-like are higher than the Sentinel 2-like (Figure 6) in accordance with Casa et al., 2013; 
Castaldi et al., 2016; Gholizadeh et al., 2018 studies.
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Maccarese farmland was more suited to test the relevance of the SWIR region for soil texture class retrieval 
because of the availability of contemporary acquisitions of images from PRISMA hyperspectral and Sentinel-2 
multispectral sensors. The area, being influenced by coastal sediment transport, is characterized by high percent-
age of sand and the LSMA provided good accuracy with hyperspectral data for 2 FAMs, one related to the medium 
sand class (PA = 66%) and the other to the high silt class (PA = 48.8%) while Sentinel 2 configuration, provided 
accurate results for two FAMs but only for high silt class (PA = 80%) and medium clay class (PA = 62.2%) 
(Table S2 in Supporting Information S1). These results confirm the ability of hyperspectral imaging to identify 
the spatial patterns of fine (silt and clay) and coarse (sand) textures since both sensors show the highest positive 
correlation values for the SWIR wavelengths, but PRISMA performances are higher (r = 0.7) than Sentinel 2 
(r = 0.5) (Figure 9) in this spectral region (>1,300 nm). The evidence of the validity of the spectral – spatial 
processing path identified in the study is also revealed by the patterns identified in Maccarese with the two 
sensors. In Figure 9 and Figure S2 in Supporting Information S1, while PRISMA FAMs identify distributed 
fractional coverage behavior similar to USDA classification, in the Sentinel 2 derived FAMs of the same dates, 
the pattern is striped all through the area. In particular, unless the road that divide the area in two subunits and 
the trees in the southern apex, correctly identified by both sensors, it seems that Sentinel 2 is responding to the 
plowing of the soil instead the hyperspectral is accounting for the spatial pattern of soil properties. The PRISMA 
FAM3 has been interpreted as affected by sparse NPV presence, considering that in July the harvest phases could 
determine the presence of dry-dead vegetation residuals as observed in Pepe et al., 2020.

The initial hypothesis of the presented study was driven by the idea of finding direct relation between the soil 
texture properties in terms of sand, silt and clay abundances and the EMs spectral responses. This should have 
provided a bundle of EMs correlated with the kriging estimation maps. But these analyses (unpublished) didn't 
provide any physical, reliable results. This observation provided the chance of investigating a more powerful 
hypotheses related to the soil classification following a USDA meaning. In fact, the EMs in both sites provided 
a more evident relation with the spatial patterns of USDA maps than with the single textures' components. This 
path of study is more inclusive in the direction of thematic mapping, and it is also of interest for agricultural prac-
titioners who do not need to know the grain size composition of each centimeter of field. Instead, when practicing 
precision farming, they would have major benefit from a thematic product informing about the main texture class 
of each farmland unit. The strength of the study is related to the large amount of validation data for each farmland 
unit supporting the accuracy of the spectral variability retrieval through the LSMA. Each fractional abundance 
map, classified in three intervals of values, is validated trough the confusion matrix with a high number of ground 
truthing samples providing robust levels of reliability.

Figure 10. In red correlations of PRISMA masked-FAM1 > 0.5 and the 141 PRISMA spectral bands (wavelengths); in 
orange correlation of Sentinel 2-like masked-FAM1 > 0.5 and the 12 spectral bands of Sentinel 2.
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This paper confirms that the SWIR spectral range 2,000–2,400 nm is the most relevant part of the spectrum 
for topsoil properties retrieval. One of the issues with hyperspectral satellite sensors is related to the fact that 
the quantitative predictions of soil properties were hampered by a very low SNR ratio in the SWIR region (i.e., 
Hyperion onboard EO1 satellite and CHRIS onboard PROBA satellite). Unfortunately, the sensor's noise gener-
ally increases when increasing the spectral resolution, thus, the advantages of detecting specific narrow bands 
offers the chance to consider a trade-off between a low SNR, especially in the SWIR spectral region (Lobell & 
Asner, 2002) and an improved revisit time, now targeted for CHIME to 10–12.5 days. Given these considerations, 
the improvement of the spectral characteristics of CHIME could address an optimization between the spectral 
ranges of interest and the satellite revisit time.

Lastly, the choice of targeting the retrieval to the widely used USDA Topsoil Texture classification for future 
developments of thematic maps could represent a valid contribution to enrich the Copernicus Land Monitoring 
Service with a collection of operational products. The topsoil texture is a geophysical variable at the interface 
between Land Cover and Land Use, then perfectly matching the objectives of the EAGLE (EIONET Action 
Group on Land monitoring in Europe) data model. Land cover and land use are often combined in practical 
applications (e.g., croplands) and the ambition of the EAGLE model is to build a framework for the integration of 
land cover and land use (LC/LU) information from various data sets. In this way, the operational services could 
feed strategies and directives towards more sustainable agricultural practices in support to the guidelines of good 
agricultural practices provided by the FAO and the objectives of the CAP.

5. Conclusions
This study explores the potential of hyperspectral data for topsoil texture classes detection with linear spectral 
mixture models. The work develops a mostly image-based topsoil classification model considering how costly 
field sampling for validation and calibration of biophysical retrieval models can be. The strategy of working with 
the relative proportions of coarse and fine textures to target the detection of USDA Soil Texture Classification 
proved to be feasible.

The two farmland units have been analyzed with hyperspectral and multispectral configurations and the 
second is able to provide a reduced number of validated fractional abundance intervals in both sites. The 
discrimination of specific spatial patterns in relation to the spectral variability across pixels was obtained 
thanks to the SWIR of hyperspectral CHIME-like and PRISMA configuration. The use of different hyper-
spectral data provided similar results in the two areas with a set of fractional abundances having the highest 
spatial agreement with the USDA class cover and highlighting spatial patterns unrevealed through an identi-
cal processing path with multispectral. These fractional abundances mostly overlap the USDA clay loam soil 
texture classes.

These results, leverage the opportunity of extending the processing chain to a larger number of case studies and to 
test automatic method for collecting EMs, to better understand the physical relation between the spectral reflec-
tance captured by the hyperspectral sensor and the spatial patterns of soil texture classes.

Regarding the future of satellite hyperspectral data, sub-pixel analyses provide a fruitful environment for creating 
soil texture classifications, cover types and cover mixtures. Nowadays the method could be of interest to support 
the creation of auxiliary layers and masks to be added in the Level 2 of future CHIME data (e.g., masks of bare 
soils and fractional abundance of the associated spectral variability), facilitating the use of labeled techniques like 
machine learning and artificial intelligence algorithms to retrieve soil textures.

Data Availability Statement
The image processing is from ENVI® (version 5.6.3) software and the data set is available at: Valentini (2023). 
Our analyses are based on the use of different hyperspectral data and the study of the synergies among differ-
ent sensors, namely hyperspectral satellite data from the PRISMA mission (ASI), multispectral satellite data 
from the Sentinel 2 mission (ESA) and hyperspectral airborne data from AVIRIS-NG (NASA) resampled to 
CHIME and Sentinel 2 spatial and spectral features. Field campaigns datasets are available for the two croplands 
(Valentini, 2023).
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