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Abstract 29 

 30 

Physiologically based demographic models are important tools for the development of 31 

sustainable pest management as they can realistically describe the spatio-temporal dynamics of 32 

population abundance as function of environmental forcing variables, e.g. temperature, and 33 

resource availability. The physiological based model presented here is based on a stochastic 34 

demographic model for a stage-structured population that has application to a wide range of 35 

species across different taxa. The species life-history strategies are described in terms of a set of 36 

biodemographic rate functions dependent from the biological characteristics of the species and 37 

their environmental driver variables. Model application required parameter estimation of the 38 

biodemographic rate functions at two levels: assessing physiological responses at the per capita  39 

level and/or using population time series data for rate functions estimation. To explore the 40 

usefulness of the modelling framework in pest management, we consider the case study of the 41 

grape berry moth Lobesia botrana, a major pest in European vineyard. Most of the model 42 
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parameters were estimated from data in the literature. An unpublished dataset of population 43 

dynamics collected in a vineyard in the Veneto region (Italy) over three years was used to estimate 44 

the mortality function. Model validation was performed with a set of independent data. 45 

Model simulations provided realistic trajectories of population dynamics obtained with a limited 46 

dataset of initial conditions. The suitability of the model as a tool for decision support for grape 47 

berry moth management is discussed.  48 

 49 

 50 

Keywords: population dynamics, stage-structured population, physiologically based 51 

demographic model, Lobesia botrana, integrated pest management 52 

 53 

 54 

1. Introduction 55 

 56 

Ecological disruption due to pest control, agronomic practices and climate change affects all 57 

aspects of system sustainability, including farmer health and food safety, and ecologically based 58 

pest management methods must be developed to manage these systems sustainably. Considerable 59 

progress has accrued in the area of pesticide efficacy, application techniques, and related policy 60 

(e.g., Directive 2009/128/EC on the sustainable use of pesticides in Europe). However, the crucial 61 

unresolved issue remains of how to define sustainable pest management and how to implement 62 

it in time and space. Key to correcting this lacuna at the local, regional and national level are 63 

decision support tools based on pest population dynamics and trophic interaction models 64 

describing the dynamics in the agro-ecosystems, the procedures for scenario assessment, and 65 

knowledge-based decision making. Considerable progress has been made in this area, but the 66 

discussion on the approaches and the technological solutions to be used for the development of 67 

decision support tools requires further clarity. 68 

 69 

Since the 1970s, multidisciplinary research involving biologists, ecologists, entomologists and 70 

plant pathologists, mathematicians and meteorologists has developed useful tools to meet some 71 

of these multiple objectives aided in the United States by the NSF/EPA/USDA funded IPM 72 

projects (Norton and Holling, 1977, pp. 253-316). Getz and Gutierrez (1982) reviewed the origins 73 

of systems analysis in crop protection and integrated pest management (CP/IPM) that integrated 74 

developments in physiology (de Wit and Goudriaan, 1974), population dynamics (e.g., Gilbert 75 

and Gutierrez, 1973; Gutierrez et al., 1977; Wang et al., 1977) and economics (Regev et al., 76 
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1976), and that had later application to a wide range of crop systems (e.g., alfalfa, cotton, cassava, 77 

olive, grape). Innovative elements of this work led to the development of an integrated approach 78 

to support sustainable integrated pest management (IPM) programs, but despite wide application 79 

the methods remain largely underutilized by the vast majority of agricultural researchers and 80 

extension personnel, and in most cases decisions continue to be taken without the support of 81 

quantitative tools. 82 

 83 

Mechanistic approaches based on weather-driven ecological models were used to evaluate the 84 

spatio-temporal dynamics of pest populations as forced by the crucial driving role on pest 85 

population dynamics played by meteo-climatic features as well as other physical-biological 86 

characteristics of the agricultural landscape (Gutierrez, 1996). Mechanistic models for population 87 

dynamics based on physiological responses at individual level to environmental driving variables 88 

have been proposed since the 1970’s (Gutierrez, 1996; Gutierrez et al., 1975; McDonald et al., 89 

1989; Metz and Diekmann, 1986; Wang et al., 1977; de Wit and Goudriaan, 1974). These models 90 

have been defined as physiologically based demographic models (PBDMs) (Gutierrez et al., 91 

2010) and offer several advantages for developing sustainable crop production systems (Gilioli 92 

and Mariani, 2011). For example 93 

(i) they account for the non-linear relationships between environmental forcing variables (e.g., 94 

temperature) and the biological processes enabling the population dynamics to be described 95 

realistically; 96 

(ii) they enable the evaluation of the effects of biological and ecological variability on population 97 

dynamics, especially in complex systems over geographic space and time required for area-wide 98 

pest management (Gutierrez et al., 2012); 99 

(iii) they capture within the same modelling framework processes at different trophic levels and 100 

the trophic interactions and their consequences in simple trophic web (Gutierrez and 101 

Baumgaertner, 1984); 102 

(iv) they allow fine-scale predictions of the phenology and population dynamics at different 103 

spatial scales using ecologically meaningful state variables directly related to the pest impact on  104 

plants density and biomass fundamental for decision making in pest control and management of 105 

invasive species (Gutierrez and Ponti, 2013; Pasquali et al., 2015); 106 

(v) they allow the exploration of complex scenarios in which no simple (i.e., linear) conclusions 107 

can be drawn, for example evaluating the effects of management options based on different 108 

techniques and tactic-strategy of implementation at different scales, or the large scale impact of 109 
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drivers of ecosystem change (Gilioli and Mariani, 2011; Gilioli et al., 2014; Gutierrez and Ponti, 110 

2013;). 111 

 112 

These characteristics make PBDMs particularly useful for the development of decision support 113 

systems in IPM. In particular, PBDMs are suitable for management problems characterized by 114 

heterogeneity and complexity related to the interaction among processes affecting the interactions 115 

of systems components (e.g. plant, pest, as affected by the biotic and abiotic environment), at 116 

different spatial scales (micro, meso, and macro-scales), requiring different information for 117 

decision making at tactical, strategic and policy levels. 118 

 119 

The modelling framework reported here is a particularization, for a suitable choice of the 120 

biodemographic functions, of the most general mathematical framework presented in Buffoni 121 

and Pasquali (2007) that allows to obtain the distribution of individuals in an age-stage structured 122 

population in time and physiological age. Buffoni and Pasquali (2007) used Eulerian formalism 123 

based on the Fokker-Planck (or forward Kolmogorov) equation (Gardiner, 1985, p.117) to 124 

formulate a nonlinear stochastic model to describe the population dynamics of a species 125 

characterized by either a continuous size structure or a discontinuous stage structure that includes 126 

the dispersion effects of the individuals during the development. Numerical approximation and 127 

analysis of existence and stability of equilibrium states of the stochastic Eulerian model were 128 

discussed by Buffoni and Pasquali (2007). Properties and advantages of the forward Kolmogorov 129 

model compared with other age structured models are illustrated in Buffoni et al. (1990, 1996) 130 

and Di Cola et al. (1998, 1999). This modelling framework can be used to model a population 131 

characterized by a discontinuous stage structure with continuous time- and age-structure within 132 

a stage with the biodemographic functions dependent on time through temperature. Specifically, 133 

the rate functions for fecundity and mortality are driven by biotic variables. The mathematical 134 

and biological characteristics of this modelling framework fall under the ambit of the PBDM. 135 

 136 

Here we develop a model to simulate the population dynamics of the grape berry moth (Lobesia 137 

botrana Den. & Schiff.) (Lepidoptera Tortricidae), the most important pest of grape (Vitis 138 

vinifera L.) in the Mediterranean basin (CABI, 2014). The pest attacks more than 27 families of 139 

berry producing plants, but despite its wide host range, it causes economic damage only to 140 

grapevine (CABI, 2014). The original geographical distribution follows a clear Paleartic pattern 141 

and currently includes Southern and Middle Europe, Northern and Western Africa, Middle East, 142 

West Asia (CABI, 2014; Maher and Thiéry, 2006; Thiéry and Moreau, 2005; Venette et al., 143 



5 

 

2003), South America and localized in Northern California (Varela et al., 2010) before its 144 

eradication. L. botrana is regarded as a potentially serious pest on a worldwide scale for all the 145 

vine-growing areas that are presently unaffected (CABI, 2014).  146 

 147 

Demographic modelling approaches for L. botrana aiming at tactical decision making have 148 

lacked a fully mechanistic description of the demographic process (Schmidt et al., 2001, 2003). 149 

Most prior models for L. botrana used to support IPM practices have been phenological models 150 

(Baumgärtner and Baronio, 1988; Hardman, 2012) that predict the time of appearance of 151 

developmental stages and are used to facilitate timing of sampling and control operations. Even 152 

if temperature dependent development rate and stage-age structure are included in such 153 

phenological models, they do not produce realistic projections of L. botrana population 154 

dynamics, that are indispensable for pest control decision making based threshold levels of stage-155 

specific abundance (Hardman, 2012). Recently, analytical models for L. botrana population 156 

dynamics have been developed but are ill suited for tactical decision making, but may provide 157 

strategic evaluation of control measures (Ainseba et al., 2011; Picart and Milner, 2014). Only 158 

Gutierrez et al. (2012) developed a fully mechanistic, physiologically based description of the 159 

dynamics of grapevine and of L. botrana population dynamics. This model used a distributed 160 

maturation time model (Vansickle, 1977) and was designed to simulate the dynamics and 161 

potential geographic distribution and relative abundance of the moth in California, the continental 162 

U.S.A and Mexico. It also served as the basis for a strategic analysis of the timing of mating 163 

disruption pheromone for pest control. 164 

In contrast to Gutierrez et al. (2012), the goal of our model development, parameterization and 165 

model output is for use in field decision support for IPM practice implementation. Our modelling 166 

framework focuses on tactical application of field-based PBDM applications that require field 167 

calibration, validation before they are used. Estimation of the biodemographic functions using a 168 

bottom-up approach are based on literature data on the life-history biology of L. botrana, 169 

summarized in Gutierrez et al. (2012). The simplifying assumption of this and prior models is the 170 

parameters of the biodemographic functions are time-invariant. In this paper we estimate the 171 

mortality rate using unpublished field data on the dynamics of L. botrana life stages, collected at 172 

Colognola ai Colli (Veneto region, Italy) during the years 2008, 2009, 2011. A top-down 173 

approach is used to estimate the term of the mortality rate functions that depends on 174 

environmental factors other than temperature, including plant resources shortfall and natural 175 

enemies of the grape berry moth. The calibrated model was validated using an independent 176 

dataset of L. botrana collected at the same location during two different years. The utility of the 177 
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calibrated and validated model for tactical field-based decision support of grape berry moth 178 

management is discussed.  179 

 180 

 181 

2. Methods 182 

 183 

2.1. Population dynamics model 184 

 185 

The stochastic demographic model is based on a system of partial differential equations, that 186 

allows obtaining the temporal dynamics of the stage-structured population and their distribution 187 

on physiological age within each stage. Consider a stage-structured population composed of � 188 

stages, with stages 1 to � − 1 being immature stages, and � being the reproductive stage. In the 189 

model, � denotes chronological time while � represents the physiological age (i.e., the 190 

developmental index) indicating development over time (see, Buffoni and Pasquali, 2007, 2010 191 

and 2013, or Di Cola et al., 1999). Let 192 

 193 

����, �
�� = the number of individuals in stage  with age in ��, � + ��
,  = 1, 2, … , �. 194 

 195 

A stochastic population dynamic model based on the forward Kolmogorov or Fokker-Planck 196 

equations (Gardiner, 1985, p.117), is used that simulates the variability of development rate 197 

among individuals (Buffoni and Pasquali, 2007) 198 

 199 

���
�� + ��� �����
�� − �� ���

�� � + ����
�� = 0,    � > ��, � ∈ �0,1
,    (1) 200 

 �����
����, �
 − �� ���
�� �� � = !���
,        (2) 201 

�−�� ���
�� �� " = 0,          (3) 202 

 �����, �
 = �#���
,          (4) 203 

 204 

where  = 1, 2, … , �, ����
 and ����
 are the stage specific development and mortality rates, 205 

respectively, that are assumed independent of age �, the �#���
 are the initial distributions, while 206 

the �� are the diffusion coefficients, that are assumed time independent. The flux !���
 in the 207 

boundary condition (2) are described as follows. !"��
 is the egg production flux and is given by 208 

 209 
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 !"��
 = �$��
 % &��, �
�$��, �
"� ��        (5) 210 

 211 

where �$��
&��, �
 is the specific fertility rate at time � and age �. In particular, we consider 212 

 213 �$��
&��, �
 = '��
(��
 eggs/adults with age in ��, � + ��
/time unit  (6) 214 

 215 

where '��
 takes into account the effect of diet and temperature, and (��
 is the maximum age 216 

specific fertility profile.  217 

 218 

!���
, when  > 1, are the individual fluxes from stage  − 1 to stage  and are given by 219 

 220 

!���
 = ��7"��
��7"��, �
,         > 1.       (7) 221 

 222 

The boundary condition at � = 0 assigns the input flux into stage , while the boundary condition 223 

at � = 1 means that the output flux from stage  is due only to the advective component 224 

����
����, 1
 (Buffoni and Pasquali, 2007). 225 

 226 

The functions ����, �
 allow to obtain the number of individuals in stage  at time �: 227 

 228 

9���
 = % ����, �
��."�          (8) 229 

 230 

 231 

2.2. The biodemographic functions 232 

 233 

The PBDMs approach requires parameterization of basic bio-demographic rate functions, for 234 

development, fecundity and mortality. These functions are common to poikilotherm organisms 235 

across many different taxa, with the physiological responses to environmental forcing variables 236 

being basically the same (e.g., Gutierrez, 1996). Temperature is considered the most important 237 

driving variable in poikilotherm and is introduced in the dynamic models as an independent 238 

variable in the rate functions. The dependence of the rate functions on other environmental 239 

variables, including resources is straightforward (Gutierrez, 1996). 240 

 241 

 242 
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Development rate function 243 

 244 

The development rate depends on environmental temperature. We use the development rate 245 

Lactin function (Lactin et al., 1995) 246 

 247 

��:;��
< = =�max ?0, @A�B − @A�BC7DCEDF� − G�H     (9) 248 

 249 

though other functional forms for the development rate function, similar to the Lactin function, 250 

can be used (e.g., see Ainseba et al., 2011, and the review by Kontodimas et al., 2004). 251 

In formula (9), ; = ;��
 is the temperature at time �, ;I is the lethal maximum temperature, J� 252 

is the slope parameter describing the acceleration of the function from the low temperature 253 

threshold to the optimal temperature, &� is the width of the high temperature decline zone, G� is 254 

the asymptote to which the function tends at low temperatures, and =� is a coefficient of 255 

amplification of the curve.  256 

 257 

Fecundity rate function 258 

 259 

Egg production is dependent on the physiological age of the adult, the phenological stage of the 260 

plant, and the temperature. We refer to Gutierrez et al. (2012) for the functional form of the term 261 (��
 in equation (6), but here we consider the physiological age as argument instead of the 262 

chronological age 263 

 264 

(��
 = �K� LM�N�7O
P�QRES
 , 0T,          (10) 265 

 266 

where =, U, V, W, are parameters  to be estimated. 267 

The term '��
 in equation (6) depends on the phenological stage of the plant X��
 (which is a 268 

proxy for the plant resources) and on temperature, and is expressed as the product  269 

 270 

'��
 = '�:X��
<K� Y;#��
Z         (11) 271 

 272 

where '�:X��
< is a discrete function defined in the sequel, and the concave function 273 

 274 
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K�:;#< = 1 − �B#7B#[7B#\B#\ �]
.         (12) 275 

 276 

captures the effects of temperature with ;#^ the minimum temperature of reproduction and ;#� the 277 

half-width of the temperature interval of reproduction (Gutierrez et al., 2012). 278 

In (11), ;#��
 is the average temperature over a time period _� − `�X
, �a, where `�X
 is a suitable 279 

time interval, that depends on the phenological stage of the plant and is used to characterize the 280 

effect of the temperature on the fecundity of adult females. 281 

 282 

Mortality rate function 283 

 284 

The mortality rate function is composed of intrinsic temperature-dependent (abiotic) mortality 285 

and a stage- and generation-dependent extrinsic mortality likely related to external natural control 286 

factors. 287 

Following Briolini et al. (1997) the average stage proportional mortality as function of 288 

temperature is defined by 289 

 290 

b��;
 = cK� dB7Be\�
Be\� f + g              for ;k^� ≤ ; ≤ ;km�
0.85 otherwise      (13) 291 

 292 

where g and K� are constants, and 293 

 294 

;k�� = ;k^� + ;km�
2 ,   K� = �0.85 − g
 p;km�

;k�� − 1q7]. 295 

 296 

Then, from (13) and considering the stage-specific development rate function (9), we define the 297 

total stage-specific mortality rate ���;
 as 298 

 299 

���;
 =
⎩⎪⎨
⎪⎧ −���;
ln Y1 − b��;
Z + v�:w��
< for ; ∈ x;k^� , ;km� y

�−��:;k^� <ln Y1 − b��;
Z + v�:w��
<� �:;k^� − ;<] + 1� for ; < ;k^�
�−��:;km� <ln Y1 − b��;
Z + v�:w��
<� �:; − ;km� <] + 1� for ; > ;km�

(14) 300 

 301 
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where  = 1, 2, … , �, and the values ;k^�  and ;km �  depend on the interval of positivity of the 302 

development function. The term −���;
ln Y1 − b��;
Z is the temperature dependent intrinsic 303 

mortality (i.e., abiotic) and the term v� is an extrinsic mortality term due to natural control factors 304 

and it depends on the stage and on the generation w��
. Where no literature data are available to 305 

determine the values v��w
, they are estimated, for different stages and generations, following the 306 

procedure outlined in section 2.3.  307 

 308 

2.3. Parameter estimation for Lobesia botrana 309 

 310 

L. botrana has a stage structured population, with stages 1 to 3 being the immature stages (i.e., 311 

egg, larva and pupa), while stage 4 is the reproductive stage (adult). Estimation of stage-specific 312 

biodemographic functions for development, fecundity and intrinsic mortality rates rely on 313 

bottom-up experimental data, while top-down field population data must be used to estimate 314 

mortality rates due to natural enemies. Development periods, including the adult life span, and 315 

fecundity rate were derived from laboratory experimental data and published in Baumgärtner and 316 

Baronio (1988), Brière and Pracros (1998), Briolini et al. (1997), Gabel (1981), Gutierrez et al. 317 

(2012), and Thiéry and Moreau (2005).  318 

 319 

Development rate function. Parameters of the development rate function are estimated by means 320 

of a least square method using the dataset reported in Brière and Pracros (1998) and in 321 

Baumgärtner and Baronio (1988). The values of the parameters J� , &�, G�, =�, for all the stages, 322 

are given in Table 1. The development rate function for the adults is supposed to be equal to the 323 

one estimated for the pupae. In all the cases ;I = 36.  324 

 325 

 326 

 J� &� G� =� 
 = 1 0.01 0.8051 1.0904 1 

 = 2 0.003 0.662 1.0281 1 

 = 3 0.0076 1.7099 1.0929 1.1 

 = 4 0.0076 1.7099 1.0929 1.1 

 327 

Table 1. Parameters of the stage-specific development rate function (8) for the four stages of L. 328 

botrana: eggs ( = 1), larvae ( = 2), pupae ( = 3), and adults ( = 4). 329 
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 330 

The estimated development rate functions (1/days) for the four stages as function of the 331 

temperature (°C) are represented in Figure 1. 332 

 333 

 334 

 335 

Figure 1. Development rate (1/day) on temperature (°C) for the four stages (eggs, larvae, pupae, 336 

adults) of the grape berry moth L. botrana. 337 

 338 

 339 

Fecundity rate function. As in Gutierrez et al. (2012), the fecundity rate is considered to be 340 

dependent from the phenological stage of the plant, the temperature, and the physiological age of 341 

the adult. The parameters appearing in function (��
 in (10) are obtained fitting the 342 

corresponding oviposition profile, in Gutierrez et al. (2012), duly converted as function of 343 

physiological age (see also Baumgärtner and Baronio, 1988), and their values are 344 

 345 

= = 1.4175,   U = 380,   V = 16,   W = 1.025. 346 

 347 

The values appearing in function K�:;#< in (12) are (see Gutierrez et al., 2012) 348 

 349 

;#^ = 17,     ;#� = 7.5. 350 
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Function '��X
 depends on the phenological age of the plant X expressed in terms of the BBCH-351 

scale (Lorenz et al., 1994). The values for '��X
 are given in Gutierrez et al. (2012) and reported 352 

in Table 2. More precisely, '��X
 is a step function with steps at the BBCH stages indicated in 353 

Table 2.  354 

 355 

Plant stage � '��X
 

@��� (@�K�@7" �K�7"  
Inflorescence  BBCH 53 0.31 

Green berries  BBCH 71 0.48 

Maturing fruits  BBCH 81 1 

 356 

Table 2. Values of the step function '��X
, in equation (11), with steps in three plant 357 

phenological stages, following the BBCH-scale, for the grape berry moth L. botrana.  358 

 359 

 360 

The function for fecundity '��
(��
, for '��X
 = 1, is illustrated in Figure 2.  361 

 362 

 363 

 364 

Figure 2. Fecundity rate function (eggs female7" day7") on temperature (°C) and physiological 365 

age (dimensionless) for adults of the grape berry moth L. botrana, for '��X
 = 1. 366 
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Intrinsic mortality rate function. The mortality rate function was estimated using data in Briolini 367 

et al. (1997) and Gutierrez et al. (2012). Based on the development functions in Fig. 1, the values 368 

of the temperatures ;k^�  and ;km�  appearing in formulae (13) and (14) are given in Table 3. 369 

Parameter ε = 0.1. 370 

 371 

  = 1  = 2  = 3  = 4 

;k^�  8.8 9.1 11.73 11.73 

;km�  34.79 34.27 32.67 32.67 

 372 

Table 3. Values of the temperatures ;k^�  and ;km�  in equation (9) for the different stages of the 373 

grape berry moth L. botrana: eggs ( = 1), larvae ( = 2), pupae ( = 3), adults ( = 4). 374 

 375 

The average stage-specific proportional mortality is represented in Figure 3 as function of 376 

temperature (see also Gutierrez et al., 2012). It is obtained from equation (13) considering as 377 

temperature limits the values indicated in Table 3. 378 

 379 

 380 

 381 

 382 

Figure 3. Proportion of individuals dying as function of temperature (°C) for all the stages (eggs, 383 

larvae, pupae, adults) of the grape berry moth L. botrana. 384 
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 385 

Extrinsic mortality rate function. The extrinsic mortality component that account for the effect 386 

of plant resource shortfalls and the action of natural enemies was estimated from field data using 387 

the following procedure making the simplified assumption that the effects of these factors are 388 

time and space independent. However, because of continuous reproduction and the overlapping 389 

of generations of L. botrana, we cannot use cohort-based data for the estimation of the extrinsic 390 

mortality, and hence the mortality rates must be estimated from the population dynamics data 391 

using simulation modelling (Manly, 1989). 392 

Generation w��
, appearing in formula (13), can assume four values (w��
 = 1,2,3,4) because 4 393 

generations may occur per year in vineyards in Southern Europe (Cozzi et al., 2006; Marchesini 394 

and Dalla Montà, 2004; Pavan et al., 2010).  395 

A least square estimation method, based on the demographic model presented above, was used 396 

to estimate the mortality terms v�,   = 1, 2, 3, 4 in (14) using data on the field abundance for the 397 

stages. In particular, the sum of the square differences between simulated and observed 398 

abundance data for all the four stages over all the years, was minimized to estimate the v�. 399 

Specifically, denoting by 9��,�:��< the number of individuals collected in stage  at time ��, during 400 

year �, we minimize the sum of squares 401 

 402 

 ∑ ∑ ∑ x9�,�:��< − 9��,�:��<y]I�� "�� "�� "         (15) 403 

 404 

with respect to the parameters v��w
,  = 1, 2, 3, 4, w = 1, 2, 3, 4, where �� is the number of 405 

observations in year �, and 9�,�:��< is the simulated abundance of individuals in stage  at time 406 

��, during year �, calculated using formula (8) duly discretized in time and space (Buffoni and 407 

Pasquali, 2007) using a time step of one hour. Parameter � denotes the number of years 408 

considered for model calibration. 409 

Because the dynamics of the different stages are linked through equations (1) - (4), it is not 410 

necessary to collect data for all the stages to estimate stage specific parameters v�,   = 1, 2, 3, 4. 411 

If population data are not available for some stages, the procedure nevertheless applies. Once the 412 

v� have been estimated, they are introduced in the mortality function, and used to simulate the 413 

dynamics for years different from those used for calibration phase. The comparison of model 414 

predictions to the independent data is a measure of model validation success. 415 

 416 

 417 
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2.4. Data on population dynamics 418 

 419 

Time series data on the population dynamics and abundance of all the biological stages of L. 420 

botrana were not available in literature, and hence an unpublished time series data of population 421 

dynamics of the grape berry moth collected in a vineyard located in Colognola ai Colli, a hilly 422 

region in North-East of Italy during the period 2008-2012 of the late cultivar Garganega were 423 

used. To keep the infestation level high and to minimize the impact on the moth population 424 

dynamics, the experimental field was not treated with insecticides during the five years survey. 425 

Adult males were sampled weekly using pheromone baited traps (Traptest Isagro) from the 426 

beginning of April up to the end of the flights in November. Immature stages, eggs, larvae and 427 

pupae, were counted on samples of 100 bunches using the same sampling interval over the same 428 

period as for the adults. Only to estimate egg densities during the first generation was removal of 429 

the plant material required for observation with a stereo-microscope. During the remaining part 430 

of the survey, the counts were made in the field. Meteorological data are collected by a 431 

meteorological station placed nearby the vineyard. 432 

 433 

 434 

3. Results 435 

 436 

Decision making in IPM is often based on thresholds of pest abundance based on field sampling 437 

or in the tactical use of demographic model projection. The model includes estimates of intrinsic 438 

sources of mortality based on laboratory data (see above), but to simulate the field dynamics of 439 

L. botrana during the entire season, we must estimate the extrinsic mortality rate v�  due to the 440 

action of natural enemies. We do this by minimizing the difference between the observed field 441 

dynamics data and the predictions of the model.  442 

To run the model, we must know population densities at the beginning of the season to drive the 443 

simulation during the entire growing season, as no other information on the pest abundance is 444 

provided. In our study the number of adult catches per trap per week recorded until the first larvae 445 

of the first generation are observed were used as the initial condition for the model. To estimates 446 

the v� we used the field data collected at Colognola ai Colli for years 2008, 2009, and 2011 447 

keeping all other model parameters fixed (i.e., model calibration). The data for 2010 and 2012 448 

were used to test the model (validate). 449 

Hourly temperature data are used as a driver environmental variable for model simulation. 450 

Temperatures during the interval `�X
, considered equal to 10 days, appearing in the fecundity 451 
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function (section 2.2), was used to characterize the temperatures influencing the status of adult 452 

females, during all the plant phenological stages X. Taking the values of the diffusion coefficients 453 

in equations (1) - (3), �� = 0.0001,  = 1, 2, 3, 4, the least square minimization method outlined 454 

in section 2.3, for the years 2008, 2009, 2011, gave the estimates for the v� reported in Table 4. 455 

The dynamics of all the immature stages, obtained for the estimated parameters, are represented 456 

in Figure 4 for the year 2008, 2009, and 2011. 457 

 458 

� ����
 ����
 ����
 ����
 

1 - - - 0 

2 0 0.0489 0 0 

3 0.198 0 0.0486 0.187 

4 0.216 0 0 0.00753 

 459 

Table 4. Values of the extrinsic mortality term v� for different stages, eggs ( = 1), larvae ( =460 

2), pupae ( = 3), adults ( = 4), and different generation w (w = 1,2,3,4) of L. botrana, 461 

estimated applying the method described in Section 2.3, for the years 2008, 2009 and 2011. 462 

 463 

 464 

100 150 200 250

n
. 
o
f 
e
g
g
s

0

100

200

300

100 150 200 250

n
. 
o
f 
la

rv
a
e

0

50

100

150
2008

100 150 200 250

n
. 
o
f 
p
u
p
a
e

0

10

20

30

40

100 150 200 250

n
. 
o
f 
e
g
g
s

0

200

400

600

100 150 200 250

n
. 
o
f 
la

rv
a
e

0

100

200

300
2009

100 150 200 250

n
. 
o
f 
p
u
p
a
e

0

10

20

30

40

50

time (days)

100 150 200 250

n
. 
o
f 
e
g
g
s

0

50

100

150

200

time (days)

100 150 200 250

n
. 
o
f 
la

rv
a
e

0

20

40

2011

time (days)

100 150 200 250

n
. 
o
f 
p
u
p
a
e

0

5

10



17 

 

 465 

Figure 4. Sampled and simulated trajectories of population dynamics of L. botrana for the site 466 

Colognola ai Colli obtained in model calibration in the years 2008 (first row), 2009 (second row) 467 

and 2011 (third row). In the simulations the abundance of the different immature stages (number 468 

of eggs, larvae, pupae per 100 grapes) is obtained substituting the values of the extrinsic mortality 469 

term of Table 4 in the mortality rate function, and using the dataset of temperatures available. 470 

Continuous line: simulated trajectory, dashed line: trajectory connecting sampled data (asterisks). 471 

 472 

The simulated trajectories satisfactory fit the field data, despite an unknown sampling error that 473 

could not be estimated. The simulated phenology of the pest accords well to the field data. In the 474 

study site a partial fourth generation is predicted by the model as observed in the field data. This 475 

phenology confirms that the grape berry moth has a fourth generation on grape as observed in 476 

Northern Italy (Marchesini and Dalla Montà, 2004), and in the South of Spain (Del Tío et al., 477 

2001; Martín-Vertedor et al., 2010). Most larvae and all the pupae were in the grape bunches and 478 

were removed by the harvest. 479 

In some cases, the simulated population abundance approximates well the observed abundance, 480 

in other cases  the model overestimates the eggs and underestimates the larvae.  481 

Model output can also be evaluated in terms of the information it provides for IPM decision 482 

making. For example, using an action threshold for the second generation of 15 larvae per 100 483 

berries bunches (CABI, 2014; Pavan and Sbrissa, 1997) the model suggests control intervention 484 

in all three years, in line with the observed larval abundance. 485 

 486 

We note that all the immature stages were considered in parameter estimation with the model 487 

attempting a best fit to all stages. It can be reasonably assumed that reliability in the sampled data 488 

is different for the three stages, and this could explain in part the difference between simulated 489 

and field dynamics. Possible effects of sampling errors are evident for example in 2008 (Figure 490 

4) where inconsistencies between larval abundance and the recorded number of eggs can be 491 

apparent, even when considering the different duration of the stages. A possibility to overcome 492 

this problem is to consider only the abundance of one stage or few stages for the estimation 493 

method presented in subsection 2.3, improving the fit of the selected stages. For example, the 494 

most dangerous stages for the grapevine, the larvae, can be chosen.  495 

To validate the model the estimated values for parameters v�,   = 1, 2, 3, 4 (Table 4) are 496 

substituted in the demographic model and used to simulate the dynamics of L. botrana for the 497 

years 2010 and 2012. The trajectories obtained using the estimated parameters of Table 4 give a 498 
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good approximation of the behavior of field data (Figure 5), even if some problems of 499 

inconsistency between the sampled number of eggs and larvae are also here evident. For example, 500 

the number of eggs of the second generation is smaller than the number of larvae of the same 501 

generation.  502 

The quality of fit in both the calibration and validation phases are about the same, and suggests 503 

that the estimated parameters v� are valid for the whole sampling period 2008-2012, but the 504 

assumption of constant parameters should be carefully investigated. 505 

 506 

 507 

 508 

Figure 5. Sampled and simulated trajectories of population dynamics of L. botrana for the site 509 

Colognola ai Colli obtained in model validation in the years 2010 (first row) and 2012 (second 510 

row). In the simulations the abundance of the different immature stages (number of eggs, larvae, 511 

pupae per 100 grapes) is obtained substituting the values of the extrinsic mortality term of Table 512 

4 in the mortality rate function, and using the dataset of temperatures available. Continuous line: 513 

simulated trajectory, dashed line: trajectory connecting sampled data (asterisks). 514 

 515 

 516 

4. Discussion and conclusions 517 

 518 

The modelling framework here presented is sufficiently general to model many pest species, both 519 

in terms of stage structure and life history strategies. The model allows considering different stage 520 

partitions of the population depending on the available information on the pest biology and 521 
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dynamics. In the application to L. botrana we considered four stages: eggs, larvae, pupae and 522 

adults, but a more finer scale partition of the larval stages could be considered. In this case a 523 

greater effort in data collection is required that may not yield a real marked improvement in model 524 

performance. 525 

High flexibility is also allowed in the characterization of the life history strategies. This allows 526 

suitable definition of the biodemographic functions and their dependence on intrinsic (e.g., 527 

physiological age) and extrinsic (i.e., environmental) biotic and abiotic driving variables. As 528 

applied to L. botrana, the development rate functions depend only on the temperature and the 529 

biological stage. The fecundity rate function depends on the temperature, the physiological age 530 

and the phenology of the host plant, that is a proxy for the type and amount of resource 531 

availability. The mortality rate function has two components. The first is a stage-specific 532 

mortality rate as a function of the development rate and the temperature. The second is a stage-533 

specific mortality component that estimates mortality due to the action of natural control agents. 534 

Because is known that the activities of natural enemies (Marchesini and Dalla Montà, 1994 and 535 

1998), as well as the availability of plant resources (Gutierrez, 2012) vary along the plant 536 

vegetation period and the generation of the pest, the extrinsic mortality rate is also considered to 537 

be dependent from the grape berry moth generation. 538 

Estimation of life history components depending on extrinsic variables is critical for the 539 

development of pest models, and for species like L. botrana that have continuous reproduction 540 

and partially overlapping generations, simulation approaches are required to estimate them 541 

(Manly, 1989). In the case of L. botrana the availability of a multi-annual dataset on population 542 

dynamics allowed estimating the extrinsic mortality component via a least squares method that 543 

minimized the difference between simulated and observed abundance. We note that the method 544 

based on the use of model simulation and time series of population abundance can be extended 545 

to the estimation of parameters of other biodemographic functions (e.g., fecundity) that are 546 

known to be dependent on extrinsic variables not easily assessable in laboratory experiments 547 

(Gilioli and Pasquali, 2007).  548 

The initial conditions of the model for each year of the calibration and validation runs were given 549 

by a limited dataset. Therefore, the modelling approach proposed here attempt to solves an 550 

important issue of obtaining reliable projections of population dynamics limiting the sampling 551 

costs using traps for adult moths. In the case study of L. botrana, once the mortality function is 552 

estimated, the model predicts reliable phenology and reasonable dynamics of the abundance of 553 

all the stages using environmental temperatures as drivers and the recorded abundance of adults 554 

at the beginning of the flight period until the presence of the first larvae. This is similar to the 555 
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sampling effort required for phenological models with the added advantages of predicting the 556 

density of damaging stages with the capacity to predict control intervention when economic 557 

threshold levels have been reached. The biodemographic processes summarized in the model 558 

functions allows mechanistic translation of adult flight data on the first generation of adult into a 559 

realistic population dynamics, despite the fact that adult and pre-imaginal stage abundance do not 560 

correlate. 561 

The model simulated the phenology of the pest reliably despite the initial conditions of adult 562 

flights had unknown sampling error and no information on the age structure of the population 563 

was available. Because the simulated abundance of the damaging larval stage is of major interest 564 

for IPM, the model approximates the observed abundance reasonably well, especially with 565 

regards to action thresholds. This confirms the goodness of the parameter estimation despite the 566 

unknown sampling error. The difference between simulated and observed abundance of eggs and 567 

larvae could be partially attributed to environmental factors not accounted for in the model that 568 

influenced survival, e.g. relative humidity (Schmidt et al., 2003). Furthermore, the model 569 

simulates only local dynamics and the spatial movement of the pest on population abundance was 570 

not considered.  571 

At local-scale pest management (i.e., field-based), given that reliable temperature forecasts are 572 

available, the model can accurately predict the temporal dynamics of the abundance of all the 573 

stages of the pest including the ones relevant for control intervention. Such forecasting would 574 

allow intervention before the pest causes irreversible or severe damages. 575 

If the generality of model behavior is considered, many intervening factors could influence model 576 

performance. For example, the presence of an early or late cultivar could greatly influence the 577 

pest phenology and abundance. Also the composition and abundance of the community of natural 578 

enemies could modify the pattern of population dynamics, both within and between the 579 

vegetation periods. However, the model can potentially account for the effect of such extrinsic 580 

factors if a fine tuning phase of model calibration is implemented. 581 

Real-time simulation of pest population dynamics in agro-ecosystems with high spatial resolution 582 

can support not only field-based IPM but also area-wide pest management (Elliot et al., 2008; 583 

Faust, 2008; Gilioli et al., 2013). PBDMs like the one here proposed can be run on a grid with 584 

reference to the set of nodes where the population samples are taken and temperature is measured. 585 

In view of the fact that the availability of meteorological stations is a limiting factor for field-586 

based application of PBDMs, the interpolation of temperature data and the creation of field of 587 

temperature accounting for the characteristic of the land and land use can improve model 588 

performance in the perspective of area-wide pest management.  589 
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The ideal environment in which PBDMs are implemented for area-wide pest management are 590 

geographic information systems able to manage different layers of information, such as field 591 

temperatures, land physical characteristics and land use, as well as the model output. If data on 592 

initial conditions are not available risk maps based on projected population trends due to short 593 

and medium term weather forecasts can be derived (Gilioli et al., 2014). Under suitable scenario 594 

assumptions on the initial conditions indexes of damage can be defined for comparatively 595 

assessing the efficacy and the costs of different pest management strategies. 596 

In a more strategic or policy-oriented perspective, simulation of scenarios at a large spatial and 597 

temporal scale and based on indexes of risk defined in terms of pest abundance can be used to 598 

assess the effects of drivers of ecosystem change (e.g., climate change) on the extant and the new 599 

invasive species. This scenario analysis has important implications not only for IPM but also for 600 

land management and stewardship. 601 

 602 

 603 

Acknowledgements 604 

 605 

The research leading to these results was partially funded by the European Union's Seventh 606 

Framework Programme managed by REA-Research Executive Agency 607 

 http://ec.europa.eu/research/rea ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement n° 608 

[262059]. 609 

The authors are grateful to Dr. Alda Butturini and Dr. Rocchina Tiso for the useful discussions 610 

on the biology of the species and the requirements for the use of demographic model in grape 611 

berry moth IPM. 612 

Thanks also to two anonymous referees for the helpful suggestions that allow us to improve the 613 

paper. 614 

 615 

 616 

References 617 

 618 

Ainseba, B., Picart, D., Thiéry, D., 2011. An innovative multistage, physiologically structured, 619 

population model to understand the European grapevine moth dynamics. J. Math. Anal. Appl. 620 

382, 34-46. 621 

 622 



22 

 

Baumgärtner, J., Baronio, P., 1988. Modello fenologico di volo di Lobesia botrana Den. et Schiff. 623 

(Lep. Tortricidae) relativo alla situazione ambientale della Emilia-Romagna. Bollettino 624 

dell’Istituto di Entomologia ‘Guido Grandi’ Dell’università Di Bologna 43, 157–170. 625 

 626 

Brière, J.F., Pracros, P.C., 1998. Comparison of temperature dependent growth models with the 627 

development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27, 94–101. 628 

 629 

Briolini, G., Di Cola, G., Gilioli, G., 1997. Stochastic model for population development of 630 

Lobesia botrana (Den. et Schiff.). IOBC/WPRS Bulletin 21, 79–81. 631 

 632 

Buffoni, G., Di Cola, G., Ugolini, A., 1990. Discrete stochastic models in population dynamics 633 

with physiological age structure, Quaderni del Dipartimento di Matematica, Università di Parma, 634 

n. 57. 635 

 636 

Buffoni, G., Di Cola, G., Ugolini, A., 1990. Numerical methods for the solution of PDE 637 

describing the stochastic development of an age-structured population. In: Di Cola, G., Gilioli, 638 

G. (Eds.), Computer Science and Mathematical Methods in Plant Protection. Quaderni del 639 

Dipartimento di Matematica, Università di Parma, n. 135, pp. 12-21. 640 

 641 

Buffoni, G., Pasquali, S., 2007. Structured population dynamics: continuous size and 642 

discontinuous stage structures. J Math Biol 54(4), 555–595 643 

 644 

Buffoni, G., Pasquali, S., 2010. Individual-based models for stage structured populations: 645 

Formulation of  “no regression” development equations. J. Math. Biol. 60, 831-848. 646 

 647 

Buffoni, G., Pasquali, S., 2013. On modeling the growth dynamics of a stage structured 648 

population. International Journal of Biomathematics 6(6), 1350039 (24 pages). 649 

 650 

CABI (2014). Lobesia botrana (grape berry moth). CABI Invasive Species Compendium. 651 

Available at http://www.cabi.org/isc/datasheet/42794 (accessed 12/05/2015). 652 

 653 

Cozzi, G., Pascale, M., Perrone, G., Visconti, A., Logrieco, A., 2006. Effect of Lobesia botrana 654 

damages on black aspergilli rot and ochratoxin A content in grapes. Int. J. Food Microbiol. 111, 655 

S88–S92. 656 



23 

 

 657 

Del Tío, R., Martinez, J.L., Ocete, M.E., 2001. Study of the relationship between sex pheromone 658 

trap catches of Lobesia botrana (Den. and Schiff) (Lep., Tortricidae) and the accumulation of 659 

degree-days in Sherry vineyards (SW of Spain). J. Appl. Entomol. 125, 9-14. 660 

 661 

Di Cola, G., Gilioli, G., Baumgärtner, J., 1998. Mathematical models for age-structured 662 

population dynamics: an overview. In: Baumgärtner, J., Brandmayr, P., Manly, B.F.J. (Eds.), 663 

Population and Community Ecology for Insect Management and Conservation. Balkema, 664 

Rotterdam, pp. 45-62. 665 

 666 

Di Cola, G., Gilioli, G., Baumgärtner, J., 1999. Mathematical models for age-structured 667 

population dynamics. In: Huffaker, C.B., Gutierrez, A.P. (Eds.), Ecological Entomology. Wiley, 668 

New York, pp. 503–534. 669 

 670 

Elliot, N., Onstad, D.W., Brewer, M.J., 2008. History and ecological basis for areawide pest 671 

management. In: Koul, O., Cuperus, G., Elliot, N. (Eds.), Areawide Pest Management: Theory 672 

and Implementation. CAB International, UK, pp. 15–33. 673 

 674 

Faust, R.M., 2008. General introduction to areawide pest management. In: Koul, O., Cuperus, 675 

G., Elliot, N. (Eds.), Areawide Pest Management: Theory and Implementation. CAB 676 

International, UK, pp. 1–14. 677 

 678 

Gabel, B., 1981. Effect of temperature on the development and reproduction of the grape moth, 679 

Lobesia botrana Den. & Schiff. (Lepidoptera, Tortricidae). Anz. Schadlingskd Pfl. 54, 83–87. 680 

 681 

Gardiner, C.W., 1985. Handbook of stochastic methods. Springer, Berlin. 682 

 683 

Getz, W.M., Gutierrez, A.P., 1982. A perspective on systems analysis in crop production and 684 

insect pest management. Ann. Rev. Entomol. 27, 447-466. 685 

 686 

Gilbert, N., Gutierrez, A.P., 1973. A plant-aphid-parasite relationship. J. Anim. Ecol. 42: 323-687 

340. 688 

 689 



24 

 

Gilioli, G., Bodini, A., Baumgärtner, J., 2013. Metapopulation modelling and area-wide pest 690 

management strategies evaluation. An application to the Pine processionary moth. Ecol. Model. 691 

260, 1-10. 692 

 693 

Gilioli, G., Pasquali, S., 2007. Use of individual-based models for population parameters 694 

estimation. Ecol. Model. 200, 109-118. 695 

 696 

Gilioli, G., Pasquali, S., Parisi, S., Winter, S., 2014. Modelling the potential distribution of 697 

Bemisia tabaci in Europe in light of the climate change scenario. Pest Manag. Sci. 70, 1611-1623. 698 

 699 

Gilioli, G., Mariani, L., 2011. Sensitivity of Anopheles gambiae population dynamics to meteo-700 

hydrological variability: a mechanistic approach. Malaria J. 10:294, doi:10.1186/1475-2875-10-701 

294. 702 

 703 

Gutierrez, A.P., 1996. Applied population ecology: A supply-demand approach. Wiley, New 704 

York.  705 

 706 

Gutierrez, A.P., Baumgaertner, J.U., 1984. Multitrophic models of predator-prey energetics: II. 707 

A realistic model of plant-herbivore-parasitoid-predator interactions. Can. Entomol. 116(7), 933-708 

949. 709 

 710 

Gutierrez, A.P., Butler Jr., G.D., Wang, Y., Westphal, D., 1977. The interaction of pink bollworm 711 

(Lepidoptera: Gelichiidae), cotton, and weather: a detailed model. Can. Entomol. 109: 1457-712 

1468. 713 

 714 

Gutierrez, A. P., Falcon, L. A., Loew, W., Leipzig, P. A., Van den Bosch, R., 1975. An analysis 715 

of cotton production in California: A model for Acala cotton and the effects of defoliaters on its 716 

yields. Environ. Entomol. 4, 125-36. 717 

 718 

Gutierrez, A.P., Ponti, L., 2013. Deconstructing the control of the spotted alfalfa aphid 719 

Therioaphis maculata. Agricultural and Forest Entomology, 15(3), 272-284. 720 

 721 



25 

 

Gutierrez, A.P., Ponti, L., Cooper, M.L., Gilioli, G., Baumgärtner, J., Duso, C., 2012. Prospective 722 

analysis of the invasive potential of the European grapevine moth Lobesia botrana (De. & 723 

Schiff.) in California. Agr. Forest Entomol. 14, 225-238. 724 

 725 

Gutierrez, A.P., Ponti, L., Gilioli, G., 2010. Climate change effects on plant-pest-natural enemy 726 

interactions. In Hillel, D., Rosenzweig, C. (Eds.), Handbook of Climate Change and 727 

Agroecosystems: Impact, adaptation and mitigation. World Scientific Publishing, Singapore, pp. 728 

209-237. 729 

 730 

Hardman, J.M., 2012. Modeling arthropods to support IPM in vineyards. In: Bostanian, N.J., 731 

Vincent, C., Isaacs, R. (Eds.), Arthropod Management in Vineyards: Pests, Approaches, and 732 

Future Directions. Springer, Dordrecht, pp. 37-52. 733 

 734 

Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J., Economou, L.P., 2004. Comparative 735 

temperature-dependent development of Nephus includes (Kirsch) and Nephus bisignatus 736 

(Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: 737 

Pseudococcidae): Evaluation of a linear and  various nonlinear models using specific criteria. 738 

Environ. Entomol. 33(1), 1-11.  739 

 740 

Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of 741 

temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. 742 

 743 

Lorenz, D.H., Eichhorn, K.W., Bleiholder, H., Klose, R., Meier, U., Weber, E., 1994. 744 

Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Vitic. Enol. 745 

Sci. 49, 66–70. 746 

 747 

Maher, N., Thiéry, D., 2006. Daphne gnidium, a possible native host plant of the European 748 

grapevine moth Lobesia botrana, stimulates its oviposition. Is a host shift relevant? 749 

Chemoecology 16, 135–144. 750 

 751 

Manly, B.F.J., 1989. A review of methods for the analysis of stage-frequency data. In: McDonald, 752 

L., Manly, B., Lockwood, J., Logan, J. (Eds.), Estimation and analysis of insect populations. 753 

Springer, Berlin Heidelberg New York, pp 3-69. 754 

 755 



26 

 

Marchesini, E., Dalla Montà, L., 1994. Observations on natural enemies of Lobesia  botrana  756 

(Den. &  Schiff.)  (Lepidoptera, Tortricidae)  in Venetian vineyards. Boll. Zool. agar. Bachic. Ser 757 

II 26 (2), 201-230. 758 

 759 

Marchesini, E., Dalla Montà, L., 1998. I nemici naturali della tignoletta dell’uva nei vigneti del 760 

Veneto. Informatore Fitopatologico 9, 3-10. 761 

 762 

Marchesini, E., Dalla Montà, L., 2004. Nel Veneto quattro generazioni di tignoletta della vite. 763 

L’Informatore Agrario 60(4), 75-78. 764 

 765 

Martín-Vertedor, D., Ferrero-Garcia, J.J., Torres-Vila, L.M., 2010. Global warming affects 766 

phenology and voltinism of Lobesia botrana in Spain. Agr. Forest Entomol. 12, 169-176. 767 

 768 

McDonald, L., Manly, B., Lockwood, J., Logan, J.A., 1989. Estimation and Analysis of Insect 769 

Populations. Springer, Berlin Heidelberg New York. 770 

 771 

Norton, G.A., Holling, C.S., 1977. Proceedings of a conference on pest management, 25-29 772 

October 1976, Laxenburg, Austria, CP-77-6. 773 

 774 

Metz, J.A.J., Diekmann, E.O., 1986. The Dynamics of Physiologically Structured Populations. 775 

Springer, Berlin. 776 

 777 

Pasquali, S., Gilioli, G., Janssen, D., Winter, S., 2015. Optimal Strategies for Interception, 778 

Detection, and Eradication in Plant Biosecurity. Risk Anal. DOI: 10.1111/risa.12278. 779 

 780 

Pavan, F., Floreani, C., Barro., P., Zandigiacomo, P., Dalla Montà, L., 2010. Influence of 781 

generation and photoperiod on larval development of Lobesia botrana (Lepidoptera: Tortricidae). 782 

Environ. Entomol. 39(5), 1652-1658.  783 

 784 

Pavan, F., Sbrissa, F., 1997. Soglie economiche di danno per la seconda generazione delle tignole 785 

della vite basate sulla perdita in peso [Economic injury level for the second generation of grape 786 

berry moth based on weight loss]. Frustula Entomologica n.s. XX(XXXIII), 18-26. 787 

 788 



27 

 

Picart, D., Milner, F., 2014. Optimal control in a multistage physiologically structured insect 789 

population model. Appl. Math. Comput. 247, 573-588. 790 

 791 

Regev, U., Gutierrez, A.P.,. Feder, G., 1976. Pest as a common property resource: a case study 792 

of alfalfa weevil control. Am. J. Agr. Econ. 58(2), 186-197. 793 

 794 

Schmidt, K., Hoppmann, D., Holst, H., Berkelmann-Löhnertz, B., 2001. Prediction of grape 795 

moths dynamics using age structured models. IOBC/WPRS Bull. 24 (7), 127-134. 796 

 797 

Schmidt, K., Hoppmann, D., Holst, H., Berkelmann-Löhnertz, B., 2003. Identifying weather-798 

related covariates controlling grape berry moth dynamics. OEPP/EPPO Bull. 33, 517-524. 799 

 800 

Thiéry, D., Moreau, J., 2005. Relative performance of European grapevine moth (Lobesia 801 

botrana) on grapes and other hosts. Oecologia 143, 548–557. 802 

 803 

Vansickle, J., 1977. Attrition in distributed delay models. IEEE Transactions on Systems, Man, 804 

and Cybernetics 7(9), 635–638. 805 

 806 

Venette, R.C., Davis, E.E., DaCosta, M., Heisler, H., Larson, M., 2003. Mini Risk Assessment – 807 

Grape Berry Moth, Lobesia botrana (Denis and Schifferm¨uller) [Lepidoptera: Tortricidae]. 808 

USDA, CAPS PRA, Department of Entomology, University of Minnesota, St. Paul, Minnesota. 809 

 810 

Varela, L.G., Smith, R.J., Cooper, M.L., Hoenisch, R.W., 2010. European Grapevine Moth, 811 

Lobesia botrana. In Practical Winery and Vineyard. Napa Valley Vineyards. Mar/April, pp. 1–812 

5. 813 

 814 

Wang, Y.H., Gutierrez, A.P., Oster, G., Daxl, R., 1977. A population model for plant growth and 815 

development coupling cotton-herbivore interaction. Can. Entomol. 109, 1359-1374. 816 

 817 

De Wit, C.T., Goudriaan, J., 1974. Simulation of ecological processes. Simulation monographs. 818 

Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, Netherlands. 819 

 820 


