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ABSTRACT Smart healthcare relies on artificial intelligence (AI) functions for learning and analysis of
patient data. Since large and diverse datasets for training of Machine Learning (ML) models can rarely
be found in individual medical centers, classical centralized Al requires moving privacy-sensitive data
from medical institutions to data centers that process the fused information. Training on data centers
thus requires higher communication resource/energy demands while violating privacy. This is considered
today as a significant bottleneck in pursuing scientific collaboration across trans-national clinical medical
research centers. Recently, federated learning (FL) has emerged as a distributed Al approach that enables
the cooperative training of ML models, without the need of sharing patient data. This paper dives into the
analysis of different FL. methods and proposes a real-time distributed networking framework based on the
Message Queuing Telemetry Transport (MQTT) protocol. In particular, we design a number of solutions for
ML over networks, based on FL tools relying on a parameter server (PS) and fully decentralized paradigms
driven by consensus methods. The proposed approach is validated in the context of brain tumor segmentation,
using a modified version of the popular U-NET model with representative clinical datasets obtained from
the daily clinical workflow. The FL process is implemented on multiple physically separated machines
located in different countries and communicating over the Internet. The real-time test-bed is used to obtain
measurements of training accuracy vs. latency trade-offs, and to highlight key operational conditions that
affect the performance in real deployments.

INDEX TERMS Federated learning, learning over networks, medical imaging, healthcare networks, network

architectures, machine learning.

I. INTRODUCTION

Deep learning (DL) and Artificial Intelligence (AI) have
great potential in clinical research as a means for integrating
complex imaging data into personalized indices of diagnosis
and prognosis. Combined with the human pathologist’s
inputs, Al systems have contributed to significantly reduce
the human error rate [1]. On the other hand, the increasing
volume of data, the widespread adoption of Internet-of-
Medical-Things (IoMT) [2] and Al-enabled devices with high
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computing capabilities, have made conventional centralized
(Big-Data) learning solutions inefficient in terms of latency
and scalability due to the need of moving, often periodically,
large datasets. Besides, regulatory authorities as well as
patient organizations are proposing stringent limitations
to Al-driven data processing, to ensure that private data
are not shared or transferred to third parties, even in
anonymized format [3]. In such a dynamic context, Federated
Learning (FL) technology [4] has been emerging as a viable
solution [5]-[7]. The technology enables the distributed
training of Machine Learning (ML) models over remote
devices, namely the Medical Nodes (MNs), or clients,
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FIGURE 1. From left to right: Centralized Learning (CL), Federated Learning (FL) coordinated by the Parameter Server (PS), namely
Federated Averaging (FA), and Consensus-driven learning with fully decentralized implementation (i.e., without PS).

without requiring the same devices to disclose their training
data, possible containing privacy sensitive information about
patients.

As shown in Figure 1, vanilla FL algorithms, such as
Federated Averaging (FA) [4], [8], allow the MNs to learn
a shared ML model under the orchestration of a Parameter
Server (PS). Typically, the PS interacts with the medical
devices through a network, i.e., using a provider or gateway,
to collect (and store) the received local models. These are
aggregated to obtain a global model that is then fed back to the
edge devices for validation and inference. Each Medical Node
(MN) thus participates in training the shared model using
its own dataset. However, in contrast to classical Centralized
Learning (CL), privacy-sensitive data are kept on the device,
while cooperation is based on local model exchange.

FL uses the data as and when they are received or
available at the MN and it thus supports flexible training
processes, such as continual and incremental learning.
First implementations of FL leveraged on a server-client
architecture [6], [7] where the PS coordinates the learning
process. On the other hand, these classical FL techniques are
often considered not always resilient against model inversion
attacks on the PS, where privacy-critical data can be recreated
using the local models stored by the PS [9], [10].

A. RELATED WORKS

Different FL implementations have emerged in the past few
years [11] targeting several application scenarios [12]—[16]
and technology enablers [17]-[19]. Focusing on the popular
brain tumor image segmentation challenge [20], first steps
towards the integration of a privacy-preserving FL system
into a medical image analysis framework are in [6], [13].
It was demonstrated that the FL model quality is comparable
to that of a model trained using CL on a data fusion
center. The dataset therein used to build and test the Al
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system is the multimodal Brain Tumor Segmentation (BraTS)
set [21]-[23]. The FL process typically utilizes the same
training pipeline designed for centralized training: current
state of the art models for 3D brain Magnetic resonance
imaging (MRI) processing are based on an auto-encoder
regularization tool [24], or the U-NET model [25], [26] with
hyperparameter structure described in [27].

The above approaches have two main limits. First, they
only used datasets prepared ad-hoc for testing; they did not
consider how real data coming from hospitals affect the
training process or how to generalize the model. Second,
they rely on a central fusion center for model aggregation
which could lead to privacy leaks. Decentralized training on
incomplete and heterogeneous image datasets (i.e., different
scan modalities) poses new challenges to FL and is the main
focus of this paper. For what concerns the algorithms, the
training process can be implemented via vanilla FL tools
that rely on the PS for distributed coordination. However,
trusted PS designs are needed [28]. As an alternative, fully
distributed learning tools have been recently proposed to
replace, or minimize the use of the PS functions, enabling
server-less training. These techniques have roots in consen-
sus [15] and distributed ledger [29] enablers, as they let the
local models be consensually shared and synchronized across
multiple MNs. They rely solely on in-network processing,
via consensus, diffusion [18], [30], [31] or gossip [32] tools.
Fully decentralized FL policies have been considered for
training on low-power devices (robots, drones) in several
industrial verticals [15], [33] such as robotics, connected
automated vehicles [14], [34] and medical diagnosis [35].
Network scalability/connectivity aspects are however not
considered or discussed.

Though FL approaches are promising, they are often
simulated on virtual frameworks [11] where (virtual) clients
act as independent threads and run on the same physical
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machine. With the exception of [12], [36], [37], pilot
demonstration of FL platforms featuring geographically
distributed devices and real-time training over the Internet
are currently overlooked. In line with the road-map towards
native (in-network) Al designs [38], in this paper we propose
a real-time platform to support network and federated
learning functions integration, validating the proposed FL
solution in a real-world deployment.

B. CONTRIBUTIONS
The paper proposes the application of decentralized FL meth-
ods in the context of cancer diagnosis, focusing in particular
on brain tumor segmentation. To demonstrate the system
in a real environment, a novel Message Queuing Telemetry
Transport (MQTT) based architecture has been developed.
The platform is employed to verify the performance of
FL over real geographical distributed MNs characterized
by non-uniform computing capabilities and heterogeneous
datasets. Both classical FL. based on PS designs and fully
decentralized architectures are evaluated, discussing for each
case their impact on the MQTT publishing/subscription
operations. The proposed networking architecture and tools
are designed to optimize the FL process, weaving together
synchronous and asynchronous operations, as well as taking
into account the training time of the individual clients to avoid
performance penalties caused by slower MNs, namely the
straggler effect [11], [39]. The algorithms and MQTT real-
time network have been demonstrated by combining for the
first time, in a decentralized FL approach, public (BraTS) and
private clinical data obtained from the clinical workflow (with
no pre-filtering).

The main contributions of the paper are further summa-
rized as follows:

e Vanilla and fully decentralized FL algorithms are
integrated into a novel network architecture that adopts
the MQTT transport protocol to orchestrate the deep ML
model parameters exchange. We propose an optimized
set of information to be embedded into the MQTT
payload and to characterize the real-time learning
process on each epoch, discussing also model param-
eters compression, serialization and Quality-of-Service
(QoS) mechanisms.

o Implementing FL tools on top of the MQTT protocol
brings novel challenges that are discussed here for the
first time. In particular, 4 mechanisms for ML parameter
exchange are proposed: these account for synchronous
and asynchronous operations on the MNs and the PS,
respectively, as well as decentralized FL, where the
clients, rather than the PS, self-organize to coordinate
the FL process. For all the considered cases, the MQTT
broker is configured to support the client authentication,
authorization as well as to control the access to FL
resources (global/aggregated models, training statistics
and timing). All the proposed architectures are com-
pared to quantify the latency/model quality trade-offs for
synchronous and asynchronous FL processes.
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« Validation of the FL tools is based on a federation
of 5 MNs distributed in different institutions across
the Europe and communicating over the Internet.
Focusing on brain tumor segmentation as case study,
the experiments are conducted in real clinical settings
and with medical MRI images obtained from the
daily clinical workflow. The proposed real-time test-
bed thus provides a unique opportunity to quantify the
improvements of the FL process in terms of practical
metrics, namely the Dice Similarity Coefficient (DSC),
and on heterogeneous datasets without any pre-filtering
and not prepared for testing purposes (in contrast to
public and widely available data).

The paper is organized as follows. Section II introduces the
FL algorithms, namely vanilla and fully decentralized tools
based on consensus and analyze them with respect to medical
imaging problems and privacy considerations. Section III
discusses the proposed brain tumor segmentation tasks
and the necessary adaptations for FL system deployment.
Section IV describes the specifications of the proposed
networking architecture and MQTT protocol integrated
designs. Targeting tumor segmentation, section V highlights
a case study with an extensive database of results obtained
from public and private patient datasets. Finally, conclusions
and open issues are summarized in Section VI.

Il. FEDERATED LEARNING METHODS

The algorithms analyzed in this section range from vanilla
FL tools, such as Federated Averaging (FA), relying on the
orchestration of the PS, to fully decentralized FL, namely

Consensus-driven Federated Averaging (CFA), based on
distributed coordination. In server-based FL systems, the data
owners (i.e., the MN clients) and the global model owner (i.e.,
the PS) are the two major entities. On the other hand, in fully
decentralized tools the PS is replaced by a consensus over
the clients, namely the local model owners. For all cases, the
data are distributed among N clients rather than being kept
centrally, so each data owner i = 1,..., N, has a private
dataset D; of size S; = |D;|.

A. VANILLA FL

The FL process generally aims to obtain an optimized
global model wg that minimizes a global loss function £(-)
decomposed into the sum of local losses as:

N
1
= i = in| — E i ) 1
wG argvrvmn L(w) argvrvmn |:N 2 L (w)j| (D

with £;(-) being the local loss function observed by client i.
Problem (1) is solved iteratively by alternating the optimiza-
tion of a local model at each client, i.e., using a gradient-
based method, with a round of communication with the PS to
obtain an updated global model. In particular, the FL process
is characterized by three main steps: task initialization
(executed only once at beginning), local model optimization
and aggregation. The task initialization is implemented
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during the first iteration, + = O: the server determines the
target task (i.e., the application and the data requirements),
as well as the key parameters of the global model and the
training process, such as the learning rate or the number of
local epochs. The server then broadcasts the initialized global
model wg ; and task to the chosen participants. In the local
model optimization phase, at iteration ¢ > 0 each participant
utilizes the local data D; and processing capacity to update
the local model parameters w; ; based on the global model
wg, ;. The aim of participant i is thus to minimize the local loss
function, w; ; = argminy, £;(w). This is solved via gradient
methods, such as Stochastic Gradient Descent (SGD) [40]:

Wi < Wi, —nVL(Wi;; by), (2)

where 7 is the learning rate while V.L;(w; ;; b;) represents the
gradient of the loss function with respect to the model w; ; and
it is measured on a data mini-batch b; € D;. The optimized
local parameters w; ; are sent to the PS to be aggregated. In the
following aggregation step, the PS collects the local models
from the clients and feds back an updated version of global
model parameters for the next iteration ¢ 4 1, namely wg ;4.
Main aggregation policies are reviewed in [11, Chapter 3].
Finally the clients use the updated global model to update the
local optimization (2). The training rounds, consisting of the
above described local model optimization and aggregation
steps, are repeated until each model w; ; converges to wg, or
a desired training accuracy is obtained.

B. FEDERATED AVERAGING WITH TRUSTED PS

The main parameters to control the computational effort of FL
are: the percentage (C) of clients who take part in an update
cycle, the number (E) of local epochs executed by each client
and the mini batch b; size (B) used for each local update.
The latter one, considering the different resources that each
MN may have, can be relaxed and optimized differently in
each node. In what follows, the Federated Averaging (FA)
algorithm introduced by [41] is tuned for the medical imaging
problem.

In the local model optimization step, the client runs, for a
number of local epochs E, the Adaptive Moment Estimation
(Adam) optimizer [42], that exploits first and second order
moments to overcome local minima:

1 - /33 m; ,
L= B finto
B1 and B, are two hyperparameters and the decaying averages
m, , and v; , are computed respectively as follows:

3

Wit < Wiy —1

m;, < fim;,—1+ (1 — B1)VL(Wis; b;) “4)
Vin < BaVin—1 + (1 — B)V2Li(Wi s b)), (5)

where n is the timestep index of the Adam optimizer. Notice
that SGD is not recommended on complex models as it needs
careful tuning of the learning rate as the training progresses.
For image segmentation problems, i.e., tumor segmentation,
the number of local epochs E is usually kept small
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(E = 1,2), as already verified in other works [13], while
the batch size B is increased as much as possible to exploit all
the parallel computations given by the Graphics Processing
Units (GPUs).

The aggregation step at round ¢ is performed through
a weighted average according to the number of samples
S; = |D;| of each client:

N
€
WG+l = = E Siwi; + (1 — €)wg s, (6)
Zj:l S] i=1

where e regulates the memory of the past models in order
to have smoothed, or less rapid, changes of the weights. The
aggregation step is a crucial part of the algorithm and affects
the performances. Studies on the adaptive weight function,
that regulates the importance of the client’s contribution in
the global model, have been performed in [19]. However,
in the context of medical imaging, this method is less effective
since the datasets in the MNs present few variations of the
brightness and/or the noise figure.

Much attention instead should be paid to the charac-
terization or customization of the models in each client.
For example, FedPer, proposed in [43] splits the layers
of the deep learning model into baseline and personalized
ones. While the basic layers are collaboratively learned
using the traditional FL technique, the personalized ones
are learned locally and not shared, i.e. opportunistically,
allowing more flexible training of multiple tasks. Adaptation
of this technique to more complex models employed for
brain tumor segmentation (Section III) should focus on
the encoder part, which is generally a pre-trained clas-
sification network like VGG [44]/ResNet [45]. On the
other hand, the decoder part could host the personalization
layers [46].

C. CONSENSUS-DRIVEN FEDERATED AVERAGING (CFA)
The FA policy discussed in Section II-B relies on the
PS orchestration and may be subject to privacy concerns,
especially if the PS infrastructure is vulnerable (e.g.,
untrusted). In these scenarios, medical sites might avoid
joining the collaborative training process to protect their
privacy-sensitive data despite the benefits introduced by
the cooperation. An alternative approach explored in the
following is the consensus-driven FA strategy, namely CFA,
that provides a solution to the FL problem (1) using a fully
distributed and adaptive approach.

In particular, the CFA consists again of an aggregation
and a local model optimization step: however, differently
from the server-based FL, both steps are implemented by
the MNs on each learning iteration. CFA is thus server-
less as the MNs can cooperate with one another without
the coordination of the PS. Rather than sending the model
updates to the PS, the medical sites can directly forward
the ML model parameters to neighboring participants,
provided that they are authenticated as members of the
pool of FL learners, and using peer-to-peer communication
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Algorithm 1 Consensus-Driven FA
1: procedure CFA(N; )

> Run on client i

2: authentication with network broker

3: receive parameters (n, E, B) > RX from broker
4: initialize w; o < device i

5: initialize m; o < 0

6: initialize v; o <— 0

7 initialize n <— 0 > Adam timestep
8: for eachroundr = 1,2, ... do > Training loop
9: receive{ Wk r}ke N, > RX from broker
10: Dec{Wi t}keN;, > Decipher weights
11: equation (7) > Aggregation step
12: wi,; = ModelUpdate(¥; ;)
13: send Enc (w,-, ,) > Encrypt and TX to broker
14: end for

15: end procedure

16: procedure Move.Urpate(¥; ,) > Model opt. step

17: B < mini-batches of size B

18: for each local epochj = 1,2, ..., E do

19: for batch b € B do > Local Adam
20: n<n+1

21: m;, < fim;,—1 + (= BDVL (¥;,)

22: Vin < BVt + (1 = B)VZLi (¥ )

23: Vi< Vi — 7711_—,9?2 : \/Vmifirjra

24: end for

25: end for

26: end procedure

links. The MNs implement an ad-hoc aggregation step that
incorporates into the local model adaptation the information
collected from the local neighborhoods. Such aggregation
is typically based on consensus [18], [47] or gossip
methodologies [48], [49].

The pseudo-code of the CFA can be found in Algorithm 1.
First, local model optimization (3) is performed using local
data D; over a number E of local rounds/epochs which
can be tuned depending on the MN computing and energy
requirements. The updated model is then sent to neighbors.
In the aggregation step, each MN client i implements the
average consensus policy to obtain the aggregated model ¥, ,
with the help of the neighbors:

€t
S Sk (We,e = Wie),  (7)
Z/E./\/,-,, Sj keZN’m ( t i l)

'ﬁi,t =W+

where €, controls the stability of the update and A; ; contains
the neighbors of client i at round #. Notice that similarly as
for server-based FL, each client might either defer the model
aggregation until the neighbors complete their local model
optimization (synchronous implementation) or rather apply
the model aggregation as soon as they complete their model
optimization, regardless of neighbors status (asynchronous
implementation). These aspects are analyzed in more detail
in the next sections.
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D. COMPARATIVE ANALYSIS AND PRIVACY
CONSIDERATIONS

Vanilla FL typically assumes that the PS and the clients are
all honest, meaning that the clients are training with their own
private data in a good faith, and send true local models to
the PS. However, since the PS aggregates the models from
all clients, it is an appealing target for possible attackers and
thereby a single point of failure in the distributed platform.
So, despite the fact that FL. can prevent user privacy leaks,
the parameter server is nevertheless subject to threats such
as server-side training sample reconstructions [9]. Therefore,
trusted implementations of the PS are of particular relevance
in order to be suitable for the medical imaging problem. For
example, differential privacy techniques add a noise term
to each local model in order to prevent information from
being exposed during the model exchange [50], [51]. The
problem of untrusted PS is tackled in this paper at network
layer using encrypted and authenticated communications on
each learning iteration, in exchange for larger computa-
tion/communication overhead.

Besides vanilla FL tools, fully decentralized CFA replaces
the PS with consensus and in-network processing directly
between the clients (Sect. II-C). Differently from server-
based FL, where the PS stores the local models of all
the participating clients, in CFA the clients implementing
consensus are owners of a (small) subset of the local models,
namely the ones shared by the neighborhood A ;. Thereby,
it is unlikely that a model inversion attack targeting an
individual client could reconstruct the training samples of
all the learners. Furthermore, although the CFA architectural
approach solves the untrusted PS issues, the untrusted client
problem still needs to be carefully considered. For example,
distributed ledger technologies, such as blockchain, provide
an effective approach for removing the PS, that is vulnerable
to attacks [28]. Moreover, it can be also exploited to address
the problem of untrusted clients [52], ensuring security of
local model updates obtained from authenticated clients.
The development of robust decentralized FL designs against
adversarial manipulations or data poisoning is however an
open problem [53].

IIl. BRAIN TUMOR SEGMENTATION: FL MODELS

AND METRICS

This section describes the brain tumor segmentation and
classification task. In particular, we highlight the ML
model selected for FL processing as well as relevant
loss and accuracy metrics. Tumor segmentation is one
of the fundamental tasks in medical diagnosis to support
radiologists and clinicians, and also to reduce idle times for
evaluating potential treatments. Given a set of MRI slices,
the goal of brain tumor segmentation is to extract regions of
interest that capture the tumor extent and its shape. This is
accomplished by assigning a class label for every pixel (or
voxel) in the images, indicating the presence/absence and/or
the morphology of the tumor. As an example, Fig. 2 reports
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Prediction

FIGURE 2. Brain tumor segmentation with 2 input layers and

4 segmentation levels: MRI typology 1 (up-left), MRI typology 2 (up-right),
ground-truth rp = [rg,,,];-=l (down-left), prediction p, = [p@,,,];-=1
(down-right).

the two input MRI modalities on the top, while the expected
ground-truth and predicted tumor segmentation labels are
in the bottom-left and bottom-right, respectively. Achieving
accurate segmentation labels in this context requires the
definition of complex processing systems capable of handling
MRI scans with different spatial resolutions, modalities, and
levels of noise, according to the specific medical equipment
employed.

A. U-NET MODEL AND FL ADAPTATIONS

Current state-of-the-art ML systems for brain tumor segmen-
tation heavily rely on Convolutional Neural Networks (CNN)
architectures. Most notably, the U-Net model [25] has been
gaining popularity in recent years thanks to its outstanding
performances, especially for medical segmentation tasks.
The U-Net architecture is composed by two parts: the
encoder, which extracts the context from the images, and the
decoder, whose task is to determine the segmentation region.
The encoder uses several convolutional blocks, followed by
max-pooling operations, for encoding the input image into
intermediate representations at different spatial resolutions.
On the other hand, the decoder is a symmetric network,
composed by the same structural form of the encoder,
that performs upsampling and concatenation operations for
extracting the final segmentation from the input image.

In this paper, we employ the U-Net model [27] that
modifies the original one [25] and it is better suited to
the considered FL medical context. Compared to [25],
the encoder introduces dropout layers for allowing better
model generalization and prevent overfitting. Moreover,
the model has been adapted to receive input images with
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different number of channels, depending on the available
MRI modalities, while also providing up to four segmentation
levels. In total, it presents about 7.8 millions of parameters
and weights of size 30 MB.

B. DICE LOSS AND SIMILARITY METRICS

The ML model is trained using a combination of two losses,
namely the Generalized Dice Loss (GDL) [54] and the Cross
Entropy (CE). The GDL Lgpr is a generalization of the
conventional Dice Loss that takes into account multiple class
segmentation problems, rather than binary ones. Considering
L segmentation labels and K image elements, the GDL can
be computed as:

L &) x~K
ZE:I Wp anl Penlen

L 0) K
D= WE)) D=1 Pentren

where r¢, € {0,1} and p;, € {0, 1} are respectively
the voxel values of the reference foreground segmentation
(ground truth) and the values of the predicted map for the
foreground label ¢ = 1, .., L (an example is given in Figure 2
with L = 4). wg) is the weight to model the contribution of

each label, and it is defined as w([f) = ﬁ Finally, the
n=1"¢n

CE loss L¢g is:

Lopr=1-2

, ®)

K L
Lee =YY realog(pen). C))

n=1 {=1

Note that the formulations of (8), (9) consider the ground-
truth ry , and the label p; , segmentations encoded as one-hot
representations. Finally, the total loss in (1) can be computed
as:

L=Acpr+(1—MNLcE, (10

with A = 0.85 and is used to update the weights of the Neural
Network (NN).

For assessing the quality of the trained models for
brain tumor segmentation, we use the Dice Similarity
Coefficient (DSC) metric [55]. Given a pair of ground-truth
T and predicted segmentation patches P, the DSC ranges
from O to 1 and it is computed as:

2PNT|+1
DSC= -+ "~ 11
Pl + T+ 1 an

where |P N 7| denotes the intersection between the
predicted and ground-truth patches, while |P| and |7| are
the cardinalities of the predicted and true segmentation,
respectively. High quality models should possess a DSC value
close to 1, indicating a near-optimal match between ground-
truths and predictions. Of course, since the DSC works with
binary masks, a coefficient will be generated for each of the
segmented parts of the tumor (e.g., tumor-core and not-tumor-
core).
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IV. NETWORK ARCHITECTURE AND MQTT PROTOCOL

In this section, a network architecture is proposed to integrate
the FL tools described previously. The proposed system
adopts the MQTT transport protocol to coordinate the real-
time exchange of the U-NET model parameters through
MQTT-compliant publish and subscribe operations. We dis-
cuss the benefits of the chosen transport layer, as compared
with HTTP based representational state transfer (REST)
services, and design an optimized set of information to
be embedded into the MQTT payload, as well as model
parameters compression, serialization and Quality-of-Service
(QoS) mechanisms. The proposed architecture is validated in
Sect.V targeting the brain tumor segmentation task (Sect. III).
Nevertheless, the proposed framework is general enough for
application to distributed training of deep neural network
models.

The aggregation and local model optimization steps of
the FL process can be implemented via synchronous or
asynchronous policies: when the training process adopts the
synchronous orchestration, all the network entities (clients
and PS, if any) share the same time reference #: therefore, the
model aggregation should wait for all the scheduled clients
to complete their local model optimization. Notice that the
aggregation steps on the PS (6) and on the client, in fully
decentralized training (7), can be adopted as they are. On the
contrary, in the asynchronous orchestration, the clients, or the
PS, aggregate the available local models without any regard
of their relative temporal alignments. More specifically,
asynchronous model aggregation (6) implemented on the PS
at time ¢ becomes

€
N
Z}':l S]

with w; ., being the local model from client i available
at time t+ — 1, ; # 0O the relative timing mismatch
with the PS, and Tps regulating the time span between
two global model updates. Similarly, in the asynchronous
implementation of the CFA algorithm, once a medical center
finishes its local model optimization, it immediately switches
to the aggregation step, regardless of whether its neighbors
have already finished their local model optimization or not.
Therefore, each MN i will now receive from neighbors k the
last uploaded models of rounds t — 7, Vk € /\/}, ¢, namely,
from (13)

Vi = Wi+

N
WG, = ZSiWi,t—r,- + =W —1ps, (12)

i=1

€t
s S Sk (Wk =g, — Wiz). (13)
Zjej\/“ Sj kg/—:” k ( k,t—tk i t)

In what follows, and based on the above considerations,
we analyze in detail four different network architectures and
related MQTT orchestration mechanisms weaving together

synchronous and asynchronous operations, i.e., on the clients
and/or the PS.

A. MQTT MESSAGING AND FL PROCESS ORCHESTRATION
The choice of the MQTT protocol [56], over for example
the HTTP RESTful, was dictated by many factors, starting
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with the superior bandwidth efficiency of MQTT and
lower latency [57]. Another important aspect is the low
overhead of the protocol, designed for low-power machine-
to-machine transactions, which is crucial given the size
of the messages exchanged during the federated training
phase. The MQTT protocol is also suited for one-to-many
communications as needed i.e., during the distribution of
the global model from the PS to the MN. Finally, the
architecture can be easily extended to the Internet-of-Things
(IoT) field, i.e., on embedded devices, or smartphones,
where the implementation is practically constrained by low
computational capabilities and battery usage requirements.

1) MQTT MESSAGING

In the proposed FL architecture, both the PS and the medical
nodes/centers members of the federation act as MQTT
client devices and support publish and subscribe operations.
Devices thus share the layers of the deep learning model
by encapsulating the parameters into the MQTT standard
payload. In particular, the basic subset of information
included in the payload are:

i) the updated weights w; ; of the U-NET model trainable
layers (Sect. IILLA),

ii) tunable parameters for monitoring the convergence,
namely: the number E of local rounds to be executed in
each client, the learning rate n to be used in the local
model optimization step, the target DSC performance
(Sect. I11.B) and the patience (to apply the early stopping
procedure),

iii) training statistics: the client identification number, the
federated round indicator and the performance metrics,
i.e., DSCin (11), obtained from the validation dataset.

2) PUBLISH-SUBSCRIBE OPERATIONS AND QoS

MQTT publishing and subscription operations are organized
into a number of topics. Considering both FA and CFA
algorithms, the main topics are the ones related to the MN
and PS exchange of the model parameters. In case the model
size exceeds the maximum dimension of the MQTT messages
(by default set to 250 MByte), the model can be automatically
decomposed in different fragments, each representing one
or multiple layers of the model, and published separately.
Other topics are related to the configuration parameters,
to the number of samples of each medical center and to
a timestamp that indicates the last time 74 the k£ medical
center has been seen. Before being sent to the broker, all
messages are first serialized into binary objects with the
cPickle module. We chose to use this module rather than the
classic JSON serialization method because of its higher speed
and flexibility [58]. Messages are further compressed using
the z/ib module, in order to occupy less space and bandwidth
(about 10% less), and are sent to the MQTT broker with

Quality of Service (QoS) 2. In particular, QoS 2 implements
a 4-way handshake mechanism that is especially effective
over communication links with poor quality, while adding a
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negligible delay (100 ms) if compared with the time required
for transferring the message payload (>1 s). Minimizing
packet losses is critical in FL. while, as also shown in [59],
QoS 2 is the most effective choice for large payload MQTT
publishing operations. For all cases, the TLS protocol is
adopted to encrypt the exchanged messages.

3) MQTT BROKER

Considering FA, the clients publish their data to a MQTT
broker that is in charge of maintaining the model parameters
and forwarding them to the PS whenever a change is detected.
Multiple copies of the messages, as well as packet losses,
are handled directly by the QoS 2 specification. The MQTT
broker service thus acts as sink node for local models
collection and it is thus maintained until the end of the
training process. According to the type of broker, the memory
size and capabilities can change: in our case, we used a single-
threaded broker but other options are also possible. On each
round, the broker accepts subscriptions from the active clients
that publish their model parameters. Considering server-
based FA, all clients also subscribe to the same broker service,
i.e., to download the updated global model. On the other hand,
for CFA, each client subscribes to its neighbors’ topics to
retrieve their last available models and publishes the updated
model on its related weights topic.

The software that implements the FL process and enables
the MQTT transactions for the client (and the PS) is available
online [60]. Once installed, it is completely self-sustaining
while all network entities maintain an idle mode state until the
training process is initiated or updated. The FL process begins
with a Command&Control (C&C) tool that uploads the main
parameters on the MQTT broker and starts the training. Once
the process is started, the PS or the clients, in case of fully
decentralized implementation, are in charge of maintaining
the training. Furthermore, new authenticated MNs that aim
to join the federation, are accepted from any geographical
location. The number of resources consumed are chosen a
priori according to the complexity of the task and the dataset,
the MN computing capabilities and to the desired training
speed. To stop the process many possibilities are accepted:
reaching a target number of federated rounds or performance,
or a direct message from the C&C tool.

B. SYNCHRONOUS AND ASYNCHRONOUS FL NETWORK
ARCHITECTURES

The development of a network architecture designed for
native FL support over the Internet needs to face two critical
challenges. First, slower clients, i.e., retaining large datasets
(high number of MRI images) or characterized by low
computational resources, experience a longer training time
and might penalize faster clients (straggler effect). Second,
global model updates issued by the PS, if used, or by
the clients, when implementing consensus, should avoid
possible deadlock situations caused by packet losses, i.e.,
links with poor quality as well as delayed model updates from
neighboring clients.
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To overcome these issues, we introduce and analyze
different network architectures that leverage distinct levels
of a/synchronicity on the client or the PS (if used),
respectively. We show that introducing temporal variations
and asynchronicity over some of the FL network entities,
namely the clients and the PS, can lead to more efficient
training in the presence of slow/heterogeneous FL learners.
In particular, for the proposed implementation, a client is
considered asynchronous if it can perform more than two
local rounds without stopping or waiting for global/local
model updates from the PS or neighboring clients. The
time span of one local round implemented on client k is
defined as T ounq(k), which is the sum of the time required
to download the weights from the MQTT broker, training
the new model (local model optimization step), encrypt,
compress and upload the weights to the broker:

Tround (k) = Tdownload + Ttraining + Tuplaad- (14)

Considering PS based FL, we implemented a timer that fires
every server sleep time, namely 7pg. As shown in (12), when
this happens, the PS decides whether to update the global
model or not, depending on the backlog of local models
retained by the MQTT broker. In particular, the Retain Flag
of the MQTT protocol is set to true so that the last message
sent by the MN is stored into the MQTT broker: when
the PS (or another client) subscribes to the same topic, the
broker delivers the message. In what follows we highlight
4 selected architectures: notice that three of them are based
on the PS a/synchronous orchestration, while the last one
supports the fully decentralized FL tools and the consensus
process.

1) PS SYNCH., CLIENT SYNCH. (PS-S/C-S)

The architecture, represented in Figure 3b corresponds to the
vanilla FL implementation proposed in [4], [8]: both the
PS and the clients are synchronous (S) with respect to
the training process, therefore all network elements share a
common sense of time, while the FL process is supervised
by the MQTT broker. The PS waits until all the clients
complete their model optimization steps, and monitors the
PS weights topic on the MQTT broker. Once all clients have
published their weights, the PS is unlocked and implements
the aggregation step as in (6). After the PS has published the
updated global model, the clients are unlocked and the PS
returns to wait.

2) PS SYNCH., CLIENT ASYNCH. (PS-S/C-A)

As described in Figure 3c, the PS keeps the same synchronous
behavior as in the PS-S/C-S architecture. On the other hand,
the clients adopt asynchronous (A) actions: when their model
optimization step is completed, they might continue the
training using local data unless the PS global model is
updated. In such case, they stop the local model optimization
step and replace the local weights wy ; with the updated
global model wg ;.
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FIGURE 3. FL architectures: from left to right PS-S/C-S, PS-S/C-A, PS-A/C-A and C/C-A. Red color indicates a synchronous element (client or PS) and its
implications. On the contrary the asynchronous element is depicted with green color.

3) PS ASYNCH., CLIENT ASYNCH. (PS-A/C-A)

The last type of PS-based architecture is pictured in Figure 3d.
In this case, both the PS and the clients are asynchronous (A).
On every Tps sec., the PS collects the local model weights
from the MQTT broker and updates the global model even
though not all clients have finished their model optimization
steps. The clients are also asynchronous and act similarly as
in the PS-S/C-A architecture.

4) CONSENSUS-DRIVEN (NO PS), CLIENT ASYNCH. (C/C-A)
The architecture supports the consensus-based (C) FL and
coordinate the local model exchange among the clients.
As illustrated in Figure 3d, the implemented architecture
is fully decentralized while every client is asynchronous.
The clients can communicate directly with each other
uploading and downloading the updated local model weights
from the MQTT broker through the specific topics of the
neighbors. In particular, the MQTT broker acts as a bridge
allowing the communication among interconnected MN,
i.e., possibly located in different countries, and according
to an assigned connectivity matrix. When a client has
finished its round, it downloads the weights of its neigh-
bors, updates the local model according to a specified
algorithm (i.e., the CFA described in Sect. II), and in
turn publishes the updated local model on its weights
topic.

V. CASE STUDY: DIAGNOSTIC IMAGING FOR BRAIN
TUMOR SEGMENTATION

The study and validation of the proposed architecture and FL.
tools is performed on a federation of 5 MNs distributed across
Europe. As detailed in Sect. III, we selected the task of binary
segmentation of brain tumors (and tumor-like pathologies)
in the axial slice-based single-channel FLAIR MR images
to concentrate our effort on the challenge of implementing a
networking and computing environment in a realistic clinical
setting. The FL process and model quality are verified first
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using the BraTS public data repository (BraTS 2018), next
we analyze a more realistic set up featuring an additional
real-world clinical data set of images not prepared ad-hoc for
testing. Such new dataset is referred to as “‘Athens set”” and
it is used to complement the federation with additional MNs.
Finally, validation on the BraTS 2020 set is also considered.
For all setups, the model quality, here also referred to as
performance level, is measured in terms of DSC metric
defined in (11).

The approach we follow for the analysis is threefold.
First, the data pre-processing pipeline (Sect. V-A) targets the
harmonization of BraTS and Athens sets. All the proposed
FL network orchestration mechanisms, namely the PS-S/C-S,
PS-S/C-A, PS-A/C-A, C/C-A, are then compared with the
benchmark centralized ML (Sect. V-B) with respect to
the DSC metric. In particular, the parameter server sleep
time Tps is optimized for asynchronous FL, targeting the
PS-A/C-A architecture. Finally, we analyze the performance
in a practical scenario where FL is implemented on het-
erogeneous medical nodes located in Italy and Switzerland
(Sect. V-C). For these last experiments, we consider different
combinations of training and validation sets quantifying for
each case the benefits of federation.

A. DATASETS AND DATA PREPARATION

To verify the performance of the proposed FL tools and
architectures we first populated 4 MNs, located in differ-
ent countries, with shards from publicly available BraTS
2018 and BraTS 2020 datasets [21]-[23]. The division of
BraTsS dataset into training and validation sets was performed
on a per-examination basis, so all slices from one examination
ended up in the same set. The number of examinations
and slices per node can be seen in Table 1. In particular,
BraTS 2018 dataset was splitted into three shards (namely
MNs 1, 2, and 3), and the new examinations from BraTS
2020 (added on top of BraTS 2018), were used for the last
client (MN 4).
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TABLE 1. Distribution of BraTS datasets across three different FL clients.

Abnorm. | Normal
Exam. . .

slices slices
Training - MN 1 (BraTS 18) 67 4421 5964
Training - MN 2 (BraTS 18) 67 4458 5927
Training - MN 3 (BraTS 18) 66 4296 5934
Training - MN 4 (BraTS 20) 59 3817 5328
Validation - MN 1 (BraTS 18) 19 1309 1636
Validation - MN 2 (BraTS 18) 19 1272 1673
Validation - MN 3 (BraTS 18) 19 1207 1738
Validation - MN 4 (BraTS 20) 25 1681 2194

[ Total [ 341 [ 22461 [ 30394 ]

TABLE 2. Size and distribution of Athens’ dataset into training, validation
and testing sets.

Abnormal Normal
Exam. | Slices | Exam. | Slices
Training - MN 5 (Athens) 21 1173 18 1005
Validation - MN 5 (Athens) 5 233 4 186
[ Total [ 26 [ 1406 [ 22 [ 1191 ]

As previously mentioned, to complement the federation
with additional nodes and training data, we considered
a new private dataset (Athens dataset) consisting of 48
MRI examinations, out of which 26 contain abnormalities,
and the rest 22 are normal, serving as negative control in
the experiments. Similarly as for BraTS, the examinations
were divided into training and validation sets on the per-
examination basis. The setup has been designed purposely to
cope with harmonized, but significantly different, data across
nodes. The new dataset is hosted in the MN labelled as 5 while
the total size of the dataset and the portions belonging to
training and validation sets are depicted in Table 2. Hardware
specifics and computing capabilities of the 5 deployed clients
are further detailed in Table 3.

1) BRATS VS. ATHENS SET

Besides the fact that images in Athens and BraTS datasets
come from different sources, they differ also in few other
critical aspects. First, Athens data consist of raw samples
as they come out of the MRI machine, without any skull-
stripping or transformations. On the other hand, BraTS
images are already pre-processed: they are all registered
to the common atlas, interpolated and subsampled to an
uniform resolution 1 mm? in all three main axes in 3D.
Furthermore, BraTS collection contains only examinations
with abnormalities, while in the Athens dataset there are
also normal examinations (healthy patients) and a wider
range of oncological cases w.r.t. the shape, position and
typology. Finally, BraTS dataset contains only high- and
low grade gliomas (HGG and LGG), while Athens examples
feature also metastatic and smaller tumor-like lesions (see the
examples in Fig. 4).

2) DATA HARMONIZATION AND AUGMENTATION

To harmonize the BraTS and Athens inputs, so that the data
of all nodes can contribute to model training, we employed
few normalization steps in the data processing pipeline.
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FIGURE 4. Representative images from BraTS (A) and Athens’ (B, C, D)
datasets: A) large detection with surrounding edema in the left
hemisphere from BraTS 2020; B) similar case in right symmetrical
position from Athens’ data set; C) small detection on the left semi-oval
centrum, and D) normal examination.

First, Athens images are resampled to the spatial resolution
of 1 mm?, so that the spatial dimensions are compatible
with BraTS samples. Then, the intensities of each slice
are standardized (i.e., transformed such that the mean
intensity is O with standard deviation 1). All slices are then
clipped or padded to obtain images with uniform dimensions
240 x 240 pixels. Because the BraTS dataset contains more
fine-grained segmentation labels (marking individual parts
of the tumors) compared to what we needed, we merged all
labels together to produce a whole-tumor segmentation mask.
On top of the harmonization of the input data, we employed
also a data randomization step that consists of randomized
transformations like image flipping, rotations and elastic
deformations. Input images are also altered by adding
Gaussian noise. This process helps to de-correlate the training
samples and in turn improve the robustness of the model
against overfitting. It is worth to mention that higher spatial
resolution MRIs provide critical anatomical features that help
to better detect illness and make diagnoses. Unfortunately,
High Resolution (HR) MRIs are hampered by extended
scan times and low signal-to-noise ratio (SNR), especially
when hardware capacity is restricted. Consequently, often
Low Resolution (LR) images are taken. Recent research has
shown that using CNNs and single image super-resolution
(SISR) techniques, HR images may be reconstructed from LR
ones [61].
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TABLE 3. Medical Nodes hardware and computing capabilities.

CPU RAM GPU

Milan site 1: Desktop PC Intel(R) Core(TM) i7-3930K @ 3.2 GHz | 32 GB NVIDIA GeForce RTX 3090 with 24 GB

Milan site 2: Laptop PC i7-10750H @ 2.6 GHz | 32 GB | NVIDIA GeForce GTX 1650 Ti with 4 GB

Geneva site 1: Desktop PC1 Intel(R) Core(TM) i7-6700 @ 3.4 GHz | 32 GB NVIDIA Quadro K2200 with 4 GB

Geneva site 2: Desktop PC2 | Intel(R) Xeon(R) E5-1630 v3 @ 3.70 GHz | 32 GB NVIDIA GeForce RTX 3090 with 24 GB

Geneva site 3: Desktop PC3 | Intel(R) Xeon(R) E5-1630 v3 @ 3.70 GHz | 32 GB NVIDIA GeForce RTX 3090 with 24 GB
B. ASSESSMENT OF NETWORK ARCHITECTURES

S . 0.9

In the following initial tests, we deployed 4 clients co-located - ~Tyin < Tps < = Torn
with the Milan site 1 (hardware specifics are detailed in ' . 22 A ) Ay
Table 3). Three clients use training data from the BraTS 0.86 W Ay I ——
2018 while the remaining one uses the Athens dataset. 084r A j o ) Trs <2Tuar—
In addition, the FL model quality is validated with both 082 B v & Tos < 2Tymn
Athens and BraTS validation sets and assessed using the z o8 ‘ T —ar
DSC metric (11). This is obtained by averaging the DSC 0.78 | R
metric over the full validation dataset in each MN. For real- 0.76
time evaluation of the FL process, the hardware platform 0.74
hosting each client has been adapted to use 4 GB of GPU oz o =PS-A/C-A
memory and about 3.5/4 GB of RAM. To optimize memory 07 ‘ PS-S/C-A
usage, we adopted the TFRecord binary format and only a 0o 08 1 Ts 28 [f 85 4 45 5 1054'5

suited number of training samples were kept in memory:
about 1000 training slices for shuffling reasons. Regarding
the training parameters, we set the number E of local epochs
to 1, for the reasons described in Section II-B, and the
batch size B to 16. The learning rate of the Adam optimizer
was set to 1074, while the 8 and f, hyperparameters are
fixed respectively to 0.9 and 0.999. The validation phase is
performed by each MN on its validation set after receiving
the global model by the PS. This validation step provides for
a more accurate tracking of model quality improvements over
time.

In Figure 5 we compare the DSC of PS-S/C-A and the
PS-A/C-A architectures at different clock times and by
varying the server sleep time Tps. The optimal choice of the
sleep time depends on the minimum/maximum local round
time between each client, defined as:

Tyax = ml?x Tround (k)

Tuiv = H}Cin Trouna (k). (15)

As highlighted in the corresponding scenarios, setting
Tps < Tygy improves the training time of the PS-A/C-A
architecture: in particular, it reaches a target DSC of
0.85 while saving the 20% of the training time compared
with the synchronous PS-S/C-A option. On the contrary,
performance drops are observed when Tps >= Ty,
specifically regarding the final DSC that worsens from
0.878 to 0.865. For what concerns the PS-S/C-A architecture,
setting Tps <= 2 Tyax (blue area), gives the worst
performance. This result can be due to the fact that in the PS-
S/C-A architecture, the clients perform too many local rounds
before the aggregation step and this can lead to a bias in the
training process. Finally, for the same reason, we can observe
that increasing too much Tpg (red line) is detrimental and not
useful.
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FIGURE 5. Comparison between PS-S/C-A (blue areas) and PS-A/C-A (red
areas) architectures for varying Tps. The plots report the observed DSC at
different clock times. Highlighted scores of 0.878, 0.865 and 0.85 produce
different prediction images (as analyzed in Figure 6).

Prediction

0.878
0.865
0.85
f '
R

FIGURE 6. Qualitative representation of performance at convergence in
Figure 5. From top to bottom, the predicted images reached a DSC metric
of respectively 0.878, 0.865 and 0.85. These values correspond to
prediction by, respectively, PS-A/C-A with Tpg < Ty;y (image a), PS-A/C-A
with Tpg >= Tyyy (image b) and PS-S/C-A (image c). Red circle highlights
the main detection difference in the upper part of the tumor.

MRI Ground Truth

Besides performances as measured by DSC and training
time, in Figure 6 we analyze the tumor segmentation quality
by visual inspection and considering the final DSC reached
by the FL architectures PS-S/C-A and PS-A/C-A after
4 . 10* seconds of training. Although the DSC metric is
above 0.85 for all cases, the trained models in Figure 6a
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FIGURE 7. Comparison among all architectures. The centralized ML
benchmark is highlighted with a thick solid black line, while the fully
decentralized FL architecture (C/C-A) is in dashed line. The three
server-based FL architectures are in blue lines with different markers.

and 6b are able to detect the upper part of the tumor
as they achieve a DSC of 0.878 and 0.865, respectively.
On the other hand, the model in Figure 6¢ cannot, since the
corresponding DSC is only 0.85. This example is critical
to understand how even a small increase on DSC can
significantly improve the predicted image, as well as the
segmentation precision/quality.

Considering the same settings described previously,
in Figure 7 we investigated the differences among all
the proposed FL architectures when compared with the
benchmark centralized ML case. The C/C-A architecture
replaces the PS in exchange for slower convergence time
compared with server-based FL policies (i.e., PS-A/C-A).
However, it reaches comparable dice whole metric above
0.85. The performance of the PS-S/C-A scheme is worse
than the fully decentralized C/C-A: the heterogeneity of
the datasets suggests the use of an asynchronous PS with
Tps < 2 Tyax. Compared with synchronous FL, the asyn-
chronous PS-A/C-A architecture, with Tps < Ty, obtains
the best tradeoff between performances and training time.

C. IMPACT OF HETEROGENEOUS NODES AND

VARYING DATA SETS

In this section we target practical setups where the MNs are
located in different countries. Nodes are also equipped with
varying computing capabilities, according to Table 3, and
communicating over the Internet. The goal is to highlight the
robustness of the FL process in handling both data and client
heterogeneity. The proposed setups also verify how trained
models via FL can be updated and transferred to newcomer
MNs bringing new data to the process. In what follows,
we adopted the PS-A/C-A architecture by keeping the same
server sleep time Tps = 127 seconds, as optimized in the
previous section. The local round time of the clients varies
depending on the physical machine, namely the hardware and
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TABLE 4. Results of the real-time remote experiments with the PS-A/C-A
FL architecture and Tpg = 127 s. MN are described in Tables 1 and 2, sites
(s.) in Milan (M.) and Geneva (G.) and corresponding hardware are in
Table 3. For each of the three experiments (Tables a-b-c), we describe in
the upper sub-table the different compositions of the MNs according to
their physical sites and the round time 7,,,,4. The lower sub-table
reports Tyyax and Ty values along with the time required to achieve a
DSC of 0.85 and the DSC reached after 5. 104 s.

(a)

Test 1 MNI1 MN2 MN3 MN5
Hardware M.s. 1 M.s. 1 M.s. 1 G.s. 1
Troundls] 441 441 441 332
Thraxls] 441
Trins] 332
Time [s] to DSC 0.85 12000
DSC after 5 - 10% s 0.878-0.880

(b)
Test 2 MN1 MN2 MN3 MN5
Hardware M.s. 1 M.s.1 | M.s.2 | G.s. 1
Troundls] 127 127 747 332
Thraxls 747
Trrrn(s] 127
Time [s] to DSC 0.85 7000
DSC after 5 - 10% s 0.866-0.870

(©)
Test 3 MNI1 MN2 MN3 MN5
Hardware M.s. 1 G.s.2 | G.s.3 | G.s. 1
Troundls] 80 72 70 359
Thraxls] 359
Trins] 70
Time [s] to DSC 0.85 6000
DSC after 5 - 10% s 0.8707-0.8715

the computing capability. We also used the same number of
clients and dataset distributions.

As described in Tables 4a-4b-4c, we performed 3 tests
using MNs 1, 2, 3 and 5 in different sites. A visual repre-
sentation of test number 3 (Table 4c) indicating the specific
MNs locations and corresponding dataset distributions can be
found in Figure 8. Each MN is characterized by a different
time round Tyyyunq, While the corresponding Tysax and Ty
(15) values are reported for simplicity. For each test, we also
reported the time required to achieve a target DSC of 0.85,
and the DSC reached after a training period of 5- 10* seconds
(corresponding to about 800 rounds). Considering the time
required to reach a DSC of 0.85, we can notice that having
a low Tyyn leads to higher performances especially in the
first part of the training process. This is due to the fact that
the MNs with large computing capability can perform several
local rounds between two global model updates, thus refining
the local model. On the other hand, the higher DSC reached
after a period of 5 - 10* seconds is achieved only by test 1
(Table 4a) that has the optimal server sleep time: Tps < Tan -

In the last experiment, we analyzed a further setup where
the MN labelled as 4 in Table 1 joins the federation.
In particular, the new node contains examples drawn from
the BraTS 2020 set and is located in the Milan site 1
(Table 3). The purpose of these tests is to verify the robustness
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FIGURE 8. Geographical representation of Test 3 of Table 4. The MNs (i.e., the datasets) are also described in Tables 1.

TABLE 5. FL performances with 12 different training/validation set combinations ranging from BraTS 2018, BraTS 2020 and the new Athens dataset.

Cross-markers indicate, for each case, the training sets and the corresponding validation examples on which the DSC (second-last column) is computed.

The dimension of the total MRI training datasets is reported in the last column in terms of number of slices (of size 115 KB). Max and min values of
validation DSC for each dataset are highlighted in green and red, respectively. Notice that the MN 1-2-3 (Table 1) are grouped together in BraTS 18 for
brevity.

Training Validation

# MNs BraTS 18 | BraTS 20 | Athens BraTS 18 | BraTS 20 | Athens DSC # MRI slices
1 1 X X 0.72-0.76 2178
2 I X X 0.860-0.870 31000 one dataset
3 1 X X 0.874-0.878 9145
4 4 X X X 0.730-0.750 33178
5 4 X X X 0.872-0.876 33178
6 4 X X X 0.877-0.879 40145 two datasets
7 4 X X X 0.881-0.883 40145
8 2 X X X 0.878-0.882 11323
9 2 X X X 0.740-0.760 11323
10 5 X X X X 42323
11 5 X X X X 42323 three datasets
12 X X X X 0.730-0.750 42323

of FL, in terms of DSC, for varying combinations of
training and validation sets chosen from the BraTS 2018,
the BraTS 2020 and the Athens data previously described.
In Table 5, we compared the observed DSC after 800 FL
rounds (corresponding to approx. 5-10% seconds) considering
all possible combinations of training and validation sets,
as indicated by the corresponding markers. In particular, the
first three cases (rows 1, 2 and 3) correspond to single node
training where the MN uses only its local data for learning
(namely BraTS 18, BraTS 20 or Athens), without joining
the federation. The following six cases (rows from 4 to 9)
highlight the training performance observed when 2 to 4 MN’s
share their model parameters in the federation. Finally, the
last three cases (rows 10, 11 and 12) show the performance of
a federation of 5 MNs using all the available datasets (42323
MRI slices) and different validation examples. We can notice
that in general, if a MN joins a federation (of 2 to 5 MNs),
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the DSC increases as expected. Although improvements are
numerically small, they provide a significant increase of the
predicted image segmentation resolution, as closer to the
ground-truth (see also the examples of Figure 6). With respect
to single node training, the DSC increases on average by 1%
considering a federation of 4 MN, and scales up to 1.6%
when all the training sets are considered (5 MNs). Notice
that further improvements are expected by replacing the
current U-NET model with more complex options [24], [26],
as well as increasing the number of deployed MNs,
in exchange for larger training time. Looking now at the
training datasets, we can observe that the major performance
improvements occur when the MNs retaining BraTS data join
a federation with other MNs holding training samples with
similar characteristics (BraTS 2018 or 2020): see cases 2,
6 and 3, 7. Interestingly, a MN that joins the federation
and brings samples from the Athens set provides further

8705



IEEE Access

B. Camajori Tedeschini et al.: Decentralized Federated Learning for Healthcare Networks

improvements, estimated as 0.6% on average, see cases 0,
10, and 7, 11. This last observation is noteworthy because
even with all the differences described in Section V-A and
with the fewer examples/slices of Athens dataset, the increase
of DSC is significant. FL. performance improvements with
increasing dataset size, i.e., from one to three datasets as
in cases 2, 10 and 3, 11, can reach up to 1.7%, while the
benefits of joining the federation are evident. From a different
perspective, excluding MNs from the federation, even though
they exhibit straggler-like behaviors, is not recommended
since the global model might lose its ability to generalize, i.e.,
being less adaptive to new data. Finally, it is worth noticing
that the DSC on the Athens validation dataset seems to be
little influenced by the MNs holding the BraTS sets (cases 1,
4,9 and 12). A cause of this could be the fewer validation
slices or the different initial resolution of the Athens dataset.

VI. CONCLUSION: OPEN CHALLENGES AND

FUTURE ACTIVITIES

The paper proposed federated and decentralized learning
tools to support smart healthcare networks and medical
diagnosis. An example of implementation was given in the
context of brain tumor segmentation. Parameter server (PS)
based federated learning (FL) and fully decentralized FL
tools relying upon average consensus have been implemented
on top of the MQTT transport protocol, while different
network architectures and related designs were proposed
to exploit synchronous and/or asynchronous coordination
among the clients and the PS, when used. In particular,
leveraging distinct levels of asynchronicity on the clients
was found as a more efficient option in the presence of
heterogeneous nodes and data, as letting the medical nodes
to fully explore their local examples before publishing their
updates. Asynchronous consensus is also a good-compromise
between resource utilization and performances. The proposed
architectures were extensively tested on medical data com-
posed of heterogeneous datasets from public and private
sources, demonstrating first of all the advantage of the FL
system on the centralized training, and furthermore, the main
benefits of the MQTT protocol when it comes to reliability,
bandwidth efficiency and scalability.

The applications of FL for healthcare and automatic
diagnosis are expected to quickly mature in the coming
years targeting robust, scalable and privacy-preserving health
services. In particular, distributed learning is expected to
realize larger-scale and collaborative healthcare systems
possibly opening to fully decentralized diagnosis operations,
as opposed to centralized analytics on data centers. Besides
the promising opportunities highlighted by the paper, future
developments of FL are expected to address the robustness of
classical and decentralized tools against adversarial manipu-
lations and data poisoning. In addition, the trained models
typically observed in medical applications have very large
size, ranging from 30 and up to 150 MB [62] per medical node
and learning round: when the FL process is implemented over
wireless channels, the communication bottleneck should be
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carefully addressed, possibly via quantization, compression
and model updates sparsification. As highlighted in the case
study, excluding slow medical nodes (stragglers) from the
federation is also not recommended in healthcare networks
as these might be fundamental to improve model general-
ization. Trade-off solutions should be therefore investigated.
A properly designed FL system can obtain performances
meeting the needs of healthcare professionals. Nevertheless,
a quantitative evaluation of trustworthiness metrics is also of
fundamental importance to ensure the robustness of the FL
platform.
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