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Quantitative and qualitative analysis of asynchronous neural activity

Ekkehard Ullner

and Antonio Politi

Institute for Pure and Applied Mathematics and Department of Physics (SUPA), Old Aberdeen, Aberdeen AB24 3UE, United Kingdom

Alessandro Torcini
Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France
and Istituto dei Sistemi Complessi, CNR—Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 1-50019 Sesto Fiorentino, Italy

® (Received 17 December 2019; accepted 25 March 2020; published 29 April 2020)

The activity of a sparse network of leaky integrate-and-fire neurons is carefully revisited with reference to a
regime of bona fide asynchronous dynamics. The study is preceded by a finite-size scaling analysis, carried out to
identify a setup where collective synchronization is negligible. The comparison between quenched and annealed
networks reveals the emergence of substantial differences when the coupling strength is increased, via a scenario

somehow reminiscent of a phase transition. For sufficiently strong synaptic coupling, quenched networks exhibit
a highly bursting neural activity, well reproduced by a self-consistent approach, based on the assumption that
the input synaptic current is the superposition of independent renewal processes. The distribution of interspike
intervals turns out to be relatively long-tailed; a crucial feature required for the self-sustainment of the bursting

activity in a regime where neurons operate, on average, (much) below threshold. A semiquantitative analogy
with Ornstein-Uhlenbeck processes helps validate this interpretation. Finally, an alternative explanation in terms
of Poisson processes is offered under the additional assumption of mutual correlations among excitatory and

inhibitory spikes.
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I. INTRODUCTION

The characterization of the spiking activity of neuronal
networks is a long-standing problem even with reference to
the asynchronous regime: simple from a dynamical point of
view, but extremely relevant for understanding cortex dynam-
ics [1,2]. A moment’s reflection indeed suggests that this is
not a trivial task whenever the self-generated input current is
not constant: To what extent can the deterministic fluctuations
be treated as a stochastic process?

Generally, the problem is tackled by assimilating the
input current to a §-correlated Gaussian process [3] and
thereby deriving a self-consistent Fokker-Planck equation.
Under the additional simplifying assumption of a piecewise
linear dynamics [as in leaky integrate-and-fire (LIF) neurons],
a solution can be analytically determined and its stability
assessed [4].

Although this approach turns out to be relatively accurate
for small coupling strengths, the same is no longer true for
stronger coupling (see Ref. [5]), when large deviations from
the theoretical predictions are observed. These deviations may
in principle originate from various sources: (i) the sponta-
neous onset of irregular collective dynamics, which emerges
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even for relatively small network connectivities [5,6]; (ii)
the non-Poissonian nature of the spiking activity; (iii) large
amplitude of the single spikes and the consequential possible
failure of a perturbative, linear approach; and (iv) the presence
of non-negligible finite-time correlations.

Several alternative approaches have indeed been proposed.
For instance, an exact treatment of shot noise for spike ampli-
tudes not vanishingly small, which leads to a mixed Fokker-
Planck/master-equation formalism (see Refs. [7,8]). Unfortu-
nately, we are not aware of any way to make the approach
self-consistent, by inferring the input properties on the basis
of the observed output. Anyhow, since this approach assumes
a Poissonian distribution of the interspike intervals (ISIs)—a
property largely unsatisfied for strong synaptic coupling—one
should look for different approximation schemes anyway.

A different strategy was proposed by Dummer et al. [9],
based on the self-consistent derivation of the power spectrum
of the spiking activity. The advantage of this method is that
no assumption is made on the spectral shape of the synaptic
current. While the original implementation already proved
unstable for relatively small coupling strengths, the variant
recently proposed in Ref. [10] leads to a seemingly accurate
reproduction of the network dynamics. We shall treat it as a
reference for some of our considerations.

In this paper, we revisit the problem of characterizing the
asynchronous regime in the context of two coupled popula-
tions of excitatory and inhibitory LIF neurons accompanied
by refractoriness and delay [4,11,12]. In spite of the restriction
to a specific type of neurons (motivated by the opportunity
to compare with many numerical and analytical studies), the
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approach we propose is general and can be implemented
regardless of the single-neuron evolution equation.

The first goal is to determine the minimal network size
such that the numerical results can be considered as truly
asymptotic. This is achieved by first checking the accuracy
of numerical simulations and then estimating finite-size cor-
rections. In Refs. [5,6], it was indeed shown that the firing
activity of a network of 10 000 LIF neurons with an in-degree
K = 1000 is strongly affected by the presence of collective
irregular dynamics.

To clarify the role played by the different “ingredients,”
we introduce a second setup: annealed networks, where post-
synaptic neighbors are randomly selected whenever a new
spike is emitted. From a biological point of view, this setup
can be justified by recalling that synaptic transmission in the
cortex is highly unrealiable: On average, at room temperature,
most synapses respond to only ~13% of the the presynaptic
spikes [13]. Unreliable synapses are usually analyzed at either
the single-unit level [14], or of neural populations [15] to
understand how this unreliability actually affects information
transmission. Moreover, from a statistical-mechanics point
of view, this choice will help in better understanding the
dynamics of the system, since it is known that quenched and
annealed systems may exhibit different properties from one
another [16]. Interestingly, this happens in the present model
above a “critical” synaptic coupling strength (namely, J &
0.25). The existence of two seemingly different phases was
already claimed by Ostojic [11], but challenged in Ref. [17].
Here, however, we do not investigate the behavior in the
vicinity of the hypothetical phase transition, but rather focus
on the large-coupling regime, since it is more important to
first characterize the different phases which may emerge upon
varying the coupling strength.

One of the main results of this paper is that the synap-
tic current can be accurately represented as the superposi-
tion of independent identical renewal processes (RPs), each
characterized by a suitable ISI distribution. We also show
that the correlations due to the long-tailed ISI distribution
can be equivalently represented as long-term memory in
the symbolic representation of inhibitory versus excitatory
spikes.

More precisely, in Sec. II, we introduce the model and
define the indicators later used to characterize and discuss
the various dynamical properties. In the following Sec. III,
we illustrate the firing activity of the quenched network,
computing several indicators for different coupling strengths.
A relatively quick discussion is also devoted to the annealed
set-up to show the differences with respect to the quenched
case. In Sec. IV, we first introduce the two self-consistent
approaches herein implemented to characterize the neural
activity. The former one, based on the distribution of ISIs,
provides a rather accurate description. The latter, already
proposed in Refs. [9,10], reveals an unexpectedly stable fixed
point, which, however, is further away from the results of
accurate simulations. In Sec. V, we turn our attention to the
bursting activity observed for large coupling in an attempt to
explain how neurons operating, on average, below threshold
are able to exhibit a strong firing activity. Finally, in Sec. VI
we summarize the main results and focus on the still open
problems.

II. MODEL AND METHODS

A. Network model

Due to its relevance in the context of asynchronous dynam-
ics in balanced networks [4,11,18,19], we consider the follow-
ing sparse spiking network of LIF neurons. The network is
composed of bN excitatory and (1 — b)N inhibitory cells; the
membrane potential V; of the ith neuron evolves according to
the equation

tVi=R(y+ 1) — Vi, (1

where 7 =20 ms is the membrane time constant, Rly =
24 mV is an external DC supra-threshold “current,” while RI;
is the synaptic current arising from the recurrent coupling

RI;(t) = ‘L'JZG,‘J‘(,,)(S(I — l‘r(lj) — Td) s 2

where J is the coupling strength and the sum runs over all the
spikes emitted at time 19 <t from the presynaptic neurons
Jj(n) connected to neuron i. G;; is the adjacency matrix and
its elements assume the following values: G;; =1 (—g), if
the presynaptic neuron j is excitatory (inhibitory), otherwise
G;j = 0. If V; reaches the threshold Vi, = 20 mV at time t,Ej ),
two events are triggered: (i) the membrane potential V; is
reset to V, = 10 mV and held fixed for a refractory period
7, = 0.5 ms; (ii) a spike is emitted and received t; = 0.55 ms
later by the postsynaptic cells connected to neuron j according
to G;;. Except for the system size N, all parameters are set as
in Ref. [11]: b= 0.8, K = 1000, and g = 5, so each neuron
receives input from bK [(1 — b)K] excitatory (inhibitory)
presynaptic neurons. Besides this guenched setup, we have
considered annealed networks, where the postsynaptic neigh-
bors are randomly chosen at each spike emission. As a matter
of fact, in the former (latter) case, the in degree (out degree) is
equal to K for each neuron, while the out degree (in degree) is
binomially distributed with average K and standard deviation
VK, in the thermodynamic limit. Our choice was dictated
by efficiency of the numerical simulations; however, we have
verified that no substantial changes are observed if, instead of
fixing the number of links equal to K, the probability of each
link is set equal to ¢ = K/N, as in truly Erdos-Renyi networks.

B. Methods

A detailed description of network dynamics requires look-
ing both at the microscopic and the macroscopic level.

1. Microscopic indicators

The dynamics of a spiking neuron is usually characterized
in terms of the probability distribution function (PDF) Q(T)
of the ISIs T and of the associated moments: namely, the
mean ISI 7 and the standard deviation o7 of T. Usually, the
regularity /irregularity of the dynamics is quantified by the
so-called coefficient of variation,

Cv:O—:T’
T

equal to zero for a periodic dynamics and to 1 for Poissonian
spike trains. It should be noted that C, can be larger than 1 for
the so-called bursting dynamics, when the neuron alternates
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periods of silence and high activity. The firing rate of a neuron
is simply given by v = 1/T. To characterize the network
activity we estimate the mean coefficient of variation (C,)
and the mean firing rate (v), where (-) represents an ensemble
average over all neurons.

An important observable is the power spectrum S(f) =
(Ja(f)|?), where ii( f) with f = m/(M§t) is the Fourier trans-
form of the neural activity u(¢), determined by computing the
number of spikes emitted in M consecutive time intervals of
duration 6¢. Further observables we focused on are the phase
correlations among different frequencies f and s, which can
be quantified by the normalized indicator,

onep ) 7 ()]?)
W S(f)

where W = (3, lit(h)|?) is the total power of the spectrum.
One can check that 0 < D(f) < 1, the lower (upper) bound
corresponding to uncorrelated (perfectly correlated) channels.
The typical values we have used in our simulations are &t =
0.11 ms and M =2 (M = 2'?) for the power spectrum
(phase correlations) estimation.

D(f) = , 3

2. Macroscopic indicators

At the mean-field level, the network evolution is captured
by the instantaneous PDF P(v, t) of the membrane potentials
of the neurons. In the limit case of an infinitely large in-
degree, the perfectly asynchronous regime is characterized
by a constant firing rate (v) [20]. This implies that the flux
of neurons along the v axis is independent of both time and
potential value, i.e., the corresponding PDF Py(v) should be
stationary.

Deviations from stationarity reveal the presence of a col-
lective dynamics. To measure the level of coherence in the
network dynamics, a commonly used order parameter is [21]

p? = u , 4)
(v %)

where the overbar denotes a time average. In practice, p
is the rescaled amplitude of the standard deviation of the
average (v). When all neurons behave in exactly the same way
(perfect synchronization), the numerator and the denominator
are equal to one another and p = 1. If instead they are
independent as in an asynchronous regime, p ~ 1/+/N due
to the central limit theorem.

| <
—~

©
CI

III. NETWORK DYNAMICS

A. The quenched network

Our simulations have mostly been performed by imple-
menting an exact event-driven scheme [22,23]; see Ref. [6]
for a description of the details. Since, however, some simu-
lations required implementing a clock-driven Euler scheme
and since this latter approach is often used in the literature,
we have first compared the two algorithms for a network
of 10° neurons with a coupling strength J = 0.8. From the
results reported in Fig. 1, we see that the time step 8 used in
the implementation of Euler’s algorithm should not be larger
than 1073 ms to get results essentially in agreement with the

60 T T T T T T T T T

Vv [Hz]

| |
0 20 40 60 80
integration time [s]

FIG. 1. Running average of the firing rate in a network of
N = 10° neurons with a coupling strength J = 0.8 and overall
connectivity K = 10°. The black solid line refers to event-driven
simulations; the dashed lines correspond to Euler integration scheme
with different time steps (§t = 0.1 ms, 0.04 ms, 0.01 ms, 0.001 ms,
from bottom to top).

event driven scheme. This is indeed the value employed in our
simulations performed with Euler’s scheme. Notice that for
8t = 0.1 ms, a value often chosen in the literature, the firing
rate is substantially underestimated (by approximately 24%).

We then proceed to analyzing the dependence of the av-
erage firing rate (v) on the coupling strength J. The black,
solid curve in Fig. 2(a) has been obtained for N = 10* and
exactly the same parameter values as in Ref. [11]. As reported
therein, (v), after an initial drop, increases with the coupling
strength J. One of the goals of this paper is to understand
the origin of this growth in a network where inhibition is
expected to prevail over excitation. A theoretical estimate vy
of the average firing rate in the asynchronous regime of a
sparse network can be derived from the stationary solution of a
self-consistent Fokker-Planck equation, under the assumption
of an uncorrelated Poissonian activity of the neurons [3,4].
However, this prediction, based on the diffusion approxima-
tion [3] and reported as a dotted green curve in Fig. 2(a), is
able to reproduce only the initial part of the curve (v(J)),
while it fails to describe the growth observable for larger
coupling. Furthermore, in Refs. [5,6] it was found that the
corresponding dynamical phase is far from asynchronous; this
is testified by the behavior of p(J), reported in Fig. 2(b),
where we can see that the order parameter p can be as
large as 0.5. Considering that the theoretical prediction has
been derived under the assumption of a strictly asynchronous
regime (i.e., p = 0), it is therefore crucial to separate out the
effects of the collective dynamics.

This can be done by increasing the network size while
leaving the in-degree fixed (namely, K = 1000). Quite sur-
prisingly, the firing rate obtained for N = 10° [see the up-
per blue solid curve in Fig. 2(a)] displays an even more
pronounced growth than for N = 10, in spite of a weaker
synchronization, as shown in Fig. 2(b). The analysis re-
ported in Fig. 2(d), where p vs ¢ = K/N is reported for
three different synaptic coupling values, shows that the
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FIG. 2. Collective properties of the network dynamics versus the
coupling strength J: (a) average firing rate (v), (b) the coherence
order parameter p, (c) the mean coefficient of variation (C,). Solid
lines and symbols refer to quenched networks (namely, black lines
correspond to N = 10*, blue ones to N = 10°, and (red) crosses
to N = 8 x 10°) (blue) dashed lines correspond to simulations of
the annealed network performed for N = 10° neurons. The (green)
dotted line in panel (a) corresponds to the theoretical prediction vy
derived in Refs. [3,4]. Finally, panel (d) displays the coherence order
parameter p versus the connectivity ¢ = K /N, reporting only results
for the quenched network for different synaptic coupling: namely,
J=0.1,J =0.5, and J = 0.8 (solid lines from the bottom to the
top). The dotted line refers to the theoretical scaling law /c.

collective effects increase as p A~ \/c, consistent with theo-
retical expectations [4].

Going back to Fig. 2(a), we see that upon further increasing
N above 10°, the firing rate for a given coupling strength J
saturates to a finite value. Altogether, we can safely conclude
that the increase of v for J > 0.3 is a genuine property of
bona fide asynchronous activity and should be explained as
such. Our simulations suggest that the system size N = 10°
is large enough to ensure nearly asymptotic results and small
enough to allow for affordable simulation times. From now
on, all simulations will refer to this network size, unless
stated otherwise. The main questions we want to address are
understanding (i) the features of such a high firing-rate regime
and (ii) why it deviates so strongly from the diffusion approx-
imation [3,4], even for a not-too-large synaptic coupling J in
a setup where correlations among the different neurons are
practically absent.

Before proceeding along these lines, it is useful to pro-
vide a more detailed description of the network activity. In
Fig. 2(c), the mean coefficient of variation (C,) is plotted
versus J for different networks sizes. There, we see that C,
steadily increases with J and converges to some asymptotic
value upon decreasing c. In practice, the neural activity can
never be treated as a Poissonian process, as requested by the
diffusion approximation employed in Ref. [4]; it is either more
regular (for small coupling) or substantially more intermittent
(as for J > 0.4). Therefore, it should not come as a surprise
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FIG. 3. The PDF Q(T) of the ISIs T generated by the full
quenched network (black) and as obtained after the first step of the
renewal process recursive procedure (red curve). Panels (a)—(c) refer
toJ =0.1,J = 0.5, and J = 0.8, respectively. The insets contain the
same information in log-log scales to emphasize the initial quasi-
power-law decay. The panel (c) inset shows additionally in green
the output of a single neuron subject to a symbol-correlated Poisson
process (see Sec. V C).

that a theoretical approach, such as that in Refs. [3,4], based
on the assumption that (C,) = 1, is not accurate.

C, gives only rough information about the distribution of
the ISIs. It is worth turning our attention to the full shape of
the ISI distribution Q(T'). In Fig. 3, we plot Q(T') forJ = 0.1,
J =0.5,and J = 0.8; in all cases, we see that for large enough
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ISIs, the PDF is characterized by an exponential tail as for
a Poissonian process. However, for small ISIs, the PDF is
substantially different. For weak coupling, very small ISIs are
strongly inhibited [24]: This is an obvious consequence of
the nearly constant input current (mean driven). For stronger
couplings, the PDF exhibits a quasi-power-law decay which
extends up to 10-20 ms [see the insets of Figs. 3(b) and 3(c)].
These features are consistent with the characterization of the
ISI distributions reported in Ref. [25] for spiking neurons
driven by fluctuating inputs. In particular, the PDF shown in
Fig. 3(a) is expected to emerge when the average effective
input current (including the contribution of the synaptic cou-
pling) lies between the threshold and the reset value, which is
indeed the case.

Furthermore, we have computed the power spectrum S(f)
of single spike sequences. For weak coupling (/ =0.1), a
small peak is visible at f = 17Hz in Fig. 4(a) [26] it is
reminiscent of the periodic activity of the uncoupled neurons.
At higher frequencies, the spectrum is practically flat, i.e.,
it is approximately white. Upon increasing the coupling, the
spectrum starts exhibiting a low-frequency peak, suggesting
the presence of “long”-time correlations. This feature will be
further discussed in Sec. V with reference to the emergence
of a bursting activity. For J = 0.8, subsidiary peaks related
to the delay emerge for f = 1818 Hz and its multiples. The
delay is always present but for unexplained reasons pops up
only for large coupling when the white-noise background is
even larger.

B. The annealed network

So far, we focused on the dynamical properties of a net-
work characterized by a quenched distribution of synaptic
connections. However, all theoretical approaches developed
to characterize the firing activity do not take into account
the actual, invariant structure of the connections. Even more,
theoretical approaches do not include delay at all. Therefore,
it is natural to ask to what extent the quenched nature of
the network may be considered responsible for the observed
asynchronous activity. This question can be addressed by
considering an annealed network, where the “neighbors” of
each given neuron are randomly assigned each time a spike
is emitted. More precisely, we proceed as follows: Whenever
a neuron fires, we still assume that the quality of the spike
(excitatory versus inhibitory) is determined by the neuron
itself, but we randomly choose K receiving neurons regardless
of their quality. Moreover, we exclude self-connections, i.e.,
the sender must differ from the receiver. Finally, we keep
all parameters as in the quenched network. This guarantees
that, on average, each neuron receives bK excitatory inputs
and (1 — b)K inhibitory ones. Annealed neural networks are
usually employed to mimic the effect of unreliable synapses
present in the cortex [15,27].

The numerical results for the average firing rate are re-
ported in Fig. 2(a). There we observe a good agreement with
the behavior of the quenched network for J < 0.3, while
increasing deviations emerge for larger coupling strengths.
Interestingly, the behavior of the annealed setup is very close
to the theoretical prediction vy [4]. This is not entirely surpris-
ing since, as anticipated, the theoretical approach implicitly

T T o T T
(a)
10°F .
N
=
—
& 10°F E
10'F
10° 10' £ [Hz] 10° 10°
T o AR | R |
(b)
10°F .
)
=
=)
wn
10'F ;
i sl Lol bl Lol ]
10° 10' £[Hz] 10° 10°

S(f) [Hz]

10 E

10° 10'f [Hz]10° 10°

FIG. 4. Power spectra S(f) of the neural activity. Black curves
refer to the full quenched network for N = 10%; red curves refer
to the first step of the renewal process approximation. Panels (a)—
(c) refer to J = 0.1, 0.5, and 0.8, respectively.

assumes an annealed connectivity. An additional justification
for this agreement is the C, values reported in Fig. 2(d)
(see the dashed curve) which are much smaller than in the
quenched case and closer to 1, the value corresponding to a
Poisson process.

IV. SELF-CONSISTENCY

In the previous section, we have seen that quenched and
annealed networks behave in a substantially different way,
when the coupling strength is larger than J = 0.25. To what
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extent is this difference the signature of the crucial role played
by a fixed structure of the synaptic connections?

In this section, we address this issue by implementing a
self-consistent approach, where the input current is assumed
to be the superposition of independent signals, each sharing
the same “statistical” properties of the single-neuron activity.
Two different approximation schemes are hereby discussed:
(i) the hypothesis of a perfect RP and (ii) mutually uncorre-
lated frequency channels (also termed Gaussian approxima-
tion). Below we show that the former one provides a more
accurate representation of the neural activity.

A. Renewal process

A RP is fully characterized by the ISI probability distribu-
tion Q(T'). Assuming Q(T) is known, a typical spike sequence
can be readily generated by randomly drawing a series of T
values according to this distribution. At variance with Ref. [9],
where the authors suggested the idea of approximating the
synaptic current with a RP, here we limit ourselves to assume
that the single-neuron output activity is a RP, but we do not
extend the assumption to the input, which is treated as the
superposition of K independent RPs. This is an important
difference since, as already remarked in Ref. [28], the super-
position of RPs is not renewal itself unless the single processes
are purely Poissonian (this is not our case). So, at variance
with Ref. [9], we relax the condition of a strictly renewal
input process and replace this ansatz with the more general
hypothesis of a superposition of independent RPs.

In practice, we have implemented the following recursive
procedure: given the ISI distribution Qk(7T) determined in
the kth step, we have generated the synaptic current RI of
a generic neuron [in the (k + 1)st step] by superposing K
independent RPs all built according to the same distribution
Qi (T) (under the constraint that bK spikes are excitatory and
the remaining ones inhibitory). Upon afterward integrating the
single-neuron equation, we have generated the firing activity
induced by the current R/, thereby determining the (k 4 1)st
distribution Q1 (T).

We first focused on J = 0.8, since the theoretical pre-
diction vy [3] is significantly inaccurate for this coupling
strength. The initial condition Qy(7) has been selected as
the distribution generated by a quenched network of N =
103 neurons with an in-degree K = 1000. The corresponding
firing rate is (v) = 50.4 Hz and its coefficient of variation
is (C,) =3.97 [29]. This pair of values is represented by
the point P, in Fig. 5: It corresponds to the projection of
the asynchronous state of the quenched network in this two-
dimensional space. The iterates of the recursive procedure
have been projected on the same plane; they are so close to
each other to be hardly discernible in the main panel (see
the enlarged plot presented in the upper inset of Fig. 5 for
a clearer representation). The closeness among consecutive
iterates is confirmed by the shape of the ISI distribution: In
Fig. 3(c), we see that Q(T) is practically indistinguishable
from Qy(T). Altogether, these observations strongly hint at
the existence of a fixed point of the RP recursive procedure
in the vicinity of P,. Further iterates start separating from
each other, suggesting that the fixed point is a saddle, which
initially attracts the trajectory along the stable manifold and

| L
72y [Hz] 74

1 L L L 1
30 v[Hz] 50 60 70

N 1 N 1 N
0% —"T0 20

FIG. 5. Results of the recursive procedure based on the renewal
process and the Gaussian approximation. P, and P, identify the dy-
namics of quenched and annealed networks, respectively. Red circles
(green diamonds) refer to the iterates of the RP iterative procedure
while starting from P, (P,); green diamonds are better visible in the
enlargement reported in the upper inset, where P, denotes the fixed
point of the renewal process approximation. Blue squares refer to
the iterative process based on the Gaussian approximation: P, is the
initial condition, while P; denotes the fixed point of this approach
(see the lower inset for an enlargement of the later stages). All data
have been obtained for J = 0.8).

eventually drives it away along the unstable manifold. If,
in analogy to what was done in Ref. [10] for the Gaussian
approximation, we include memory effects by building the
new ISI PDF as the average of the last two distributions, the
saddle is stabilized: The resulting fixed point is represented
in Fig. 5 as P,. The nonperfect correspondence between F,
and P, may have a double rationale: the RP assumption is
not exact; the network size used to determine P, is not large
enough.

To test the quality of the RP approximation, we have
studied the correlations of the sequence 7,, of consecutive ISIs
by estimating the so-called serial correlation coefficient [30]:

<Tn+an> - (Tn>2

=T e

&)

In a strictly RP, C(m) =0 for m > 1. Tests made on the
neurons of a quenched network for N = 10° show that C(1)
is at most of order 1073, suggesting that the neural activity
is well approximated by an RP. On the other hand, since
the order parameter p is still relatively large for N = 10°
(p = 0.17), finite-size effects are probably the predominant
source of differences between P, and P,.

What if the same recursive procedure is applied, starting
from the dynamical regime exhibited by the annealed network
(see point P, in Fig. 5). Forward iterates rapidly move away
from P, and approach P, (see the full circles in Fig. 5). The
increasing amplitude of the “transversal” fluctuations confirm
that P, is a saddle point. Furthermore, the recursive procedure
shows that P,—a fixed point of the annealed process—is not
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FIG. 6. Degree of phase correlations D(f) of the Fourier trans-
form of the spiking activity for J/ = 0.8. The lowermost blue line cor-
responds to the RP; the uppermost black solid line corresponds to the
activity of the quenched network. Finally, the red line corresponds to
the annealed network.

a fixed point of the RP iterative procedure. The reason is that
while the temporal correlations exhibited by the single-neuron
activity (encoded in the bursting activity) are preserved by the
RP approximation, they are lost in the annealed setup because
of the random reshuffling of the synaptic connections. The
separation between P, and P, implicitly suggests the important
role played by the bursting activity as will be confirmed in the
following section.

Finally, we have also implemented the RP approach for
smaller J values, always finding evidence of a weakly unsta-
ble fixed point (actually, the degree of instability decreases
upon decreasing J). The resulting message is that the stable
asynchronous dynamics exhibited by the quenched network
is well reproduced by an unstable fixed point of a recursive
transformation based on the RP approximation.

B. Power spectrum

Fourier analysis offers the opportunity for additional ver-
ification of the validity of the RP approximation. In Fig. 4,
we compare the power spectrum of the single-neuron activity
after the first iterate obtained under the RP approximation
[31] (see the purple curve) with the spectrum exhibited by the
quenched network. The agreement is quite good for all three
tested coupling strengths, the major discrepancy being the
absence of peaks at multiples of v; = 1818 Hz for J = 0.8,
which cannot be reproduced by the RP approximation, since
the delay is not included in such formulation.

Next, we have directly estimated the correlations among
the phases of the Fourier modes by computing D(f) [see
Eq. (3)] both for the quenched network and the RP approx-
imation (see upper and lower curves in Fig. 6, respectively).
Phase correlations appear to be small in both cases (look at the
vertical scale): We attribute the larger amplitude exhibited by
the quenched network to the presence of a residual collective
dynamics, absent by definition in the RP approximation. A
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FIG. 7. Power spectra for the network activity. The black curve
corresponds to the spectrum of the activity of a single LIF neuron
driven within the RP approach (it is basically indistinguishable from
the true quenched network activity). The red curve is obtained by
randomizing the phases of the input signal. Data refers to J = 0.8.

comparably small level of correlations is also found in the
annealed network (see the almost flat red line).

As a second test of the relevance of phase correlations,
we have investigated the consequence of phase randomization
within the RP procedure. More precisely, given the synaptic
current #(¢) and its Fourier transform #i(f), we have generated
a new transform iy (f) = |ii(f)|e’?") by randomly assigning
the phase ¢(f) to the frequency f. A new signal uy(¢) is then
obtained by back transforming iy (f). The resulting spectrum
of the firing activity of a neuron subject to the current uy (¢) is
presented in Fig. 7 (see the red curve). The difference with the
original spectrum (see the lower black curve) is not entirely
negligible: It is around 20% in the low frequency region.

Finally, we have implemented the recursive procedure
proposed in Ref. [9], here briefly recalled. Let S ,E") (f) denote
the power spectrum of the single-neuron spiking activity at
the kth recursive step. Also, let S,((‘ll( f) denote the power
spectrum of the synaptic current in the (k + 1)st recursive
step. In the asynchronous regime, the synaptic current is the
superposition of K independent signals [bK excitatory and
(1 — b)K inhibitory], all characterized by the same spectrum
S,E”) (f). Taking into account the amplitude of the single spikes,
we have that S}, = [J2K(b+ (1 — b)®)IS\”(f) [32]. The
definition of the procedure is completed by adding the “rule”
to generate S,E‘fl, given S,(C'll( f). This is done by feeding a
single neuron with a phase-randomized spectrum (see the
paragraph above). The self-consistent solution is finally iden-
tified by the condition S{?, = 5"

We have implemented this approach with an Euler inte-
gration step 8t = 1073 ms starting from the initial condition
P,, the best proxy for the asynchronous regime. The first 33
iterates are reported in Fig. 5, where we see that they move
away from P, (see the blue squares) and approach a seemingly
stable fixed point P;. The relatively large difference between
P; and P, suggests that this approximation scheme is not as
accurate as the RP method and implicitly means that the phase
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FIG. 8. Raster plot of the firing activity in the quenched network
with N = 100000 and coupling J = 0.8. To illustrate the busting
activity of single neurons, we display the spiking activity of only
100 neurons over a short time interval.

correlations built while integrating the LIF equation are not
negligible [33].

V. BURSTING ACTIVITY

In the previous sections, we have seen that for strong
coupling the neural activity is characterized by a large C, > 1,
a typical indication of bursting activity. This is indeed quali-
tatively confirmed in Fig. 8, where a raster plot is reported
of the activity of a few neurons: Irregular bursts of spikes
intermingled by long period of silence are clearly visible.
Some neurons seem to be completely silent but this is just
the consequence of the finite length of the time window (all
neurons fire with the same rate). In this section, we discuss in
more quantitative terms this form of asynchronous dynamics,
starting from the basic question of how it is possible for it to
be self-sustained.

In the asynchronous regime, the average input current
induced by the synaptic coupling is

J KJ
() = E(nE —gny) = TV[b(gﬂL 1) —gl,

where ng (n;) denotes the number of excitatory (inhibitory)
spikes received per time unit. Depending on whether Ry (/)
is larger or smaller than Vi, — Rl = —4, the neuron operates
either above or below threshold. In fact, in the latter case,
the velocity field crosses the zero axis below the threshold
Vin, preventing threshold passing. In Fig. 9, we plot the firing
rate versus (/) for different values of the coupling strength
J (see the solid line): increasing J corresponds to moving
leftward along the curve, starting from the rightmost point,
which corresponds to the uncoupled limit. Upon increasing J,
(I) decreases monotonically: This is the consequence of the
prevalent inhibition. At the same time, the firing rate, after
an initial drop, starts growing; this happens for J &~ 0.25, as
it can be inferred by comparing with Fig. 2(a). The increase
continues also when the neuron operates below threshold and
surpasses the activity of the uncoupled regime.

A
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FIG. 9. Firing rate (v) versus the synaptic “current” R([) for
different coupling strengths for the quenched network (solid line and
red circles). Zero coupling corresponds to the rightmost point, where
the synaptic current obviously vanishes. The vertical dashed line
separates the region where neurons operate above (right) from below
(left) threshold. The green crosses report the outcome of the annealed
network. The two crosses deviating from the solid line belong to
J = 0.5 and 0.8 in the annealed setup.

In the same figure, we also report the outcome of annealed-
network dynamics (see the crosses): for small R(I), i.e., for
small coupling we see an almost perfect coincidence. On the
other hand, by further decreasing the internal current (i.e.,
upon increasing the coupling strength), the firing rate does not
increase in the annealed network, confirming the qualitatively
different behavior exhibited by the two setups. The annealed
network operates above threshold.

A. Correlations between membrane potential and
synaptic current

The counterintuitive activity displayed by the quenched
network requires an explanation. We have verified that the
effective self-induced excitation is not the result of a sym-
metry breaking: All neurons (both excitatory and inhibitory)
behave in the same way, as they should. More instructive
information can be extracted by exploring the correlations
between the actual value of the membrane potential and the
quality (excitatory versus inhibitory) of the spike received by
a given neuron. In other words, we have computed the relative
fraction sg(V)dV of excitatory spikes received when V €
[V,V 4 dV]. If the receiving times were uncorrelated with the
membrane potential, then sg (V) would be independent of V
and equal to b. Actually, this is expected within the framework
of a §-correlated input signal as assumed in Ref. [4].

Instead, in Fig. 10(a), we see sizable deviations, especially
in the vicinity of Vi, where sg is significantly larger than b,
hinting at a higher excitation than a priori foreseeable. We
have verified that, as expected, the average of sp—computed
along the V axis and weighted according to the stationary
distribution P(V )—is equal to b; see the horizontal line.

A perhaps more enlightening representation of the role
played by the V dependence of sg is proposed in Fig. 10(b),
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FIG. 10. (a) Fraction sg of excitatory spikes versus the current
value V for J = 0.8. The horizontal line corresponds to the average
global fraction b = 0.8. (b) Effective velocity field F.; as from
Eq. (6).

where we plot the effective velocity field
Fesg = Rlp —V + KJt(v)[se(1 + g) — gl. (6)

where the V-dependent sg replaces b. Interestingly, the ef-
fective velocity field does not cross the zero axis below
threshold, showing that the neuron effectively operates above
threshold, in spite of R(I) < Vi — RIy. So, we can conclude
that including the V dependence of sg into the neural dy-
namics helps solve the paradox of a neuron operating on
average below threshold. On a more quantitative level, we
can interpret Eq. (6) as a deterministic evolution equation
and thereby compute the firing rate v, as the inverse of the
time needed to reach the threshold Vy,, while starting from V,
(augmented by the refractory time). By inserting v and sg (V)
values obtained from the network simulations for J = 0.8,
we find v, = 77 Hz, to be compared with the observed rate
v = 50 Hz. The agreement is not as good as one might have
hoped for, but it should also be noted that Eq. (6) does not
account for the (strong) input fluctuations!

Moreover, the V dependence of sg still needs to be un-
derstood. Some light can be shed by arguing as follows. Let
us introduce the joint probability P(E, L) that an excitatory
spike reaches the neuron, when its membrane potential V €
L = [Vp, V], where V, is selected as the point where sg = b,
The standard Bayesian inference rule implies that

P(LIE)
P(L)

where P(A|B) denotes the probability of observing A, given B;
moreover P(E) = b, while P(L) is the probability of V > V),
and P(E|L) is just the average of sg over L. Let us now
focus on P(L|E)/P(L): This is the probability of V >V
when an excitatory spike arrives (rescaled to the unconditional
probability to stay in L). If excitatory spikes arrive in bursts,
for many of them the corresponding V value is relatively large
as a consequence of the excitation provided by the previous
spikes. Therefore, it is natural to expect P(L|E)/P(L) > 1.

P(EIL) = P(E),

This is precisely what we see in Fig. 10, where one can notice
that sg is larger than b close to threshold. Consistency then
imposes that sy < b further away.

B. Synaptic current: An Ornstein-Uhlenbeck process

The role of correlations can be analyzed from a different
point of view: Since the neuron is typically under the action
of a negative current, its membrane potential is kept away
from threshold (V < Vi). Only when relatively strong pos-
itive fluctuations of the input current arise, can the neuron
overcome the threshold and emit a spike. If the correlations
are sufficiently long lasting, the fluctuation may stand long
enough to allow for the emission of a sequence of spikes
and give rise to a “burst.” This mechanism has already been
investigated in the past to quantify the spiking activity of
a subthreshold neuron subject to Ornstein-Uhlenbeck (OU)
noise, finding that a long correlation time gives rise to a
bursting activity [30,34]. Unfortunately, we cannot make use
of their formulas, since the correlation time is not much longer
than t. We can, nevertheless, proceed in a purely numerical
way by approximating the input current / with the outcome of
an OU stochastic equation, namely,

TLI=<]>_I+$7

where (/) is the average current observed in the numerical
simulations of the quenched network, while t. is the input
correlation time and, finally, £ is a §-correlated white noise
(EHE( +1)) = 028(t). We have thereby tuned 7. and o>
until the neuron activity is characterized by the expected firing
rate and the corresponding C,. For J = 0.8, we have found
7, ~ 160 ms and o2 ~ 0.062. As a bonus, the resulting IST
distribution turns out to be quite similar to the expected one,
the major difference being the peak which, instead of being
located in 7 = 1 ms [see the inset in Fig. 3(c)], occurs for
T =~ 4 ms. Altogether, one can nevertheless conclude that the
OU approximation provides a reasonable description of the
input current.

We have implemented the same procedure for J = 0.5:
In spite of the similar bursting activity, the neuron operates
on average above threshold and we have not found any
way to parametrize the OU process so as to reproduce the
observed activity. On the other hand, a good reproduction of
the neural activity is found for J = 1 by assuming 7, = 145
and 0% = 0.28. Two interesting comments are in order: (i)
upon increasing the coupling, the correlation time does not
increase—it seems that 7 ~ 140—160 is an intrinsic property
of the network, and (ii) the noise amplitude increases by more
than a factor of 4, while passing from J =0.8 to J =1 and
this is the reason why the firing rate is larger in the latter case,
even though the neuron operates much more below threshold.
The increase of the effective noise can be attributed to two fac-
tors: A minor contribution comes from the increased coupling
strength (from 0.8 to 1); a more relevant contribution is the
increased fluctuations of the single-neuron activity quantified
by the C,.
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FIG. 11. The effective distribution Q(T') of interexcitatory spikes
received by a single neuron for J = 0.8. The black curve refers to the
quenched network, the red one to the renewal process approximation.
The horizontal axis is rescaled by the mean firing rate of the respec-
tive population of excitatory spikes.

C. Synaptic current: Symbolic correlations

We conclude this section by looking at correlations from
a different point of view. As shown in Sec. IV, the output
activity of the single neuron is well approximated by a RP, but
we do not expect the same to be true for the input, obtained
by superposing K independent such processes. To investi-
gate the way correlations manifest themselves, we separately
computed the IST distribution of all excitatory and inhibitory
spikes received by a given neuron.

In Fig. 11, we report the ISI distribution of excitatory
spikes (inhibitory spikes follow the same statistics) for both
the original quenched network (black curve) and within the
RP approximation (red curve). T represents the average sep-
aration between consecutive spikes, i.e., T is equal to the
average single-neuron ISI divided by 800—the total number
of incoming excitatory synaptic connections. The red curve
follows a clean Poissonian distribution, while the quenched
network exhibits a slower than exponential decay (in this time
range); furthermore, in the latter case, the first channel is
very large because of the unavoidable presence of avalanches
occurring in the quenched setup (see Ref. [6]). We attribute
most of the deviations from a pure exponential to the residual
presence of collective dynamics. In any case, this discrepancy
is a minor issue: The relevant correlations are those between
excitatory and inhibitory spikes, as revealed by the following
test. We have fed a single neuron with two different signals:
(i) a perfectly Poisson process composed of independent
excitatory and inhibitory spikes and (ii) a synthetic signal
built by assuming a Poisson distribution of consecutive spikes
with the same rate as the quenched network, but keeping
the original symbolic ordering (i.e., EEIEEEIE ..., where
the letters E/I means that the spike is either excitatory or
inhibitory) observed in the quenched network.

The resulting membrane-potential distributions of the neu-
ron are reported in Fig. 12. The black curve, obtained by
using the above-mentioned synthetic signal, is very similar to

P(V) T T T T T T
0.01F .

0.005r u

1 1 . L
2200 100 v [mv] 0

FIG. 12. Probability density of the membrane potential P(v).
The black curve exhibiting the divergence in v = 10 corresponds to
the synthetic signal described in text; the red curve is obtained by
feeding the neuron with a purely Poisson process with the same firing
rate.

the original distribution. On a quantitative level, the resulting
firing rate, the C,, and the PDF of the ISIs are very close to
the values exhibited by the RP approximation (deviations are
smaller than 1%): see the inset of Fig. 3(c). On the other hand,
the red curve, originating from the strictly Poisson process
is shifted toward very negative v values and nearly vanishes
close to the threshold, suggesting a very low firing activity as
indeed observed.

Altogether, this proves that the relevant correlations are
contained in the symbolic representation of the spike se-
quence. The very negative values of the membrane potential
displayed in Fig. 12 can raise doubts about the validity of the
LIF model. However, it should be recalled that the exponen-
tial integrate and fire neuron [35], successfully employed to
reproduce the neurophysiological characteristics of pyramidal
neurons in the cortex [36], reduces to the LIF neuron for very
negative membrane potentials. Moreover, the strong coupling
strength selected in this paper has been chosen to highlight
the role of correlations, but the phenomenon persists at lower
coupling strengths too.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have shown that upon increasing the
coupling strength J (and for J > 0.25), a slightly inhibitory
sparse network of LIF neurons operates increasingly below
threshold and yet fires at an increasingly fast rate. This claim
is supported by careful numerical simulations, tailored so as
to marginalize the effects of collective synchronization.

This counterintuitive, self-sustained activity observed in
quenched networks, disappears in annealed networks, i.e.,
in setups where the synaptic connections are continuously
randomly reshuffled. In the latter case, the neural activity is
both weaker and more homogeneous (for J = 0.8, the firing
rate drops by a factor of about 4). The difference between
quenched and annealed setups is reminiscent of replica sym-
metry breaking [16], but the anomaly of the phenomenon
is mitigated by the observation that the quenched-network
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FIG. 13. Neural activity for different delay times. The solid
curves all refer to t, = 0.55, while crosses refer to t; = 0.3. All
simulations are performed in a network with N = 10° neurons and
a connectivity K = 1000.

dynamics can be reproduced to a high degree of accuracy
by an approach, the RP approximation, which does not take
into account the structure of the synaptic connections. Still,
the comparison between quenched and annealed dynamics
(see Fig. 9 for the most enlightening representation) seems to
suggest the presence of a phase transition when J is increased.
It looks like the two regimes deviate from one another above
J = 0.25. This is reminiscent of the claim made by Ostojic
about the existence of two distinct asynchronous regimes [11].
This claim has been criticised in Ref. [17]; we are also unable
to find evidence of a qualitative difference between the two
regimes (above and below a supposedly critical point J,.).

Within the RP approximation, the neural activity is fully
characterized by the ISI distribution. In the limit of large
coupling strengths, such a distribution exhibits a power-law
decay, similar to what was found while studying the response
of a single neuron to OU processes [30,34] and similar to
experimental observations made in the sensorimotor cortex of
rats performing behavioral tasks [37]. It should, however, be
noticed that in our case, the scaling range is much smaller than
in the experimental observations.

The recursive process based on the RP approximation
proves rather accurate in spite of not taking into account
the delay. It is therefore natural to ask whether this is also
true in the quenched network. Simulations performed for

different delay values confirm a substantial independence of
the outcome on t,;. In Fig. 13, we compare the firing rate
and the C, obtained for 7; = 0.3 with the original simulations
(performed for 7; = 0.55).

Last but not least, we wish to comment on the peculiar
behavior of the network observed for large coupling strengths.
The strong firing activity is self-sustained by its burstiness
(signaled by the large C, values), which, de facto, provides
the relatively long correlations required to let a neuron below
threshold fire. This clarifies the reason why the theoretical
formula based on the assumption of §-correlated current
fluctuations fails to reproduce this regime. Recently, a more
sophisticated self-consistent approach has been developed,
where the Fokker-Planck equation has been augmented to
account for temporal correlations in the synaptic current [38].
Its (numerical) implementation to a weak-bursting regime
looks promising. It will be worth exploring its validity in a
more inhibition-dominated regime such as the one explored
in this paper. Interestingly, the bursting activity is reproduced
also assuming a strictly Poisson ISI distribution, but retaining
the correlations contained in the symbolic representation of
the spike types (i.e., excitatory versus inhibitory). A simple
quantification of such correlations might open yet another
route for a quantitative characterization of the neural activity.

Finally, we wish to stress that no specific properties of the
LIF neurons have been invoked for our approach to be valid.
Accordingly, we expect the RP approximation to be applicable
to different neural models such as the exponential and the
quadratic integrate and fire neurons, or conductance-based
models.

ACKNOWLEDGMENTS

A.T. received financial support by the Excellence Initia-
tive I-Site Paris Seine (Grant No. ANR-16-IDEX-008), by
the Labex MME-DII (Grant No ANR-11-LBX-0023-01) (to-
gether with A.P. and E.U.), and by the ANR Project ER-
MUNDY (Grant No ANR-18-CE37-0014), all part of the
French program Investissements d’ Avenir.

[1] A. S. Ecker, P. Berens, G. A. Keliris, M. Bethge, N. K.
Logothetis, and A. S. Tolias, Science 327, 584 (2010).

[2] A. Renart, J. de 1a Rocha, P. Bartho, L. Hollender, N. Parga, A.
Reyes, and K. D. Harris, Science 327, 587 (2010).

[3] R. M. Capocelli and L. M. Ricciardi, Kybernetik 8, 214 (1971).

[4] N. Brunel, J. Comput. Neurosci. 8, 183 (2000).

[5] E. Ullner, A. Politi, and A. Torcini, Chaos 28, 081106 (2018),

[6] A.Politi, E. Ullner, and A. Torcini, Eur. Phys. J. Spec. Top. 227,
1185 (2018).

[7]1 M. ]. E. Richardson and R. Swarbrick, Phys. Rev. Lett. 105,
178102 (2010).

[8] S. Olmi, D. Angulo-Garcia, A. Imparato, and A. Torcini, Sci.
Rep. 7, 1577 (2017).

[9] B. Dummer, S. Wieland, and B. Lindner, Frontiers Comput.
Neurosci. 8, 104 (2014).

[10] R. E. O. Pena, S. Vellmer, D. Bernardi, A. C. Roque, and B.

Lindner, Frontiers Comput. Neurosci. 12, 9 (2018).

[11] S. Ostojic, Nat. Neurosci. 17, 594 (2014).

[12] C. van Vreeswijk and H. Sompolinsky, Science 274, 1724
(1996).

[13] M. Volgushev, I. Kudryashov, M. Chistiakova, M. Mukovski, J.
Niesmann, and U. T. Eysel, J. Neurophysiol. 92, 212 (2004).

[14] A. Manwani and C. Koch, Neural Comput. 13, 1 (2001).

[15] L. A. Gatys, A. S. Ecker, T. Tchumatchenko, and M. Bethge,
Phys. Rev. E 91, 062707 (2015).

[16] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory
and Beyond: An Introduction to the Replica Method and its
Applications (World Scientific Publishing Co. Inc., Singapore,
1987), Vol. 9.

[17] R. Engelken, F. Farkhooi, D. Hansel, C. van Vreeswijk, and F.
Wolf, F1000Research 5, 2043 (2016).

[18] E. Ullner and A. Politi, Phys. Rev. X 6, 011015 (2016).

[19] A. Politi, A. Pikovsky, and E. Ullner, Eur. Phys. J. Spec. Top.
226, 1791 (2017).

023103-11


https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1007/BF00288750
https://doi.org/10.1007/BF00288750
https://doi.org/10.1007/BF00288750
https://doi.org/10.1007/BF00288750
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1063/1.5049902
https://doi.org/10.1063/1.5049902
https://doi.org/10.1063/1.5049902
https://doi.org/10.1063/1.5049902
https://doi.org/10.1140/epjst/e2018-00079-7
https://doi.org/10.1140/epjst/e2018-00079-7
https://doi.org/10.1140/epjst/e2018-00079-7
https://doi.org/10.1140/epjst/e2018-00079-7
https://doi.org/10.1103/PhysRevLett.105.178102
https://doi.org/10.1103/PhysRevLett.105.178102
https://doi.org/10.1103/PhysRevLett.105.178102
https://doi.org/10.1103/PhysRevLett.105.178102
https://doi.org/10.1038/s41598-017-01658-8
https://doi.org/10.1038/s41598-017-01658-8
https://doi.org/10.1038/s41598-017-01658-8
https://doi.org/10.1038/s41598-017-01658-8
https://doi.org/10.3389/fncom.2014.00104
https://doi.org/10.3389/fncom.2014.00104
https://doi.org/10.3389/fncom.2014.00104
https://doi.org/10.3389/fncom.2014.00104
https://doi.org/10.3389/fncom.2018.00009
https://doi.org/10.3389/fncom.2018.00009
https://doi.org/10.3389/fncom.2018.00009
https://doi.org/10.3389/fncom.2018.00009
https://doi.org/10.1038/nn.3658
https://doi.org/10.1038/nn.3658
https://doi.org/10.1038/nn.3658
https://doi.org/10.1038/nn.3658
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1152/jn.01166.2003
https://doi.org/10.1152/jn.01166.2003
https://doi.org/10.1152/jn.01166.2003
https://doi.org/10.1152/jn.01166.2003
https://doi.org/10.1162/089976601300014619
https://doi.org/10.1162/089976601300014619
https://doi.org/10.1162/089976601300014619
https://doi.org/10.1162/089976601300014619
https://doi.org/10.1103/PhysRevE.91.062707
https://doi.org/10.1103/PhysRevE.91.062707
https://doi.org/10.1103/PhysRevE.91.062707
https://doi.org/10.1103/PhysRevE.91.062707
https://doi.org/10.12688/f1000research.9144.1
https://doi.org/10.12688/f1000research.9144.1
https://doi.org/10.12688/f1000research.9144.1
https://doi.org/10.12688/f1000research.9144.1
https://doi.org/10.1103/PhysRevX.6.011015
https://doi.org/10.1103/PhysRevX.6.011015
https://doi.org/10.1103/PhysRevX.6.011015
https://doi.org/10.1103/PhysRevX.6.011015
https://doi.org/10.1140/epjst/e2017-70056-4
https://doi.org/10.1140/epjst/e2017-70056-4
https://doi.org/10.1140/epjst/e2017-70056-4
https://doi.org/10.1140/epjst/e2017-70056-4

ULLNER, POLITI, AND TORCINI

PHYSICAL REVIEW RESEARCH 2, 023103 (2020)

[20] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
Dynamics: From Single Neurons to Networks and Models of
Cognition (Cambridge University Press, Cambridge, 2014).

[21] D. Golomb, Scholarpedia 2, 1347 (2007).

[22] M. Mattia and P. D. Giudice, Neural Comput. 12, 2305 (2000).

[23] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman,
J. M. Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C.
Harris, M. Zirpe, T. Natschldger, D. Pecevski, B. Ermentrout,
M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller,
A. P. Davison, S. El Boustani, and A. Destexhe, J. Comput.
Neurosci. 23, 349 (2007).

[24] One should also remember that because of the refractory period,
T > 1.

[25] S. Ostojic, J. Neurophysiol. 106, 361 (2011).

[26] Here and everywhere power spectra are represented, they are
normalized in such a way that the total power is obtained by
integrating over all positive frequencies: 0 < f < +o0.

[27] J. Friedrich and W. Kinzel, J. Comput. Neurosci. 27, 65 (2009).

[28] B. Lindner, Phys. Rev. E 73, 022901 (2006).

[29] In finite networks, sample-to-sample fluctuations are expected.
Simulations of five different networks show that the standard
deviation of (v) is o, ~ 0.4, while that of C, is oc = 0.01.

Additionally, one expects the single steps of the recursive pro-
cedure are affected by statistical fluctuations: We have verified
that the uncertainty of (v) is about 0.05, while that of C, is
approximately 0.005.

[30] T. Schwalger and L. Schimansky-Geier, Phys. Rev. E 77,
031914 (2008).

[31] No appreciable differences can be noticed while referring to the
following iterates.

[32] Leaving aside the zero-frequency channel which contributes to
the average and is treated differently.

[33] The quantitative differences with the results for P; reported in
Ref. [10] are quite likely to be attributed to the lack of accuracy
in the integration scheme employed therein.

[34] R. Moreno-Bote and N. Parga, Phys. Rev. Lett. 92, 028102
(2004).

[35] N. Fourcaud-Trocmé, D. Hansel, C. Van Vreeswijk, and N.
Brunel, J. Neurosci. 23, 11628 (2003).

[36] L. Badel, S. Lefort, R. Brette, C. C. Petersen, W. Gerstner, and
M. J. Richardson, J. Neurophysiol. 99, 656 (2008).

[37] Y. Tsubo, Y. Isomura, and T. Fukai, PLoS Comput. Biol. 8,
e1002461 (2012).

[38] S. Vellmer and B. Lindner, Phys. Rev. Res. 1, 023024 (2019).

023103-12


https://doi.org/10.4249/scholarpedia.1347
https://doi.org/10.4249/scholarpedia.1347
https://doi.org/10.4249/scholarpedia.1347
https://doi.org/10.4249/scholarpedia.1347
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1152/jn.00830.2010
https://doi.org/10.1152/jn.00830.2010
https://doi.org/10.1152/jn.00830.2010
https://doi.org/10.1152/jn.00830.2010
https://doi.org/10.1007/s10827-008-0127-1
https://doi.org/10.1007/s10827-008-0127-1
https://doi.org/10.1007/s10827-008-0127-1
https://doi.org/10.1007/s10827-008-0127-1
https://doi.org/10.1103/PhysRevE.73.022901
https://doi.org/10.1103/PhysRevE.73.022901
https://doi.org/10.1103/PhysRevE.73.022901
https://doi.org/10.1103/PhysRevE.73.022901
https://doi.org/10.1103/PhysRevE.77.031914
https://doi.org/10.1103/PhysRevE.77.031914
https://doi.org/10.1103/PhysRevE.77.031914
https://doi.org/10.1103/PhysRevE.77.031914
https://doi.org/10.1103/PhysRevLett.92.028102
https://doi.org/10.1103/PhysRevLett.92.028102
https://doi.org/10.1103/PhysRevLett.92.028102
https://doi.org/10.1103/PhysRevLett.92.028102
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1152/jn.01107.2007
https://doi.org/10.1152/jn.01107.2007
https://doi.org/10.1152/jn.01107.2007
https://doi.org/10.1152/jn.01107.2007
https://doi.org/10.1371/journal.pcbi.1002461
https://doi.org/10.1371/journal.pcbi.1002461
https://doi.org/10.1371/journal.pcbi.1002461
https://doi.org/10.1371/journal.pcbi.1002461
https://doi.org/10.1103/PhysRevResearch.1.023024
https://doi.org/10.1103/PhysRevResearch.1.023024
https://doi.org/10.1103/PhysRevResearch.1.023024
https://doi.org/10.1103/PhysRevResearch.1.023024

