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A B S T R A C T   

This review paper offers an overview of the history and future of active inference—a unifying perspective on 
action and perception. Active inference is based upon the idea that sentient behavior depends upon our brains’ 
implicit use of internal models to predict, infer, and direct action. Our focus is upon the conceptual roots and 
development of this theory of (basic) sentience and does not follow a rigid chronological narrative. We trace the 
evolution from Helmholtzian ideas on unconscious inference, through to a contemporary understanding of action 
and perception. In doing so, we touch upon related perspectives, the neural underpinnings of active inference, 
and the opportunities for future development. Key steps in this development include the formulation of pre
dictive coding models and related theories of neuronal message passing, the use of sequential models for 
planning and policy optimization, and the importance of hierarchical (temporally) deep internal (i.e., generative 
or world) models. Active inference has been used to account for aspects of anatomy and neurophysiology, to offer 
theories of psychopathology in terms of aberrant precision control, and to unify extant psychological theories. 
We anticipate further development in all these areas and note the exciting early work applying active inference 
beyond neuroscience. This suggests a future not just in biology, but in robotics, machine learning, and artificial 
intelligence.   

1. Introduction 

Psychologists and neuroscientists are increasingly entertaining the 
idea of the brain as a “prediction machine”, which learns an internal (i. 
e., generative) model of the lived world – and of the consequences of its 
actions – to make sense of sensations, predict how the current situation 
will unfold (i.e., learning and perception), and to act in a purposeful 
manner (i.e., action selection, exploration-exploitation, planning, et 
cetera). This idea appears in several guises, including the Bayesian brain, 
the predictive brain, predictive processing, predictive coding, active inference 
and the free energy principle, to name a few. 

Here, we critically review the origins, scope and impact of this idea, 
in fields like psychology and neuroscience. For conceptual clarity, we 
focus specifically on active inference: a normative theory of sentient 
behavior that formalizes the “predictive brain” idea and provides a first- 
principle account of its computational and neuronal processes (Parr 
et al., 2022). 

While active inference is still relatively young, it has a growing 
impact across various disciplines. It is increasingly used by (for example) 

neuroscientists interested in the neural circuits supporting predictions 
and prediction errors (Bastos et al., 2012; Parr & Limanowski, Rawji, 
et al., 2021; Parr & Friston, 2018; Walsh et al., 2020); psychologists 
interested in how we deal with uncertainty and cognitive effort during 
decision-making (Parr et al., 2023; Rens et al., 2023), modelers inter
ested in the mechanisms of action-perception, exploration-exploitation 
and higher cognition (Friston, FitzGerald, et al., 2017; Friston, Lin, et al., 
2017; Pezzulo et al., 2015, 2018), clinicians interested in understanding 
aberrant behavior in psychopathology (Maisto et al., 2021; Van den 
Bergh et al., 2017), roboticists interested in self-supervised learning of 
world models and goal-directed behavior (Ahmadi & Tani, 2019; Tani
guchi et al., 2023), and neurophilosophers (Clark, 2015; Hohwy, 2013). 

This breadth of application is appealing, but risks creating a frag
mented picture and some uncertainty about its original commitments 
and conceptual implications. The aim of this brief manuscript is to help 
researchers using (or interested in) predictive coding and active infer
ence to “connect the dots” and orient themselves within a growing 
literature. Despite distinct lines of work — that emphasize different 
aspects of active inference — these applications all rest on the same core 
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principles. To foreground these core principles, we will look at the his
torical and conceptual origins of active inference—to illustrate how its 
core principles were introduced; then consider briefly how the scope of 
active inference has expanded into several disciplines—and finally look 
to future developments. Given the brevity of this treatment, we cannot 
provide a full introduction to active inference. Rather, we provide an 
overview of the narrative in (Parr et al., 2022), which interested readers 
can consult. 

In the next section, we briefly discuss the conceptual (and historical) 
roots of active inference in early views of prediction and action-based 
cognition. We then review some key developments of active inference, 
by focusing on landmark papers that explain how it stems from a single 
principle (namely, free energy minimization). We next consider its scope 
across perception, action, planning, etc. This brief review helps us make 
the point that active inference provides a unifying perspective on several 
cognitive topics and theories and across levels of understanding, from 
conceptual to neural. Finally, we briefly highlight some promising 
research directions that could expand the scope of active inference – and 
potentially its impact on psychology and neuroscience. 

2. The conceptual and historical roots of active inference 

Active inference has roots in various early theories in cognitive sci
ence (and beyond, in fields that would not necessarily use the label 
“cognitive”). One root is the idea that the brain carries a small-scale 
model of the environment and uses it to mentally simulate what-if ac
tions, instead of (or before) acting on the environment (Craik, 1943). 
This idea is foundational in cognitive science. For example, (Tolman, 
1948) proposed that humans, rodents and other animals find their way 
in a maze by first learning a mental model or “cognitive map”, rather 
than by considering which of their navigation actions were previously 
rewarded the most, as assumed by behaviorist formulations. 

Another root is the idea of (Helmholtz, 1866) that perception is an 
(unconscious) inference based on an internal generative model – that 
uses recurrent (top-down and bottom-up) counter-streams of processing, 
rather than bottom-up transduction of external sensations into internal 
representations (and later actions). This idea was later developed in 
psychology (Gregory, 1968, 1980) and computational neuroscience; 
giving rise to the “Bayesian brain” hypothesis (Doya et al., 2007) and to 
formulations of predictive coding as a possible neurobiological imple
mentation of perception-as-inference in the brain (Friston, 2005; Rao & 
Ballard, 1999). Beyond perception, other cognitive functions were later 
described in terms of inference, i.e., planning-as-inference (Botvinick & 
Toussaint, 2012). 

Yet another “root” is the idea of cyberneticists (Miller et al., 1960; 
Powers, 1973; Wiener, 1948) that goal-directed action proceeds by 
firstly setting up a desired state or observation (e.g., feeling warm), then 
monitoring the discrepancy – now referred to as a “prediction error” – 
between the preferred and sensed state (e.g., feeling excessively warm), 
and then selecting a course of action that reduces this discrepancy – 
where “action” is a suitcase word and can include any means to exert 
control over external stimuli; ranging from simple autonomic reflexes (e. 
g. thermoregulation) to sophisticated plans (e.g., visiting one’s favorite 
ice cream shop). A key result in this field – which coheres with the 
Helmholtzian perspective above – is the ‘Good regulator theorem’ of 
(Conant & Ashby, 1970), which argues that effective regulatory systems 
must [be a] model the environment they regulate. In a similar vein, in 
psychology, ideomotor theory proposed that action control is essentially 
anticipatory and that action are selected and controlled by their antic
ipated consequences or outcomes, not through stimulus-response 
(Hoffmann, 2003; Hommel, 2003; James, 1890). 

Besides cybernetics, there are other influential views that highlight 
the centrality of adaptive regulation for behavior and life itself. One 
example is the idea that living organisms are autopoietic systems, which 
create the conditions for their own existence. More recently, this idea 
has been framed as ‘self-evidencing’ (Hohwy 2016) – i.e., creatures seek 

out sensations that provide evidence for their continued existence. 
Intuitively, sensing our body temperature to be around 37 ◦C offers more 
evidence that we are still alive than body temperatures far from this 
value. The concept of autopoiesis gave birth to enactive approaches in 
philosophy (Maturana & Varela, 1980). From another angle, it has been 
postulated that a central imperative for living organisms is maintenance 
of physiological homeostasis (i.e., correction of deviations from 
preferred physiological states through reflexive actions) and the regu
lation of basic imperatives (Cannon, 1929) – but more modern theories 
emphasize that physiological regulation is fundamentally anticipatory 
(i.e., allostatic) (Sterling, 2012). Various researchers have proposed that 
closed-loop adaptive regulation (and not stimulus-response) is key to 
understanding not just physiology but (potentially) all cognitive pro
cessing (Cisek, 1999; Pezzulo & Cisek, 2016). 

Finally, another root is the idea that cognitive processes, such as 
learning, perception and decision-making, require an active engagement 
of organisms with the environment. One early example of this action- 
oriented perspective is the view of Gibson that perceiving things con
sists in seeing what to do or not to do with them, i.e., perceiving affor
dances (Gibson, 1979). More recently, various researchers proposed the 
necessity of a “pragmatic turn” in cognitive science and neuroscience – 
and the need to recognize the importance of action as part and parcel of 
our cognition (Buzsaki, 2019; Cisek & Kalaska, 2010; Cisek & 
Pastor-Bernier, 2014; Engel et al., 2016; Lepora & Pezzulo, 2015; 
O’Regan & Noe, 2001), rather than just a way to report “central” de
cisions, as assumed in conventional (serial) theories. 

Interestingly, each of these ideas implies a shift from reactive to 
predictive, enactive views of the brain. While a reactive brain waits for 
incoming stimuli, a predictive and active brain predicts external events 
(e.g., predictive coding) and actively gathers evidence (i.e., active 
sensing and active learning) to make sense of the world. While a reactive 
brain selects actions based on the past and present (e.g., the history of 
reinforcement and the current cue), a predictive brain actively imagines 
its preferred future and then makes this happen by acting (e.g., acts in a 
goal-directed manner). While a reactive brain maintains homeostasis, a 
predictive brain acts to anticipate needs and performs anticipatory 
regulatory (or allostatic) actions. 

All these (and other) views contributed to raising the importance of 
predictive and enactive views of the brain and of cognition. However, 
each of these perspectives were somewhat disconnected from one 
another and linked to different research traditions, which are sometimes 
seen as conflicting with one another (e.g., the Helmholtzian and the 
Gibsonian traditions). One benefit of active inference is that it helps 
unify and thereby advance these traditions, as we explain in the 
following Sections. 

3. The normative perspective of active inference – and how it 
has developed 

Active inference provides a normative perspective that unifies and 
advances the predictive and enactive views of brain and behavior. It 
does so by highlighting that several apparently disconnected accounts – 
identified by early theories – stem parsimoniously from the assumption 
that living organisms obey a single imperative: namely, they act to 
minimize their surprise,1 or more formally, their variational free energy. 

The mathematics of variational free energy minimization is beyond 
the scope of this article; we suggest to the interested readers to consult 
(Parr et al., 2022). Here, instead, we introduce the key concepts of the 
theory, by briefly reviewing (non-chronologically) selected landmark 
papers and linking them to the early theories. 

Active inference starts from a simple consideration: that to maintain 

1 Technically, surprise here refers to self-information (a.k.a., surprisal); 
namely, the implausibility of some (sensory) outcome under a (generative) 
model of how that outcome was generated. 
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their existence and integrity, all living organisms need to remain in a 
bounded set of characteristic states that basically define their place 
within an ecological niche; for example, a fish cannot live out of water. 
Using the lexicon of Bayesian inference, being out of water for a fish is a 
“surprising” state. Clearly a fish should avoid this surprise, and the idea 
generalizes to suggest that living organisms must avoid surprising states 
(Friston et al., 2010). If they did not, they would not be living organisms 
for long. Another way of looking at this is that everything (including me) 
is defined by being in some characteristic (attracting) set of states. 
Conversely, I am defined by the kinds of states I cannot be in. These are 
surprising states. 

A computationally tractable solution to surprise minimization is the 
minimization of an information-theoretic quantity – variational free 
energy – which is a function of two things: a generative model (i.e., a 
statistical model that describes how sensations are generated) and 
observed sensory data. This implies that a living organism must be 
equipped with a generative model – or in the lexicon of (Craik, 1943), a 
small-scale model – to predict the sensations generated by the world 
(and by the organism’s place in it). In Bayesian terms, a generative 
model comprises two things: a prior over the hidden (i.e., unobserved) 
variables of interest and a likelihood function that maps the hidden var
iables to observables (Bishop, 2006). See Fig. 1 for a schematic illus
tration of the organism’s generative model of the world and its relation 
with the generative process: the true environmental contingencies that 
generate its observations, which is inaccessible to the organism. 

Put simply, an organism can minimize variational free energy by 
aligning the predictions of its generative model and the data it observes. 
In different settings, this minimization has been described in various 
ways, such as the minimization of surprise, of prediction errors, or of the 
discrepancy between the model and the world. All of these are equiva
lent to the minimization of variational free energy under specific sets of 
assumptions. 

Interestingly, aligning the predictions derived from a generative 
model and data can be achieved in two ways: by changing the model 
predictions and by changing the observed data. The former corresponds 
to revising the agent’s beliefs (used in the technical sense of probability 
distributions over hidden variables) if they do not explain the data well. 
This is exactly the inferential view of perception of (Helmholtz, 1866). 
The latter corresponds to acting in the world to change the data that will 
be sampled next – to render them more like the organism’s prior pre
dictions. This latter perspective on action – and on its dependence on 
expected outcomes – is highly congruent with cybernetics (Miller et al., 
1960; Powers, 1973; Wiener, 1948) and ideomotor theory (Hoffmann, 
2003; Hommel, 2003; James, 1890). 

In sum, changing beliefs about the causes of data (i.e., perception) 
and changing the data (i.e., action) are two aspects of free energy 

minimization. In formal terms, they map to its two components: the 
minimization of divergence and the maximization of evidence, see  
Fig. 2. Recognizing that action and perception can be unified within a 
single formal imperative – the minimization of free energy – is one of the 
key innovations of active inference, which helps integrate and extend 
the early theories reviewed above. 

Regarding neural implementation, one of the most widely enter
tained hypotheses – about how the brain might implement perceptual 
inference – is predictive coding (Rao & Ballard, 1999). Fig. 3 shows the 
architecture of a predictive coding scheme as it might manifest in the 
cerebral cortex. In this predictive coding network, inference is realized 
by propagating predictions and prediction errors through top-down and 
bottom-up pathways, respectively, and by minimizing prediction errors 
across all levels. Interesting, predictive coding can be derived as a spe
cial case of variational free energy minimization (Friston, 2005). 

Fig. 1. Generative model and generative process in active inference. This 
Figure—reproduced from (Parr et al., 2022)—illustrates the structure of active 
inferential theories of brain function. Our worlds evolve according to some 
dynamical process that generates observations (y) from hidden states (x * ). Our 
internal models account for observations in terms of hypothetical hidden states 
(x). Our inferences about these states based upon our observations then drive 
actions (u) that intervene on the processes generating our sensations. 

Fig. 2. Perception and action play complementary roles in the minimi
zation of variational free energy. This Figure— reproduced from (Parr et al., 
2022)—highlights the relationship between action and perception via free en
ergy (F). Perception involves minimizing free energy by changing our beliefs 
(Q) about states (x). This effectively minimizes the divergence (DKL) between 
our beliefs and the probability of these states given sensory data (y). Action 
minimizes free energy through changing those parts of the free energy that 
depend upon sensory data—notably, the evidence or probability of data under 
our internal model. 

Fig. 3. The architecture of predictive coding. This Figure—reproduced from 
(Parr et al., 2022)—shows the message passing between populations of neurons 
under a predictive coding scheme as it might manifest in the layers of the ce
rebral cortex (separated into superficial layers I-III, layer IV, and deep layers 
V-VI). This shows predictions based upon expectations (μ) being subtracted 
from ascending signals to compute errors (ε), which are used to update ex
pectations. The subscripts indicate whether we are dealing with fast changing 
dynamical variables (x) or more slowly changing contextual variables (v) which 
act to link together different hierarchical levels, with hierarchy indicated by the 
bracketed superscripts. As we ascend the hierarchy, the variables we deal with 
become slower, such that the contextual variables at one hierarchical level 
evolve over the same timescale as the dynamical variables at the level above. 
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While predictive coding is a model of perception, it can be readily 
extended to encompass the role of action in the minimization of free 
energy (described above). The move from predictive coding to active 
inference can be realized by equipping predictive coding networks with 
simple motor reflexes. In this perspective, the motor system works by 
generating proprioceptive predictions (in the same way standard pre
dictive coding generates exteroceptive predictions) — and not motor 
commands, as conventionally proposed – and these proprioceptive 
predictions are realized through the motor reflexes (Adams et al., 2013). 

Subsequently, this theory was extended to also model autonomic 
control (Barrett & Simmons, 2015; Pezzulo, 2014; Seth et al., 2012). The 
general idea is that autonomic control might work by generating inter
oceptive predictions (i.e., homeostatic setpoints) and then fulfilling 
them through autonomic reflexes, in much the same way motor control 
might work by generating proprioceptive predictions and then fulfilling 
them through motor reflexes. This development of active inference helps 
connect it with theories of allostatic control (Sterling, 2012) and paves 
the way to a better understanding of our ability to model and control the 
internal milieu, not just the external environment. This stream of 
research underwrote novel approaches to psychopathology – as deficits 
of interoceptive processing (Paulus et al., 2019). 

So far, we have discussed active inference using generative models 
that characterize processes that unfold in continuous time (e.g., pre
dictive coding networks) and use continuous variables (i.e., the formal 
framework of dynamical systems and state-space models). However, 
many cognitive problems can be characterized at a distinct level: as 
(sequences of) discrete decisions. These include problems that require 
the selection of discrete responses during psychology experiments, the 
targets for saccades, or navigational trajectories in discretized environ
ments (Friston et al., 2017; Friston, Lin, et al., 2017). These problems 
can be modeled in active inference, using generative models that use 
discrete variables (and the formal framework of Partially Observable 
Markov Decision Processes). 

In addition to the two aforementioned components (priors and 
likelihood function), the generative models for active inference in 
discrete time often include a third component: the transition function, 
which describes the way in which hidden states change depending upon 
the agent’s actions (or sequences of actions, called policies). Crucially, 
these generative models have temporal depth and afford a novel capa
bility that was not available in simpler models: namely, planning. In 
simple terms, planning involves using the generative model to predict 

the consequences of different policies, scoring the policies according to 
how much they are expected to minimize free energy in the future and 
then (with some simplifications) select the best policy. 

This planning process induces a novel quantity – expected free energy 
– that is the functional that active inference uses to evaluate (and assign 
a prior to) policies and it is distinct from the notion of variational free 
energy discussed so far (Friston et al., 2017). The notion of expected free 
energy has been very useful in the development of active inference 
models of things like (bounded) decision-making, planning, 
exploration-exploitation and curiosity (Friston, Lin, et al., 2017; Parr & 
Pezzulo, 2021; Schwartenbeck et al., 2019). This is because this notion is 
richer than the common optimization objectives used in other formal 
frameworks (e.g., economic theory and reinforcement learning). This is 
because expected free energy considers jointly a pragmatic imperative 
(utility maximization) and an epistemic imperative (information gain, or 
the resolution of the uncertainty). Indeed, as Fig. 4 illustrates, it is 
possible to map expected free energy to various other formal notions (e. 
g., Bayesian surprise, Risk-sensitive control, Expected utility theory), by 
removing one or more of its terms. 

Active inference is a general scheme that can be applied to address 
various cognitive processes. Crucially, the functioning of active infer
ence is the same across all problems: what differs is the generative 
model, which is task specific. This implies that by designing the 
appropriate generative models, it is possible to address a variety of 
cognitive tasks with the same approach – and to pass from the normative 
perspective of active inference to specific implementations that have 
biological plausibility (Friston, Parr, et al., 2017; Parr & Friston, 2018). 

Here, a worked example may be helpful. To illustrate some of the 
principles we have outlined so far, we will consider how we might go 
about developing a model for a ubiquitous task in cognitive neuro
science—a delay period oculomotor task. This is a relatively simple task 
that can be performed by humans—and some animals—and that is 
designed to probe working memory function (Funahashi et al., 1989). 
The task sequence is as follows. First, a cross is presented on screen and 
our subject maintains fixation on this cross. A target then appears at one 
of several possible locations towards the periphery of the screen, but our 
subject still maintains fixation. The target then disappears and, after a 
‘delay period’, a stimulus appears to signify that the subject should make 
a saccadic eye movement to the location of the target. Successful per
formance of this task relies upon retaining a memory of the target 
location during the delay and response phases. 

To model this task, we must consider the data available to the sub
ject. In this case, these are the visual stimuli and proprioceptive inputs, 
and whether the correct action was chosen. To do so, we need to take 
account of the causes of these data. The causes of proprioceptive data are 
simply the direction in which our subject’s eyes are pointing. Visual 
outcomes, depend upon a combination of (1) gaze direction, (2) the 
intended target location, and (3) the current stage of the task (i.e., the 
fixation, target presentation, delay, or response stage). For each of these 
three variables, we must then specify how we expect them to evolve 
throughout the task. The gaze direction will transition from one step to 
the next based upon the decisions our subject makes. The intended 
target location will be fixed (although initially unknown) throughout 
the task. The task stage evolves predictably through a sequence of steps. 
Together, these beliefs about the way in which data are generated and 
the dynamics of the causes allow our subject to predict what will be 
observed next, and to update these beliefs when these predictions are 
violated. 

As outlined above, active inference equips models with prior beliefs 
about the relative plausibility of different choices based upon their 
relative expected free energies. In this model, the key part of the ex
pected free energy is a preference for receiving the ‘correct’ feedback 
outcome which is only available during the response phase of the task 
(see (Mirza et al., 2016) for a similar setup in the context of scene cat
egorisation, in which the main role of the expected free energy is to 
promote information seeking). It is this that prompts a saccade to the 

Fig. 4. Expected free energy and the way it can be mapped to different 
formal notions (e.g., Bayesian surprise, Risk-sensitive control, Expected 
utility theory) by removing one or more terms, denoted with numbers. 
This Figure—reproduced from (Parr et al., 2022)—expresses expected free 
energy in terms of beliefs about trajectories (indicated by the tilde ~). The 
additional symbols here, not in previous figures, are the π for policies and the C 
for preferences. Note that some terms (including term 1) are expressed in terms 
of expectations—i.e., averages under the subscripted distribution. 
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remembered target location. Finally, the predicted action must be 
executed. This depends upon resolving the error between the anticipated 
proprioceptive information given the inferred saccade and current 
proprioceptive input. The result is the sequence of steps shown in Fig. 5. 

The oculomotor control example illustrates how active inference can 
be concretely applied to study cognitive tasks, by designing (or learning) 
the appropriate generative models. Generative models represent formal 
hypotheses about how cognitive tasks are accomplished – hypotheses 
that can be validated with empirical data. A useful illustration of the 
design principles to realize (or train) generative models for different 
cognitive problems is provided in (Parr et al., 2022). This treatment 
makes a distinction between generative models in continuous time (that 
are useful to address motor control tasks) and discrete time (that are 
useful to address decision and planning tasks) and explains how these 
two types can be combined to form so-called hybrid or mixed generative 
models, in which discrete-time models are placed on top of 
continuous-time models. Furthermore, the generative models of active 
inference can be extended hierarchically, to model processes that unfold 

at different timescales. One example is the model of active listening 
processes, in which (for example) lower hierarchical levels deal with 
words and higher levels deal with sentences (Friston et al., 2021). 
Another example is a model of hierarchical action recognition that 
recognizes actions at different levels, from low level kinematics to 
higher level goals and intentions (Proietti et al., 2023). It is also possible 
to use hierarchical models to model hierarchies of control, in which 
lower-to-higher levels deal with autonomic imperatives (e.g., ensure a 
correct basic temperature) in increasingly complex ways (e.g., from 
thermoregulation to the goal-directed plan to buy water before a long 
run) (Pezzulo et al., 2015; Tschantz et al., 2021). These developments – 
from simple to more sophisticated (e.g., hierarchically and temporally 
deep) generative models has extended the range of cognitive models that 
have been addressed using active inference over the years. 

Another interesting realization is the fact that it is possible to derive a 
biologically motivated “process theory” for active inference in discrete 
time, by interpreting the specific operations (variational updates) 
required to minimize free energy as signals that are computed or 
exchanged across neurons (Friston et al., 2017). This is important 
because it permits crossing levels of explanation – from normative to 
mechanistic and neuronal – and to use active inference to simulate 
neuronal activity that would ensue from the performance of cognitive 
tasks (Friston, Parr, et al., 2017; Parr & Friston, 2018). 

Another important development of active inference regards precision 
control and its role in psychopathologies. In predictive coding, variables 
are encoded as Gaussian distributions and precision simply refers to the 
inverse of the variance of a distribution (Friston, 2005). Precision con
trol refers to a mechanism that optimizes the precision of (the distri
bution of) each variable of an organism’s generative model. It is 
important since it regulates the relative importance of top-down pre
dictions and bottom-up prediction errors across the hierarchy. This is 
because prediction errors that are assigned greater (lower) precision 
have greater (lower) impact on the belief updating and the ensuing 
inference. Veridical inference requires the precision of (the distribution 
of) each variable to be optimized, to reflect the signal-to-noise ratio of 
sensory signals – therefore highlighting a link between precision control 
and attention as gain control (Parr & Friston, 2019a) – or the importance 
of an organism’s prior preferences – reflecting the fact that an organ
ism’s innate drives or goal states can be encoded as highly precise priors 
(Pezzulo et al., 2015). Interestingly, when precision control fails, it can 
produce excessively rigid forms of inference (when priors fail to be 
updated in the light of novel evidence) or excessive sensitivity to stimuli 
(when belief revision follows the sensory input and its random fluctu
ations too closely—i.e., it overfits). These forms of aberrant inference, 
which depend sensitively on predicted precision, have been adopted to 
explain several psychopathological conditions, such as delusions, 
depression, psychosis, and many others (Barrett et al., 2016; Corlett & 
Fletcher, 2015; Edwards et al., 2012). In turn, these theories also speak 
to aberrant neuromodulation, since the precision of (the distribution of) 
different variables might be encoded by different neuromodulators, e.g., 
acetylcholine for the precision of the likelihood, noradrenaline for the 
precision of transitions, dopamine for the precision of policies, etc. (Parr 
& Friston, 2018). 

Yet another development regards the analysis of generative models 
during sleep or other ‘offline’ periods. It has long been hypothesized that 
learning generative models benefits from alternating on-line and off-line 
periods (Hinton et al., 1995). While on-line generative modelling max
imises accuracy (under complexity constraints), during off-line activity – 
in the absence of sensory data to “explain away” – model optimisation 
can focus on minimising complexity; for example, by removing redun
dant parameters (Friston, Lin, et al., 2017; Pezzulo et al., 2021). From a 
neuronal perspective, generative modelling during offline periods could 
be associated with (generative) replay activity in the hippocampus, the 
prefrontal cortex and other brain areas; but these links remain to be fully 
established (Foster, 2017; Schwartenbeck et al., 2023; Stoianov et al., 
2022). 

Fig. 5. A simulated oculomotor delay period task. This figure, taken from 
(Parr & Friston, 2019b) (published under a CC BY 4.0 license), shows simulated 
performance of a simple working memory task under active inference. Although 
simple, this task calls for planning (of our next saccade), recall (of the target 
location), and movement execution. The upper left images show a series of 
frames taken from the simulation, as if we were observing our participant’s 
eyes. The black arrows link these behavioural responses to the view of the 
stimulus screen from the time of the target (red) presentation to the response 
phase. A series of black dots show the (cumulative) trajectory of gaze direction. 
Because this model is formulated to have both continuous (prediction-error 
minimising) and discrete (sequential planning) parts, we can plot the trajectory 
both in terms of position and velocity (lower left) and in terms of the sequence 
of actions taken. 
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Finally, an interesting development regards the realization of active 
inference in which the free energy minimization extends “beyond the 
skull”, to model the ways multiple active inference agents engage in 
cooperative or competitive tasks (Friston & Frith, 2015; Maisto et al., 
2023) or construct their own niches (Constant et al., 2022). These and 
other works illustrate that the concept of free energy minimization can 
readily extend to multi-agent settings – including settings that go 
beyond the standard scope of cognitive science, such as morphogenesis 
(Friston & Levin, Sengupta, et al., 2015) and autopoiesis (Friston, 2013) 
– and hence potentially shed light on the relations between multiple 
nested levels of (self-)organization, from individual to social and cul
tural levels. 

In sum, we have highlighted various developments of active infer
ence, which encompass the complementary roles of perception and ac
tion in minimizing an organism’s variational free energy (and ensuring 
that it successfully avoids “surprising” and characteristic states), the 
proposal of biologically plausible architectures for continuous time 
predictive coding and action control, the realization of generative 
models for discrete decisions that afford planning and the minimization 
of expected free energy, the hierarchical extension of these models, the 
importance of precision control, and beyond. For each of these topics, 
we have cited some selected papers that the interested readers might 
want to consult for more detailed information. Clearly, this is not an 
exhaustive list, but each of these developments has been useful to 
develop models of increasingly complex cognitive and social functions; 
see (Parr et al., 2022) for a more exhaustive treatment of active 
inference. 

4. The benefits of unification 

In the previous Section, we saw that the scope of active inference 
touches several domains of psychology and neuroscience. Here, we 
foreground a benefit of this rapid expansion: namely, unification. 

Arguably, a main goal of cognitive psychology and neuroscience is 
explaining behavior and its neural foundations, in a comprehensive (if 
not a unified) way. Yet, to ensure methodological rigor, these disciplines 
usually adopt restricted laboratory settings that tend to isolate cognitive 
functions and obfuscate their relations (Maselli et al., 2023). Consider 
for example a mundane task that we solve almost every day: crossing a 
busy road. Even this relatively simple task engages several cognitive 
processes in a coordinated manner, such as perception (of the situation), 
memory (of past street crossing episodes), planning and action selection 
(of the best route), motivation (and the “why” of crossing), attention (to 
select the most relevant stimuli), etc. These processes are often studied 
in isolation using different paradigms leading to a proliferation of hy
pothesis and theories that assign each of them a distinct computational 
objective (and perhaps brain area) – therefore determining a very 
fragmented theoretical landscape. 

Active inference proceeds the other way around: it starts from a 
single principle and asks how far one can go with it. And to what extent 
it is possible to derive from that principle empirically testable hypoth
eses about behavior and its cognitive and neural mechanisms? This 
approach brings the benefits of unification, in at least six ways. 

First, active inference assumes that everything, from perception to 
action selection and learning ultimately serves to minimize variational 
free energy. A consequence of this is that one can align the (sometimes 
vague) conceptual terms used in psychology with crisp formal terms of 
free energy minimization. For example, one can assign things like 
attention to precision control. At the neuronal level, the fast updates – 
mediated by synaptic activity – might correspond to inferential pro
cesses that minimize free energy at a fast time scale, whereas the slower 
updates – at the level of synaptic efficacy – might correspond to learning 
processes that minimize free energy at a slower timescale. Precision 
dynamics might correspond to the activity of neuromodulators, which 
finesse the inference at multiple levels, for example, by increasing the 
post-synaptic gain of sensory or prediction error-units (Feldman & 

Friston, 2010). Oscillatory dynamics that are ubiquitous (and that often 
occur in synchrony) both within and across brain area might be signa
tures of temporal prediction and of the exchange of top-down and 
bottom-up information across hierarchical levels of the brain’s genera
tive model (Arnal & Giraud, 2012). 

Second, active inference suggests that cognitive functions – usually 
addressed in isolation – might be instead better understood by appealing 
to a unique process theory. For example, in prominent computational 
neuroscience theories, perception and action are two separate functions 
with different objectives and neural substrates. According to Bayesian 
decision theory (Robert, 2007), the goal of perception is to provide an 
accurate estimate of the agent’s state, whereas the goal of action se
lection is to maximize its expected utility. The former process is a 
precondition for the latter, implying an outdated, serial view of cogni
tive processing. Active inference holds that perception and action 
cooperate to minimize free energy, by minimizing divergence and 
maximizing evidence, respectively (Parr et al., 2022). Another example 
is the fact that in 20th-century cognitive science, working memory was 
considered as a separate storage that can be assessed by other compo
nents when needed; therefore, imposing a separation between infor
mation storage and information processing. In contrast, active inference 
models of hierarchical perception and action (Friston et al., 2021; Pez
zulo et al., 2018) treat memory of the previous state as intrinsic to the 
belief updating under generative or world models, across multiple 
timescales, which is in keeping with 21st-century accounts of working 
memory (Hasson et al., 2015). 

Third, active inference has the potential to unify different “levels of 
understanding” of cognitive processes. Marr famously introduced a 
distinction between computational, algorithmic and neural imple
mentation levels and argued that progress can be made within each level 
and by connecting different levels (Marr, 1982). Establishing links be
tween theories that operate at different levels is often challenging. 
Active inference helps establish firm relations across levels of descrip
tion. Rather than Marr’s tripartite distinction, in active inference it is 
more common to appeal to a distinction between normative theory and 
process theory (Friston et al., 2017). Free energy minimization is the 
normative objective of living organisms, whereas predictive coding and 
variational message passing are process-level theories that describe how 
the brain might support free energy minimization. Importantly, as 
shown by (Friston, 2005), under certain assumptions predictive coding 
can be directly derived by the minimization of variational free energy, 
connecting the two levels of explanation. A similar case can be made for 
the variational message passing schemes proposed to support discrete 
active inference in neural circuits (Friston et al., 2017). 

Fourth, unification endows existing constructs with validity, via the 
application of active inference across domains. One example is the 
development of theories of interoceptive inference and autonomic 
control (Barrett & Simmons, 2015; Pezzulo, 2014; Seth et al., 2012) by 
analogy with the functioning of action control (Adams et al., 2013). In 
this perspective, autonomic control works exactly like action control – 
namely, it aims to minimize a discrepancy between a predicted and a 
sensed signal – except that the “signal” refers to interoceptive streams 
rather than proprioceptive streams. Another example can be found in 
computational psychiatry, where numerous accounts of psychopathol
ogy appeal to a single mechanism: namely, aberrant precision control. 

Fifth, active inference has the potential to reconcile (or at least to 
contextualize) theoretical perspectives that have long been considered 
at odds in psychology, neuroscience and philosophy. One example is the 
Helmholtzian view that perception constitutes an inference about the 
entities of the external world that cause our sensations (Helmholtz, 
1866) and the Gibsonian view that perceiving consists in seeing action 
opportunities and affordances, not reconstructing a model of the 
external reality within the brain (Gibson, 1979). This apparent dialectic 
could be dissolved by considering that there are multiple ways to design 
generative models; specifically, a relevant distinction is between 
generative models that explicitly model the ways external states produce 
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sensations (a.k.a., environmental models) or the ways actions produce 
sensations (a.k.a., sensorimotor models) (Sims & Pezzulo, 2021; Pezzulo 
et al., 2023). Some active inference studies use generative models that 
include explicit beliefs about entities in the external world that cause 
sensations, such as one’s location in space (Friston et al., 2017). Other 
active inference studies use generative models that only consider the 
sensory consequences of one’s action, such as touch sensations that 
follow whisking at a given amplitude, but not explicit beliefs about 
objects ‘out there’ (Mannella et al., 2021). The latter generative models 
adhere more closely to the notions of affordance (Gibson, 1979) and of 
sensorimotor contingency (O’Regan & Noe, 2001), despite the fact they 
still entail inferential dynamics. Besides this specific topic, there is a 
vivid debate in philosophy that concerns the most appropriate way to 
consider active inference, in relation to internalist (Hohwy, 2013), 
externalist (Clark, 2013) or enactivist theories (Bruineberg et al., 2018). 

Finally, and importantly, the integrative perspective of active infer
ence could be valuable in characterising of sentient behaviour – 
considered here to be the capacity to infer states of the world and to act 
upon it with a sense of purpose (Friston, Da Costa, et al., 2023). This 
operational definition is satisfied by active inference when, and only 
when the generative model includes the consequences of action 
(mathematically, when the generative model includes priors over pol
icies based upon expected free energy). This notion of sentience is does 
not have any phenomenological commitments and is probably best read 
as ‘basic sentience’ in the sense of (Clark, 2023). 

Recently, there has been a proliferation of advanced Generative AI 
systems that process language, images and videos with very high accu
racy. However, in most cases, these systems learn passively from large 
predefined datasets and disregard agency – and the possibility to act 
upon the world with a purpose – to develop genuine understanding 
(Pezzulo et al., 2023). Active inference suggests a different path to un
derstand and simulate sentient behaviour, which focuses on the devel
opment of grounded world (i.e., generative) models, by actively 
engaging with the environment and by predicting the consequences of 

the requisite interactions. An open question for future research is 
whether the enactive and embodied approach of active inference has the 
potential to complement and advance the development and deployment 
of Generative AI. 

5. Opportunities for the future 

It’s Difficult To Make Predictions, Especially About the Future. Niels 
Bohr. 

The compass of active inference is expanding rapidly, but the land
scape of future opportunities may be even ampler. Here, we focus on 
some of the developments that we consider most promising and most 
likely in the near future. 

The first and perhaps most obvious direction for the future regards a 
deeper empirical scrutiny of active inference. A question that is some
times asked of active inference is whether any empirical findings could 
offer evidence for or against the framework. This can be a vexed ques
tion to answer as it constitutes a category error. A framework is not in 
itself a hypothesis. It is a way of formulating hypotheses. The relation
ship between active inference and empirical psychology is that we can 
formalize psychological theories in terms of the generative models that 
underwrite neurophysiological and behavioural responses. Equipped 
with a proposed model, the framework can be used to express a hy
pothesis, to predict the behaviour expected under that hypothesis, and 
to fit to measured data to formally compare alternative hypotheses. In 
other words, while active inference is an application of the free energy 
principle – which is a principle (i.e., method) rather than a theory 
(Friston, 2010) – theories tested under the active inference framework 
(e.g., those considered in this article) make specific empirical pre
dictions that can (and need to) be empirically validated. One example of 
this is the oculomotor delay period model shown in Fig. 5, which 
generate empirically testable predictions about oculomotor perfor
mance as a function of varying delay periods (Parr & Friston, 2019b). 
Various empirical studies are already addressing the empirical 

Box 1 
Glossary of technical terms. 

Active Inference: A normative framework that elucidates the neural and cognitive processes underlying sentient behavior, beginning with first 
principles. This framework posits that perception and action work in concert to minimize a shared functional known as variational free energy. 

Expected Free Energy: This is the quantity that is used in active inference to score action sequences or policies (and then to select between 
them). It takes into consideration both the pragmatic value of policies – or how close a policy’s expected outcomes are to the preferred outcomes 
– and their epistemic value (or information gain) – or how much the policy is expected to reduce uncertainty. 

Generative Model: A statistical model designed to explain the generation of observable content from unobservable, hidden (latent) causes. For 
instance, it clarifies the process by which a visual object gives rise to an image on the retina. Generative models serve a dual purpose: they allow 
the generation of novel, synthetic content and support the inference of hidden causes from observable data. From a technical standpoint, 
generative models encode the joint probability distribution governing both observables and hidden causes. 

Latent (or Hidden) Variable: An internal variable within a generative model, referred to as "latent" or "hidden" due to the fact that it cannot be 
directly observed, but must be inferred. 

Precision and precision-weighting: Precision denotes the inverse of variance or standard error, serving as a measure of the reliability or 
certainty associated with sensory information. Precision-weighting refers to the fact that in predictive coding and active inference, prediction 
errors are weighted by their respective precisions, therefore determining the extent to which sensory observations influence the process of 
updating beliefs. 

Predictive Coding: A computational framework in neuroscience that provides a possible neural implementation for the idea that perception 
consists in a process of inference. In hierarchical predictive coding networks, inference is realized by minimizing (precision-weighted) pre
diction errors across all hierarchical levels. In turn, this requires bidirectional loops between top-down processes (conveying predictions) and 
bottom-up processes (conveying prediction errors). 

Variational Free Energy: This is the functional (function of a function) that is minimized within the framework of active inference. It is also 
widely utilized in utilized in probabilistic modeling, statistical inference and machine learning. In its simplest instantiation, it corresponds to a 
summation of prediction errors, which quantifies the deviation of observed data from the predictions of the generative model. More formally, 
variational free energy serves as an upper bound on the negative logarithm of the evidence, which is the probability of observed data given a 
model.  
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predictions of predictive coding, such as how top-down and bottom-up 
dynamics support predictions and prediction errors, respectively 
(Walsh et al., 2020). However, active inference makes a number of 
specific predictions about (for example) the way the motor system works 
(Shipp et al., 2013) and the way higher cognitive functions are imple
mented (Pezzulo et al., 2018) that differ from mainstream theories and 
could be increasingly scrutinized by future studies. 

A second interesting direction for the future is assessing to what 
extent active inference – and more broadly, the free energy principle – 
can help us understand the evolution of complex neural circuits and life 
forms from simpler ones. Active inference suggests a possible path from 
the simple mechanisms that supported prediction and control in our 
earlier evolutionary ancestors to the more sophisticated abilities of our 
species (Pezzulo et al., 2022), but a comprehensive account of the 
evolution and “phylogenetic refinement” (Cisek, 2019) of living organ
isms remains to be fully developed (Friston et al., 2023; Friston, Fried
man, et al., 2023). 

A third interesting direction for the future regards the realization of 
advanced artefacts, such as AIs and robots, based on active inference. 
There have already been several successful robotic implementations of 
active inference, but the full potential of the theory has not yet been 
reached (Ahmadi & Tani, 2019; Lanillos et al., 2021; Priorelli et al., 
2023; Taniguchi et al., 2023). Interestingly, some of the central concepts 
of active inference, such as the importance of generative models and 
self-supervised, predictive learning, are becoming central in mainstream 
research in AI, as testified by the recent successes in generative AIs such 
as large language models. This creates an important opportunity, since 
(apart for their obvious technological impact), state-of-the-art AI sys
tems can be precious in advancing our understanding of living organ
isms, providing that they incorporate appropriate (design) principles 
(Pezzulo et al., 2023). 
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