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Abstract
In this report, we compare two different frameworks for a performance analysis of
the Gerchberg algorithm, considered either as an L2(RN) to LD) or as an L2(RN)
to L2(IRN) process. In the first case, the tool to be adopted for the analysis is the
singular value decomposition (SVD), in the second case, the tool is the eigensystem
analysis. We derive the relevant relationships in both cases and compare the final
formulas, to show how the two approaches can be considered interchangeable.

Categories and Subject Descriptors: [.4.5 [Image Processing and Computer
Vision]: Reconstruction - Transform methods

1 Introeduction

The problem of reconstructing an N-dimensjonal object function from its image obtained
through a linear, space-invariant, bandlimiting system is ill-posed, because in principle it has
not a unique solution. Indeed, any function with the same spectrum within the passband would
produce the same image. However, if the object has a compact support, by the Paley-Wiener
theorem the object Spectriun is an entire function, and can be known everywhere from its values
on any contour i CN, Even with a unique solution, the problem is still l-posed for lack of
stability. Noisy images would thus produce solutions that are very different from the original
object, and a regularization procedure is required to solve the problem,

The Gerchberg method [Gerchberg, 1974] is an iterative algorithm that regularizes the
problem by enforcing alternatively the compact support constraint and the known Spectral data.
A square-integrable function whose support is contained in a compact RN domain D can be seen
cither as an L4(D) function or as an L2(IRN) function that has been space-limited to D through a
cetlain space-limiting operator. The Gerchberg method can be shown to be equivalent to a filter
in the singular space of an L2(D) to LZ(RN) map or in the eigenspace of an L2(IRN) operator.
Thus filter has the effect of rejecting the components of the solution that are most affected by
system noise, and cause instability in the inversion problem. The number of iterations
performed takes the place of the regularization parameter. To stop the procedure at a given
iteration is equivalent to reject the high-order components in the solution. The L4(D) and the
L2(IRN} approaches have been both adopted for the performance analysis of the algorithm.
Among many other references, we mention here {Bertero and De Mol, 1996], for the first
approach, and [Gori and Wabnitz, 1985] for the second approach.

The aim of this report is to establish a relationship between these two approaches, showing
that they are perfectly equivalent. Tn Section 2, the two different analyses are performed
separately, and a comparison is made on the basis of the final filtering formulas and the
relationships between the eigenpairs in L2(RN) and the singular system of the LD} to LARN)
map. As a byproduct of this analysis, in Section 3, we derive the global impulse response, that
is, the impulse response due to both the bandlimiting linear system and the Gerchberg
reconstruction procedure. This derivation is only made in the framework of the L2(IRN)
eigensystem; a similar expression can be derived for the case of the singular system,




2 Performance analysis of the Gerchberg method
2.1 Singular Value Decomposition

Let F{x) be a square-integrable function of the N-dimensional variable x, whose support is
contained in the compact RN subset D. F(x) is thus an L2(D) function. Let 1(x) be the image of
F{x} through a linear bandlimiting operator Bp, whose passband is the N-dimensional domain
B. I{x} is certainly square-integrable, but, being the output of a bandlimited system, it will
assume nonzero values over the whole RN, and will thus he an LZ(RN) function. in formulas,
we have:
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The singular value decomposition of B consists in finding all the triples (uk, vk, A} such that:

(Bpu)(x) = A vi(x)
Mgl = vl = 1 | (6)

(Byvi)(x) = Ay (x)

where, as nsual, the asterisk denotes the adjoint operator, u(x) e L2(D), vi(x) € L2(IRN), and
the subscripts D and RN denote the Euclidean norms in L2(D) and in L2(IRN), respectively. Bp
is a compact operator, the singular values Ay are all positive, less than one, and accumulate to
zero. Since the singular functions u and vy form orthogonal complete bases for L2(D) and
L2(IRN), respectively, we can write:

Fx)= 2 (F, u)p wlx) | (7)
k=]

100 = 2, (1, viggn vilx) (8)
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where, as in (6), the subscripts D and RN mark operations in LZ(D) and in L2(RN),
respectively; they will be omitted hereafter, where no ambiguity is possible. From (1) and (6)-
(8):
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from which

(F, up) = L) (10)
A

and, substituting (10) in N,

Foy =y, Qvid o (11)
k=t Ak

Equation (11) is a reconstruction formula for F, assuming a perfect knowledge of the singular
functions and values, and the availability of a noiseless image, from which the coefficients of
the summation can be calculated as scalar products in RN. However, since the singular values
accumulate to zero faster than the noise components (see for example [Salerno, 1998, solution
(11) is unstable, and no good estimate can be obtained from a noisy data image.

Let us now consider the Gerchberg algorithm in the above setting. The procedure, which is
shown here to regularize formula (1 1), can be written as follows [Bertero and De Mol,1996]:

Fo(x) =0
,_ ; (12)
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where O is the identity operator. From {0) and (8), we have:
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and from an expression similar to (7), written for F,,_;, we have:
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Then, from (12)-(14) and the orthonormality of the singular functions:
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From (11) and (17), and from the mentioned properties of the singular values, we see that the
n-th estimate F, in the noiseless case converges to the object T as n goes to infinity. It is now
clear how the Gerchberg algorithm acts as a filter in the singular space of Bp. The smaller is n,
the more high-order components in the solution are attenuated, thus avoiding the strongest noise
components in (11). It is also obvious that knowing the behavior of the singular functions and
values it is possible to study from (17) the convergence rate of the al gorithm and the maximum
number of significant components in the solution for each value of the signal-to-noise ratio
(some useful references can be found in [Salerno, 19987).

2.2 Eigensystem analysis

Let us now note that our object F(x) is also an L2(RN) function vanishin g outside D. The image
I(x) can thus be thought of as the output of two cascaded L2(RN) operators: a band-pass
operator B

BLARN) — LARN): (2R = | B(xr) Kp(x - x) de' (18)
RN

where Ky is the same as in (5), and a space-limiting operator T

F(x) vV xe D
Tp: L2IRNY — LZ(RN); (TpF)(x) = , (19
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that is, we have
{x) = (BIHF)(x) . (20)

The search space of the iteration is L2(RN), but our procedure converges on F, which vanishes
outside D. The Gerchberg iteration in this case can be formalized as follows [Gori and Wabnitz,

1985]:

Fo(x)=0
(21)

Fo(x) = 1(x) + [(8 - BIp)Fo_i1(x)
BIp 18 a compact operator; its eigenfunctions thus form a complete base for L2(RN). The
eigenpairs (g, ) are all the LAIRN) functions, dy, and all (generally complex) numbers, L,
satisfying the following equation;

(BIpd) () = Wy Olx) . (22)

In a way similar to Equations (7)-(10), we can write
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thus, analogously to (11),

o0 I
Foo=y, L0 oy 27)
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The same considerations of Equation (11) hold true for this last reconstruction formula. From
(21), we can now derive a noniterative expression for the n-th iteration, as we did for Equation

(17

e .
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The same observations can be made for both (17) and (28). Let us now show how these
formulas are indeed the same.

2.3 Comparison between formulas (17) and (28)

Note that if we operate the following substitutions (see also [Bertero, 19921):

M= Vibe w0 =—— 0l i) = o) (29)

Vite

Equations (17) and (28) become the same, and, as far as the performance analysis of the
Gerchberg method is concerned, they are perfectly equivalent. This equivalence does not hold
anymore if (17) and (28), or, respectively, (11) and (27), are used as noniterative
reconstruction formulas for F. Indeed, in [Bertero and Pike, 1982] it is proved that Equations
(1) and (17) have some advantages over Equations (27) and (28) in order to obtain a
noniterative estimate of I,

3 Global impulse response

Let us consider the eigenspace approach. It is easy to see that the impulse response of the
bandlimiting system B is:

Kg(x — vl , RNxD
h(x,&_,):{ B(x — &) (x, &) e X , (30)

8] elsewhere

where Kg is given by Equation (5).

Cascading the Gerchberg algorithm to operator B7p will result in a global linear space-
variant system, whose impulse response will be, as is known, the output of the Gerchberg
procedure for a Dirac impulse input. We are able to derive all the expressions in the eigenspace
of the operator. Let us assume F(x) = 8(x — £). In this case, we have




(F, i) = | 80r - &) 6x) dx = o) 31)

and, from (28) and (26)

o0

Bl &)= X [ 1= (1= )] o) bu() (32)
k=1

hy(x, §) is the global impulse response of the system at the n-th iteration. The above equations
are valid if & e D, otherwise the output of the system is zero everywhere. Note that for n
mfinite we have h.o(x, &) = §(x — &) (perfect reconstruction), and for n=1 we have hi(x, &) =
h(x, £} as in equation (30) (PSF of the bandlimiting system).

References

Bertero, M., Pike, E.R., 1982, "Resolution in Diffraction-Limited Imaging, a Singular Value
Analysis: I. The Case of Coherent Hlumination", Optica Acia, Vol. 29, No. 6, pp. 727-
7406.

Bertero, M., 1992, "Sampling Theory, Resolution Limits and Inversion Methods”, in M.
Bertero and E.R. Pike (Editors), Inverse Problems in Scattering and Imaging, Adam
Hilger, Bristol, Philadelphia and New York, pp. 71-94.

Bertero, M., De Mol, C., 1996, “Super-Resolution by Data Inversion”, in E. Wolf Ed.,
Progress in Optics, Vol, XXXVI, North Holland.

Gerchberg, RW., 1974, "Super-resolution through Error-Energy Reduction”, Optica Acta,
Vol. 21, No. 9, pp. 709-720.

Gori, F., Wabnitz, S., 1985, "Modification of the Gerchberg Method Applied to
Electromagnetic Imaging”, in W.M. Boerner ef al., Bds., Inverse Methods in

Electromagnetic Imaging, NATO-ASI, Vol. C 143, Part 2, Reidel, Dordrecht, pp. 1189-
1203.

Salerno, E., 1998, "Superresolution Capabilities of the Gerchberg Method in the Band-Pass
Case: An Eigenvalue Analysis”, Int. J. of Imaging Systems and Technology, Vol. 9, No.
2/3, pp. 181-188.






