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Abstract
We consider a class of parabolic stochastic partial differential equations featuring an
antimonotone nonlinearity. The existence of unique maximal and minimal variational
solutions is proved via a fixed-point argument for nondecreasing mappings in ordered
spaces. This relies on the validity of a comparison principle.
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1 Introduction

This note is concerned with the existence of solutions to a class of parabolic stochastic
partial differential equations (SPDEs).

The typical setting that we have in mind is the equation

du − div(a(∇u)) dt − b(u) dt = f (u) dt + G(u) dW in (0, T ) × O (1.1)

suitably coupled with boundary and initial conditions, withO being a smooth bounded
domain of Rd and T > 0 a fixed final time.

Here, the real-valued variable u is defined on � × [0, T ] × O, a is monotone and
polynomial, f is Lipschitz continuous, and G is a Lipschitz-type operator, stochas-
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tically integrable with respect to W , a cylindrical Wiener process on the underlying
probability space (�,F ,P). The function b : R → R is nondecreasing, possibly
being nonsmooth, so that the corresponding term in the left-hand side of the equation
is indeed antimonotone.

Our aim is to prove that a variational formulation of relation (1.1) admits a solution,
whenever complementedwith suitable initial and boundary conditions. If b is Lipschitz
continuous or −b is nondecreasing and continuous such existence follows from the
classical theory by Pardoux [13] andKrylov-Rozovskiı̆ [8], see also Liu-Röckner [11].
By contrast, we focus here in the case of b linearly bounded but not continuous nor
nondecreasing.

This situation, to the best of our knowledge, has yet to be addressed. Indeed, the
possible discontinuity of− b prevents it from being even locally Lipschitz-continuous,
hence also the refined well-posedness results for SPDEs with locally monotone or
locally Lipschitz-continuous drift (see again [11]) cannot be applied.

The case of a nondecreasing but not Lipschitz continuous nonlinearity b in (1.1) pre-
vents from proving existence by a standard regularization or approximation approach.
In fact, the usual parabolic compactness seem to be of little use in order to pass to the
limit in the antimonotone term − b(u). We resort here in tackling the problem in an
ordered-space framework instead, by exploiting the fact that b is nondecreasing.

At first, we check the validity of a comparison principle by extending to the non-
linear frame of relation (1.1) the corresponding result by Chekroun et al. [6], see
Proposition 2.2. This comparison principle allows us to reformulate the existence issue
as a fixed-point problem for nondecreasing mappings in ordered spaces. By imple-
menting this fixed-point procedure, we check in Theorem 2.3 that Eq. (1.1) admits
variational solutions.

The variational solutions that we obtain via such order method are considered
in a strong probabilistic sense, i.e. not changing the original stochastic basis and
Wiener process. Let us stress that this is extremely satisfactory especially because no
uniqueness is to be expected for the Eq. (1.1). Consequently, if one tackled the problem
through classical approximation procedures and passage to the limit by stochastic
compactness arguments, the nonuniqueness of the limit problem would prevent from
obtaining probabilistically strong solutions by the classical procedure à la Yamada–
Watanabe [15]. The order argument that we employ is thus efficient in passing by this
problem and providing solutions in a strong probabilistic sense even if no uniqueness
is expected. Still, one can prove that the set of solutions admits unique maximal and
minimal elements in the sense of the pointwise almost-everywhere order.

Before going on, let us mention that order methods for proving existence for SPDEs
have already been used in the frame of viscosity solvability. The reader is referred to
the seminal papers by Lions and Souganidis [9,10] as well to [3,4] for a collection of
results in this direction. The novelty here is that we focus onweak solutions instead and
that comparison is combined with a fixed-point procedure. The fixed-point Lemma 4.1
corresponds indeed to an abstract version of Perron’s method.

The setting of the problem is discussed in Sect. 2 where we collect some prelimi-
naries and we state our main results, namely Proposition 2.2 (comparison principle)
and Theorem 2.3 (existence). The corresponding proofs are then given in Sects. 3 and
4, respectively.
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2 Setting andmain results

The aim of this section is to specify assumptions and introduce a variational for-
mulation for Eq. (1.1), by possibly allowing for additional dependencies in the
nonlinearities. Eventually, our main results Proposition 2.2 and Theorem 2.3 are also
presented.

Let (�,F , (Ft )t∈[0,T ],P) be a complete filtered probability space, where T > 0
is a given final time, W be a cylindrical Wiener process on a separable Hilbert space
U , and fix a complete orthonormal system (ek)k∈N of U . The progressive σ -algebra
on � × [0, T ] is denoted by P . For any Banach space E and r , s ∈ [1,∞) we denote
by Lr (�; E) and Lr (0, T ; E) the usual functional spaces of Bochner r -integrable
functions and by Lr

P (�; Ls(0, T ; E)) the space of progressivelymeasurable processes
ϕ : � × [0, T ] → E such that

E

(∫ T

0
‖ϕ(t)‖sE dt

)r/s

< ∞.

For any pair of separable Hilbert spaces E1 and E2, the symbolL 2(E1, E2) denotes
the space of Hilbert–Schmidt operators from E1 to E2.

Let O ⊂ R
d be nonempty, open, bounded set with Lipschitz boundary. We define

the separable Hilbert space

(S1) H := L2(O),

and endow it with its usual scalar product (·, ·)H and norm ‖·‖H . Moreover, we ask

(S2) V to be a separable reflexive Banach space, continuously and densely embedded
in H , that V and V ∗ are uniformly convex and that V ↪→ L4(O) continuously.

Throughout the paper, we identify H with its dual H∗ through its Riesz isomorphism,
so that the inclusions

V ↪→ H ↪→ V ∗

are continuous and dense. The norm in V and the duality between V ∗ and V will be
denoted by ‖·‖V and 〈·, ·〉V , respectively.

Assumption (S2) is fulfilled for each closed subspace ofW 1,p(O) for p ≥ 4d/(4+
d). In particular, homogeneous Dirichlet boundary conditions could be complemented
to (1.1) by letting u ∈ V = W 1,p

0 (O), other choices being obviously possible. The
requirement on V and V ∗ being uniformly convex relates to the validity of a suitable
Itô’s formula, [13, Thm. 4.1–4.2].

By allowing additional dependencies, we let the nonlinear function a : �×[0, T ]×
R
d → R

d in (1.1) possibly depend on time and realization as well. In particular, we
ask a to be a Carathéodory function, monotone and with p-growth with respect to the
last variable. This allows to define the operator A : � × [0, T ] × V → V ∗ as

〈Au, v〉V :=
∫
O
a(ω, t,∇u) · ∇v dx ∀u, v ∈ V .

By referring now directly to such operator, we assume the following
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(A1) A : � × [0, T ] × V → V ∗ is P ⊗ B(V )–B(V ∗) measurable;
(A2) for every (ω, t) ∈ �×[0, T ] andϕ,ψ, ζ ∈ V themap r �→ 〈A(ω, t, ϕ+rψ), ζ 〉V ,

r ∈ R, is continuous;
(A3) there exist constants cA > 0 and p ≥ 2 such that

〈A(ω, t, ϕ), ϕ〉V ≥ cA ‖ϕ‖p
V ,

for every (ω, t) ∈ � × [0, T ] and ϕ ∈ V ;
(A4) there exists a constant CA > 0 and a progressively measurable process h ∈

L1(� × (0, T )) such that, setting q := p/(p − 1),

‖A(ω, t, ϕ)‖qV ∗ ≤ CA ‖ϕ‖p
V + h(ω, t)

for every (ω, t) ∈ � × [0, T ] and ϕ ∈ V ;
(A5) for every increasing Lipschitz-continuous function σ ∈ C2(R) with σ(0) = 0

it holds

σ(ϕ) ∈ V ∀ϕ ∈ V ,

σ|V : V → V is locally bounded,

〈A(ω, t, ϕ)−A(ω, t, ψ), σ (ϕ−ψ)〉V ≥0 ∀ (ω, t) ∈ �×[0, T ], ∀ϕ,ψ ∈ V .

Note that (A1)–(A5) hold, for instance, with the choice a(ω, t, ξ) = α(ω, t)|ξ |p−2ξ

with α measurable, bounded, and uniformly positive.
By choosing σ(r) = r in condition (A5) one in particular has that A is monotone.

On the other hand, the choice σ(r) = r+ = max{r , 0} corresponds to the so-called
T-monotonicity of A, see [2,5]. These two functions, together with some locally reg-
ularised version of r+, see (3.4), are actually the only ones used in the analysis. This
would give the possibility of weakening assumption (A5), by explicitly referring to
these.

Starting from the Carathéodory function b : � × [0, T ] × R → R, nondecreasing
and linearly bounded in the third variable,we define the operator B : �×[0, T ]×H →
H as

B(ω, t, u)(x) = b(ω, t, u(x)) for a.e. (ω, t, x) ∈ � × [0, T ] × O.

In particular, we require B to fulfill

(B1) B is P ⊗ B(H)–B(H) measurable;
(B2) u1, u2 ∈ H , u1 ≤ u2 a.e. ⇒ B(·, u1) ≤ B(·, u2) a.e.
(B3) there exists a constant CB > 0 such that

|B(ω, t, u(x))| ≤ CB (1 + |u(x)|) ∀ u ∈ H , for a.e. (ω, t, x) ∈ �×(0, T )×O.

Note that no continuity is required on b nor or B.
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Again by possibly allowing additional dependencies, we let the operator F : � ×
[0, T ] × H → H be defined by

F(ω, t, u)(x) = f (ω, t, u(x)) for a.e. (ω, t, x) ∈ � × [0, T ] × O

where f : � × [0, T ] × R → R is a Carathéodory function, Lipschitz continuous
with respect to the last variable. Specifically, we directly assume on the operator F
the following:

(F1) F is P ⊗ B(H)–B(H) measurable;
(F2) there exists a constant CF > 0 such that,

∀ u1, u2 ∈ H : ‖F(·, u1) − F(·, u2)‖H ≤ CF‖u1 − u2‖H a.e. in � × (0, T );

(F3) there exists ϕF ∈ H such that F(·, ·, ϕF ) ∈ L2
P (�; L2(0, T ; H)).

Eventually, the operator G : � × [0, T ] × H → L 2(U , H) is required to satisfy

(G1) G is P ⊗ B(H)–B(L 2(U , H)) measurable;
(G2) there exists a constant CG > 0 such that, for every measurable subset Ō ⊂ O,

∞∑
k=0

∫
Ō

|G(ω, t, ϕ)ek − G(ω, t, ψ)ek |2 ≤ C2
G

∫
Ō

|ϕ − ψ |2

for every (ω, t) ∈ � × [0, T ] and ϕ,ψ ∈ H ;
(G3) there exists ϕG ∈ H such that G(·, ·, ϕG) ∈ L2

P (�; L2(0, T ;L 2(U , H))).

Assumption (G2) is a generalized Lipschitz-continuity requirement on G. It is not
difficult to check that it is satisfied when G has the form

G(ω, t, ϕ)ek = gk(ω, t, ϕ), k ∈ N,

where gk : � × [0, T ] × R → R, k ∈ N, is Carathéodory and

∞∑
k=0

|gk(ω, t, r) − gk(ω, t, s)|2 ≤ C2
G |r − s|2,

for every (ω, t) ∈ � × [0, T ] and r , s ∈ R.
Given the above positions, the variational formulation of (some extension to addi-

tional dependencies of) Eq. (1.1) along with variationally defined boundary conditions
and an initial condition reads

{
du + A(u) dt − B(u) dt = F(u) dt + G(u) dW in V ∗, a.e. in � × (0, T ),

u(0) = u0,
(2.1)

As the nonlinear term−B(u) is not monotone and not Lipschitz continuous, existence
for (2.1) does not follow from the classical theory [8,11,13]. In order to state our
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existence result, let us first recall a classical statement on well-posedness in case
B = 0: this is a consequence of the classical variational theory for stochastic evolution
equations (e.g. [13, Thm. 1.1]).

Lemma 2.1 (Case B = 0) Assume (S1)–(S2), (A1)–(A5), (F1)–(F3), and (G1)–(G3).
For any initial datum u0 ∈ L2(�,F0; H) and any h ∈ L2

P (�; L1(0, T ; H)) the
Cauchy problem

{
du + A(u) dt = h dt + F(u) dt + G(u) dW in V ∗, a.e. in � × (0, T ),

u(0) = u0
(2.2)

admits a unique solution u ∈ L2(�;C0([0, T ]; H)) ∩ L p
P (�; L p(0, T ; V )), in the

sense that

u(t) +
∫ t

0
A(s, u(s)) ds=u0+

∫ t

0
h(s) ds+

∫ t

0
F(s, u(s)) ds

+
∫ t

0
G(s, u(s)) dW (s) in V ∗

for every t ∈ [0, T ], P-almost surely.
The crucial tool in our analysis is a comparison principle for solutions to the Cauchy

problem (2.2) with respect to the data. We have the following.

Proposition 2.2 (Comparison principle) Assume (S1)–(S2), (A1)–(A5), (F1)–(F3),
and (G1)–(G3). Let

u10, u
2
0 ∈ L2(�,F0; H), h1, h2 ∈ L2

P (�; L1(0, T ; H)),

and let
u1, u2 ∈ L2(�;C0([0, T ]; H)) ∩ L p

P (�; L p(0, T ; V ))

be the unique solutions to the Cauchy problem (2.2) with respect to data (u10, h1) and
(u20, h2), respectively. If

u10 ≤ u20 a.e. in � × O, h1 ≤ h2 a.e. in � × (0, T ) × O,

then
u1(t) ≤ u2(t) a.e. in � × O, ∀ t ∈ [0, T ].

The proof of the comparison principle is given in Sect. 3 and corresponds to an
extension of the former analogous result byChekroun et al. [6] to the case of a nonlinear
operator A.

As the functions r �→ ±CB(1 + |r |), r ∈ R are Lipschitz-continuous, owing to
Lemma 2.1 we can uniquely find

u∗, u∗ ∈ L2(�;C0([0, T ]; H)) ∩ L p
P (�; L p(0, T ; V ))
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solving the Cauchy problems

⎧⎪⎨
⎪⎩
du∗ + A(u∗) dt

= −CB(1 + |u∗|) dt + F(u∗) dt + G(u∗) dW in V ∗, a.e. in � × (0, T ),

u∗(0) = u0,
(2.3)⎧⎪⎨

⎪⎩
du∗ + A(u∗) dt

= CB(1 + |u∗|) dt + F(u∗) dt + G(u∗) dW in V ∗, a.e. in � × (0, T ),

u∗(0) = u0,
(2.4)

respectively. Since−CB(1+|r |) ≤ 0 ≤ CB(1+|r |), an application of Proposition 2.2
ensures that u∗ ≤ u∗ almost everywhere.

We can now state our main result on existence of solutions for the Cauchy prob-
lem (2.1).

Theorem 2.3 (Existence) Assume (S1)–(S2), (A1)–(A5), (B1)–(B3), (F1)–(F3), and
(G1)–(G3), Then, for any initial datum u0 ∈ L2(�,F0; H) the Cauchy problem (2.1)
admits a solution u ∈ L2(�;C0([0, T ]; H))∩L p

P (�; L p(0, T ; V )), in the sense that

u(t) +
∫ t

0
A(s, u(s)) ds −

∫ t

0
B(s, u(s)) ds = u0 +

∫ t

0
F(s, u(s)) ds

+
∫ t

0
G(s, u(s)) dW (s) in V ∗

for every t ∈ [0, T ], P-almost surely. Moreover, one can uniquely find a minimal
solution umin and a maximal solution umax such that every solution u fulfils u∗ ≤
umin ≤ u ≤ umax ≤ u∗ a.e.

Theproof ofTheorem2.3 is presented inSect. 4 and relies on afixed-point procedure
for nondecreasing mappings. Note that no uniqueness for the Cauchy problem (2.1)
is to be expected. Indeed, the classical counterexample to uniqueness in R given by
the deterministic ODE problem

u′ = (max{u, 0})1/2, u0 = 0,

is included in the setting of Theorem 2.3. In this case, umin(t) = 0 and umax(t) = t2/4
for t ≥ 0.

Problem (1.1) and Theorem 2.3 allow for some generalizations. The analysis can
be extended to include other significant examples of operators B besides B = b(·).
For instance, one can consider nonlocal operators Bnl : � × [0, T ] × H → H in the
forms

Bnl (ω, t, u)(x):=
∫
O

ρ(ω, t, x − y)b(ω, t, u(y)) dy, u ∈ H , (ω, t, x) ∈ �×[0, T ]×O,
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where ρ : � × [0, T ] × R
d → R is a given random and time-dependent convolution

kernel and b is as before. It is not difficult to check that Bnl satisfies (B1) if ρ(·, z)
is P-measurable for almost every z ∈ R

d , b(·, w) is P-measurable for almost every
w ∈ R, ρ(ω, t, ·) isB(Rd)-measurable, and b(ω, t, ·) isB(R)-measurable for every
(ω, t) ∈ �×[0, T ]. Moreover, Bnl satisfies (B2) if ρ ≥ 0 almost everywhere and b is
increasing in its third variable. Finally (B3) holds for Bnl if ρ ∈ L1(�× (0, T )×R

d)

and b is linearly bounded in its third variable. Note that B is not necessarily Lipschitz-
continuous (and actually not even continuous) is its third variable since b may be
discontinuous in its third variable.

By suitably strengthening assumptions, some more general classes of operators G
can be considered aswell. In fact, the classical existence result in Lemma2.1 holds also
for operators G : �×[0, T ]×V → L 2(U , H) as well. In our framework, especially
in the context of the comparison principle in Proposition 2.2, such more general class
can be handled, provided that further compatibility conditions between A and G are
imposed. For example, ifG isP⊗B(V )/B(L 2(U , H))measurable and there exists
ϕG ∈ V such that G(·, ·, ϕG) ∈ L2

P (�; L2(0, T ;L 2(U , H))), then conditions (G1)
and (G3) are straightforwardly extended to this class. The modification of assumption
(G2) is more delicate: indeed, by simply requiring G to be Lipschitz-continuous from
H to L 2(U , H) would imply that G can be extended to the whole space H , and
the dependence on V would be absent. A relevant setting where we can allow for an
operator G defined on V is the following: V = H1(O) (or V = H1

0 (O), depending
on the choice of boundary conditions), p = 2 and assume

(A5)’ A(ω, t, ·) : V → V ∗ is linear for every (ω, t) ∈ � × [0, T ], and

〈
A(ω, t, ϕ) − A(ω, t, ψ), (ϕ − ψ)+

〉
V ≥ cA

∥∥∇(ϕ − ψ)+
∥∥2
H

∀ (ω, t) ∈ � × [0, T ], ∀ϕ,ψ ∈ V ;

(G2)’ ∃ C̃G ∈ (0,
√
2cA) such that, ∀(ω, t) ∈ � × [0, T ] and ∀Ō ⊂ O measurable, it

holds that

∞∑
k=0

∫
Ō

|G(ω, t, ϕ)ek − G(ω, t, ψ)ek |2 ≤ C2
G

∫
Ō

|ϕ − ψ |2 + C̃2
G

∫
O

|∇(ϕ − ψ)|2 ∀ ϕ, ψ ∈ V .

By additionally assuming (A5)’–(G2)’, the statement of Proposition 2.2 still holds.
We give some detail in this direction at the end of Sect. 3.

3 Comparison principle: proof of Proposition 2.2

We closely follow here the argument from [6], by adapting it to our nonlinear setting.
Under the notation of Proposition 2.2, we introduce the new variable u := u1 − u2
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and define h := h1 − h2 and u:
0 = u10 − u20. Then, u satisfies the Cauchy problem

⎧⎪⎨
⎪⎩
du + (A(u1) − A(u2)) dt

= h dt + (F(u1) − F(u2)) dt + (G(u1) − G(u2)) dW inV ∗, a.e.in� × (0, T ),

u(0) = u0.

Introduce now the operators

F̃ : � × [0, T ] × H → H ,

F̃(ω, t, ϕ) := F(ω, t, ϕ+u2(ω, t))−F(ω, t, u2(ω, t)), (ω, t, ϕ) ∈ � × [0, T ] × H ,

G̃ : � × [0, T ] × H → L 2(U , H),

G̃(ω, t, ϕ) := G(ω, t, ϕ+u2(ω, t))−G(ω, t, u2(ω, t)), (ω, t, ϕ) ∈ � × [0, T ]×H .

Note that F̃ and G̃ still satisfy assumptions (F1)–(F3) and (G1)–(G3), respectively.
Additionally, by definition we have

F̃(·, ·, 0) = 0, G̃(·, ·, 0) = 0. (3.1)

With this notation, the Cauchy problem for u can be equivalently rewritten as

{
du+(A(u1)−A(u2)) dt=h dt+F̃(u) dt + G̃(u) dW in V ∗, a.e. in (0, T ), P-a.s.

u(0) = u0.
(3.2)

Recall that we have u0 ≤ 0 a.e. in � ×O and h ≤ 0 a.e. in � × (0, T ) ×O. Along
with this notation, the assertion follows by proving that u(t) ≤ 0 a.e. in � ×O for all
t ∈ [0, T ]. We check this by showing that

(u(t))+ = 0 a.e. in � × O, ∀ t ∈ [0, T ]. (3.3)

In order to prove (3.3), we resort in an approximation of the positive part by means
of the sequence (σε)ε>0, defined in [6, § 2.4] as

σε(r) :=

⎧⎪⎪⎨
⎪⎪⎩
r if r > ε,
3

ε4
r5 − 8

ε3
r4 + 6

ε2
r3 if 0 < r ≤ ε,

0 if r < 0.

(3.4)

It is not difficult to check that σε ∈ C2(R) for every ε > 0, and that there exists a
constant M > 0, independent of ε, such that

|σ ′
ε(r)| + |σ ′′

ε (r)| + |σε(r)σ
′′
ε (r)| ≤ M ∀ r ∈ R, ∀ ε > 0. (3.5)
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Moreover, σε ≥ 0 for every ε > 0 and σε(r) ↗ r+ for all r ∈ R as ε ↘ 0. Defining
now the primitive functions

σ̂ε : R → [0,∞), σ̂ε(r) :=
∫ r

0
σε(s) ds, r ∈ R,

we introduce the functional 
ε : H → [0,∞) as


ε(ϕ) :=
∫
O

σ̂ε(ϕ), ϕ ∈ H .

We aim now at applying Itô’s formula to 
ε(u). This is indeed possible since 
ε is
Fréchet differentiable in H , with derivative given by

D
ε : H → H , D
ε(ϕ) = σε(ϕ), ϕ ∈ H .

Moreover, since V ↪→ L4(O), it follows that the restriction of D
ε to V is Fréchet
differentiable in V and its derivative is given by

D2
ε : V → L (V , H), D2
ε(ϕ)w = σ ′
ε(ϕ)w, ϕ,w ∈ V .

From (A5) we have that the restriction of D
ε to V takes values in V , and that
D
ε |V : V → V is strongly-weakly continuous. We can hence apply Itô’s formula
in the variational setting of [13, Thm. 4.2] and obtain


ε(u(t)) +
∫ t

0
〈A(s, u1(s)) − A(s, u2(s)), σε(u(s))〉V ds

= 
ε(u0) +
∫ t

0
(h(s), σε(u(s)))H ds +

∫ t

0

(
F̃(s, u(s)), σε(u(s))

)
H

ds

+
∫ t

0

(
σε(u(s)), G̃(s, u(s)) dW (s)

)
H

+ 1

2

∫ t

0

∞∑
k=0

(
σ ′

ε(u(s))G̃(s, u(s))ek, G̃(s, u(s))ek
)
H

ds

for every t ∈ [0, T ], P-almost surely. Since u0 ≤ 0 almost everywhere we have

ε(u0) = 0. Moreover, since h ≤ 0 and σε(u) ≥ 0 almost everywhere, the second
term on the right-hand side is nonpositive. Noting also that the second term on the
left-hand side is nonnegative by (A5), by taking expectations we infer that

E
ε(u(t)) ≤ E

∫ t

0

(
F̃(s, u(s)), σε(u(s))

)
H

ds

+ 1

2
E

∫ t

0

∞∑
k=0

(
σ ′

ε(u(s))G̃(s, u(s))ek, G̃(s, u(s))ek
)
H

ds.
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Now, by definition of σε, the uniform estimates (3.5), assumptions (F3) and (G3), and
the Dominated Convergence Theorem, letting ε ↘ 0 we infer that

1

2
E ‖u+(t)‖2H ≤ E

∫ t

0

(
F̃(s, u(s)), u+(s)

)
H

ds + 1

2
E

∫ t

0

∞∑
k=0

∫
{u(s)≥0}

|G̃(s, u(s))ek |2 ds

= E

∫ t

0

∫
{u(s)≥0}

(
F̃(s, u(s)), u+(s)

)
H

ds + 1

2
E

∫ t

0

∞∑
k=0

∫
{u(s)≥0}

|G̃(s, u(s))ek |2 ds

for all t ∈ [0, T ]. By using theHölder inequality, the Lipschitz-continuity assumptions
(F2) and (G2) on F̃ and G̃, together with the fact that F̃(·, 0) = G̃(·, 0) = 0 from
(3.1), we deduce that

1

2
E ‖u+(t)‖2H ≤

(
CF + 1

2
C2
G

) ∫ t

0
E ‖u+(s)‖2H ds. (3.6)

Hence, (3.3) follows from the Gronwall lemma, and Theorem 2.2 is proved.
With specific reference to the discussion at the end of Sect. 2, let us now mention

how the proof can bemodified in case of an operatorG : �×[0, T ]×V → L 2(U , H)

fulfilling (A5)’–(G2)’. Indeed, the same argument above leads to the following version
of relation (3.6)

1

2
E ‖u+(t)‖2H + cA E

∫ t

0

∥∥∇u+(s)
∥∥2
H ds

≤
(
CF + 1

2
C2
G

) ∫ t

0
E ‖u+(s)‖2H ds + C̃2

G

2
E

∫ t

0

∥∥∇u+(s)
∥∥2
H ds.

Condition C̃G ∈ (0,
√
2cA) from (G2)’ allows to rearrange terms and conclude for

u+ = 0.

4 Existence of solutions: proof of Theorem 2.3

Asanticipated, the proof ofTheorem (2.3) relies on afixed-point tool for nondecreasing
mappings in ordered sets. Let us start by recalling some basic notion.

Let (E,�) denote a nonempty ordered set and F ⊂ E . We recall that f ∈ F is a
maximal (minimal) element of F iff, for all f ′ ∈ F , f � f ′ ( f ′ � f , respectively)
implies f = f ′ and that f is the maximum (minimum) of F iff f ′ � f ( f � f ′,
respectively) for all f ′ ∈ F . Moreover, e ∈ E is an upper bound (lower bound) of F
iff f � e (e � f , respectively) for all f ∈ F and e ∈ E is the supremum or least upper
bound (infimum or greatest lower bound) iff e is the minimum (maximum) of the set
of upper bounds (lower bounds, respectively) of F . Eventually, we say that F is a
chain if it is totally ordered and that F is an interval iff there exist e∗, e∗ ∈ E such that
F ≡ {e ∈ E : e∗ � e � e∗}. In the latter case we use the notation F = [e∗, e∗]. The
set (E,�) is said to be s-inductive (i-inductive) iff every chain of E is bounded above
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(below, respectively) and (E,�) is said to be completely s-inductive (completely i-
inductive) iff every chain of E has a supremum (infimum, respectively). Finally (E,�)

is said to be inductive (completely inductive) iff it is both s-inductive and i-inductive
(completely s-inductive and completely i-inductive, respectively).

Let us choose E := L2
P (�; L2(0, T ; H)) and specify

v1 � v2 iff v1 ≤ v2 a.e. in � × (0, T ) × O, v1, v2 ∈ E .

By fixing a tentative ũ ∈ E in the nonlinearity −B(ũ), one recalls assumptions (B1)
and (B3) giving B(ũ) ∈ L2

P (�; L2(0, T ; H)). By using Lemma 2.1, one uniquely
finds

u ∈ L2(�;C0([0, T ]; H)) ∩ L p
P (�; L p(0, T ; V )) ⊂ E

solving the Cauchy problem

{
du + A(u) dt = B(ũ) dt + F(u) dt + G(u) dW in V ∗, a.e. in � × (0, T ),

u(0) = u0.

This defines a mapping S : E → E as

S(ũ) := u.

The function u ∈ E is hence a solution of the Cauchy problem (2.1) if and only if it
is a fixed point of S. We will use the following fixed-point lemma.

Lemma 4.1 (Fixed point) Let (E,�) be an ordered set and I := [e∗, e∗] ⊂ E be
completely inductive. Suppose that S : (I ,�) → (I ,�) is nondecreasing. Then, the
set of fixed points {u ∈ I : u = S(u)} is nonempty and has a minimum and a
maximum.

This fixed-point result was announced by Kolodner [7] and turns out to be the main
tool in the analysis of [12,14]. Its proof is to be found, for instance, in [1, Thm. 9.26, p.
223]. This fixed-point lemma corresponds indeed to an abstract version of the classical
Perron’s method. In particular, in order to identify the unique minimal fixed point of
S one subsequently proves that the set of subsolutions A := {v ∈ I : v � S(v)}
is non-empty, A with the induced order is completely s-inductive, A has a maximal
element u, and u is a fixed point for S.

In order to apply the fixed-point Lemma 4.1 we define e∗ = u∗ and e∗ = u∗, where
u∗ and u∗ are the unique solutions to (2.3) and (2.4), respectively, and check that (1)
I is completely inductive, (2) S is nondecreasing, and (3) S(I ) ⊂ I .

Ad (1) Let ∅ �= F ⊂ I be a chain. For almost all (ω, t, x) ∈ � × (0, T ) × O
we have (sup F)(ω, t, x) = sup{u(ω, t, x) | u ∈ F} and (inf F)(ω, t, x) =
inf{u(ω, t, x) | u ∈ F}, so that sup F, inf F ∈ I . Hence, I is completely
inductive.

Ad (2) Take ũ1 � ũ2 and recall that u1 = S(ũ1) and u2 = S(ũ2) are the unique
solutions to the Cauchy problem (2.2) with h replaced by h1 = B(ũ1) and
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h2 = B(ũ2), respectively. As B is nondecreasing, we have that h1 � h2. By
applying Proposition 2.2 we then find u1 � u2. This proves that S(ũ1) �
S(ũ2), namely S is nondecreasing.

Ad (3) Let ũ ∈ I and set u = S(ũ). As u∗ � ũ and B is nondecreasing, we have that
B(u∗) � B(ũ). Assumption (B2) ensures that we have that

−CB(1+|v|) ≤ |B(·, v)| ≤ CB(1+|v|) ∀ v ∈ H , a.e. in�×(0, T )×O. (4.1)

Consequently, we deduce that

−CB(1 + |u∗|) ≤ B(·, u∗) ≤ B(·, ũ) a.e. in � × (0, T ) × O.

Noting also that u∗(0) = ũ(0) = u0, we can apply Proposition 2.2 with the choices
u10 = u20 = u0, h1 = −CB(1 + |u∗|), and h2 = B(·, ũ) and deduce that u∗ � S(ũ).
An analogous argument entails the upper bound S(ũ) � u∗, so that u∗ � S(ũ) � u∗
or, equivalently, S(ũ) ∈ I .

We are hence in the position of applying Lemma 4.1 and find that the set of fixed
points of S in I is nonempty and has (unique) maximum and minimum. The proof
of Theorem 2.3 follows then by checking that all solutions u to the Cauchy problem
(2.1) necessarily belong to I . This follows by applying once again Proposition 2.2 and
using relations (4.1).

The comparison principle from Theorem 2.2 can be used to constructively find a
solution to someweaker version of theCauchy problem (2.1) by an iterative procedure.
Indeed, in the setting of Theorem 2.3 one can let u0 = u∗ (an analogous argument
applies to the choice u0 = u∗) and iteratively define a sequence (un)n by letting

un+1 = S(un), (4.2)

i.e., by variationally solving

dun+1+A(un+1) dt = B(un) dt+F(un+1) dt+G(un+1) dt, un+1(0)= u0, n≥1.
(4.3)

Owing to the fact that S is nondecreasing, one readily checks that

u0 = u∗ � S(u∗) = u1 ⇒ u1 = S(u0) � S(u1) = u2 ⇒ un � un+1,

so that the sequence (un)n is nondecreasing. Since un+1 = S(un) � u∗, theMonotone
Convergence Theorem ensures that un → u strongly in L2

P (�; L2(0, T ; H)) to some
limit u. The linear bound on B and the classical estimates entail sufficient compactness
to pass to limits in (4.3).Most notably, as B is not decreasing and linearly bounded, the
sequence B(un) is also monotonically converging, namely, B(un) → B̂ strongly in
L2
P (�; L2(0, T ; H)). As u �→ b(ω, t, u) is not required to be continuous, one cannot

conclude that B̂ = b(·, u) a.e. Rather, we obtain the weaker identification B̂ ∈ b(·, u)

a.e., where, for all (ω, t) ∈ � × [0, T ], we have defined

b(ω, t, z) := {ξ ∈ R : ∃ zn → u inR, b(ω, t, zn) → ξ}, (ω, t, z) ∈ �×[0, T ]×R.
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Namely, b(ω, t, ·) corresponds to the closure in R × R of the graph of b(ω, t, ·). In
particular, in case b is discontinuous in its third argument, the iterative procedure (4.2)
does not allow to recover the existence result of Theorem 2.3.
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