Top-Down Query Answering for Logic Programs
over Bilattices

Umberto Straccia

I.S.T.I.-C.N.R.,
Via G. Moruzzi,1 1-56124 Pisa (PI) ITALY
straccia@isti.cnr.it

Techincal Report

November 9, 2004

Abstract

Bilattices are generalizations of classical logics allowing reasoning with par-
tial, incomplete, uncertain and/or inconsistent information and have interesting
mathematical properties for both practical as well as theoretical investigations.
In this paper we present a very simple, yet general, top-down query answering
procedure under the Kripke-Kleene semantics as well as under the well-founded
semantics for logic programs over bilattices.

Category: F.4.1: Mathematical Logic and Formal Languages: Mathematical Logic: [Logic and
constraint programming]

Category: 1.2.3: Artificial Intelligence: Deduction and Theorem Proving: [Logic program-
ming]

Terms: Theory
Keywords: Logic programs, uncertainty, bilattices, top-down query answering

1 Introduction

The management of uncertainty within deduction systems is an important issue whenever the
real world information to be represented is of imperfect nature. In logic programming, the
problem has attracted the attention of many researchers and numerous frameworks have been
proposed. Essentially, they differ in the underlying notion of uncertainty (e.g. probability the-
ory [25, 34, 44, 45, 46, 47, 48, 49, 55, 56, 64], fuzzy set theory [8, 57, 60, 62, 63], multi-valued
logic [12, 13, 14, 15, 16, 17, 29, 30, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 50, 51, 52, 53, 54],
possibilistic logic [19]) and how uncertainty values, associated to rules and facts, are managed.

Apart from the different notion of uncertainty they rely on, these frameworks differ in the way
in which uncertainty is associated with the facts and rules of a program. With respect to this
latter point, these frameworks can be classified mtmotation basedAB) and implication
based(IB), which we briefly summarize below. In the AB approach, a rule is of the form
A: f(B1,...,0Bn) < B1: B1,...,Bn : Bn, Which asserts “the certainty of atorhis at least

(orisin) f(B1,...,B), whenever the certainty of atof; is at least (orisinp;, 1 <: < n”.

Here f is ann-ary computable function ang} is either a constant or a variable ranging over an
appropriate certainty domain. Examples of AB frameworks include [29, 30, 55, 56]. In the IB
approach, a rule is of the ford < B, ..., B,,, which says that the certainty associated with

the implicationB; A ... A B,, — A is a. Computationally, given an assignmentf certainties

to the B;s, the certainty ofA is computed by taking the “conjunction” of the certainti€s3;)

and then somehow “propagating” it to the rule head. The truth-values are taken from a certainty
lattice. Examples of the IB frameworks include [34, 35, 54, 60] (see [12, 35] for a more detailed
comparison between the two approaches). More recently, [12, 17, 35, 62] show that most of the
frameworks can be embedded into the IB framework (some exceptions deal with probability the-
ory). However, most of the approaches stress an important limitation for real-world applications,
as they do not address any modenofi-monotonic reasonin@n particular, no negation opera-

tion is defined). The need of non-monotonic formalisms for real-world applications is commonly
accepted: our knowledge about the world is almost alMvimy@mpleteand, thus, we are forced to
reason in thabsence of complete informatioBxception to this limitation are [48, 55] in which

the stable semantics has been considered, but limited to the case where the underlying uncer-
tainty formalism is probability theory. That semantics has been considered also in [63], where
a semi-possibilistic logic has been proposed, a particular negation operator has been introduced
and a fixed min/max-evaluation of conjunction and disjunction is adopted. In [16] the underlying
truth-space are lattices, while [37, 38, 39] are baseditattices[27], a slightly more general
structure than lattices.

In this paper we will present a goal-oriented/top-down query procedure for logic programs
over bilattices [20, 21, 22, 23]. Bilattices are obvious generalizations of three-valued truth to
many-valued truth allowing reasoning with partial, incomplete, uncertain and/or inconsistent
(notably, paraconsistent logic programming [1, 3, 6, 15]) information and having interesting
mathematical properties for both practical as well as theoretical investigations [27] (see also
[39], as an example of extension of logic programs over bilattices to the IB framework). The
procedure we will present is quite general and inspired to [2], which presents a top-down pro-
cedure for computing the minimal fixed-points of a system of equations of monotonic functions
over lattices. We adapt it and extend it to the query answering undevetidounded seman-
tics [61] over bilattices [20, 21, 23]. We will also address the computational complexity issue.
To the best of our knowledge the only work addressing the above issue are [13, 30, 35, 62], but
no non-monotonicity is considered.

The structure of the paper is as follows. In order to make the paper self-contained, in the
next section, we will briefly recall definitions and properties of bilattices and logic programs
over bilattices. Section 3 is the main part of this work, where we present our top-down query
procedure and the computational complexity analysis, while Section 4 concludes.

2 Preliminaries

We start with some well-known basic definitions and properties of lattices, bilattices and logic
programs.

2.1 Lattices

A lattice is a partially ordered sef = (L, <) such that every two element sgt,y} C L
has aleast upper boundub<(z,y) (called thejoin of z andy), and agreatest lower bound
glb<(x,y) (called themeetof x andy). For ease, we will writec < y if x < y andz # y. A
lattice (L, <) is completeif every subset ofL has both least upper and greatest lower bounds.
Consequently, a complete lattice has a least elemengnd a greatest elemernit For ease,
throughout the paper, given a complete lattiée <) and a subset of elemen$sC L, with <-
leastand <-greatestwe will always mearylb<(S) andiub<(S), respectively. Withnin<(.5)
we denote the set of minimal elementsdw.r.t. <, i.e.min<(S) = {x € S: Ay € S s.t. y <
z}. Note that whileglb<(.S) is unique,| min<(S)| > 1 may hold. Ifmin<(S) is a singleton
{z}, for convenience we may also write = min<(S) in place of{z} = min<(S). An
operatoron a lattice(L, <) is a function fromL to L, f: L — L. An operatorf on L is
monotone if for every pair of elements;,y € L, x < y implies f(z) < f(y), while f is
antitoneif z < y implies f(y) < f(z). A fixed-pointof f is an elementz € L such that
f(z) ==

The basic tool for studying fixed-points of operators on lattices is the well-known Knaster-
Tarski theorem [59].

Proposition 1 ([59]) Let f be a monotone operator on a complete lattide <). Thenf has

a fixed-point, the set of fixed-points pfis a complete lattice and, thug, has a=<-leastand

a <-greatesfixed-point. The<-least(respectively=<-greatestfixed-point can be obtained by
iterating f over L (respectively,T), i.e. is the limit of the non-decreasing (respectively, non-

increasing) sequence, ...,Z;, Ti+1,--.,ZTx, -- ., Where for a successor ordinal> 0,
Zo = J_,
zivr = f(xi)

(respectivelyzo = T), while for a limit ordinal A,
zx = lub<{zi: i < A} (respectively, xx = glb<{zi:i < A}) . 1)

We denote the<-least and the<-greatest fixed-point by Ifp(f) and gfp, (f), respectively.

Often, throughout the paper, we will define monotone operators, whose sets of fixed-points
define certain classes of models of a logic program. As a consequence, please note that this
will also mean that a least modalwaysexists for such classes. Additionally, for ease, for the
monotone operators defined in this study, we will specify the initial conditipand the next
iteration stepr;+1 only, while Equation 1 is always considered as implicit.

2.2 Bilattices

We work in the well-studied context of bilattices [27]. The simplest non-trivial bilattice, called
FOUR, is due to Belnap [5], who introduced a logic intended to deal with incomplete and/or in-
consistent information — see also [4, 13]OUR already illustrates many of the basic properties
concerning bilattices. Essentiallf;OUR extends the classical truth sgit, t} to {f,t, L, T},
where L standsunknown and T stands forinconsistent FOUR has two quite intuitive and
natural ‘orthogonal’ orderingss, and=; (see Figure 1), each giving t6OUR the structure

of a complete lattice. The two orders are the so-catlealvledge ordering<;, and thetruth or-
dering<;. If z < y theny represents ‘more information’ than On the other hand, it <; y
theny represents ‘more truth’ than For instance, ilFOUR, L < £ <x T, L <p t 2% T,

f <y L <standf < T < t.

Figure 1: Bilattices(a) FOUR, (b) {f, L,t} ® {f, L,t} and(c) K([0,1] N Q).

Formally [21, 27], abilattice is a structure B, <:, <)) whereB is a non-empty, countable
set and=; and =, are both partial orderings giving the structure of @omplete latticavith a
top and bottom elemenMeet (or greatest lower boundndjoin (or least upper boundynder
=<+, denoted\ andV, correspond to extensions of classical conjunction and disjunction. On the
other handmeet and join undex;, are denoted® and®. = ® y corresponds to the maximal
informationz andy can agree on, while & y simply combines the information represented
by z with that represented by. Top and bottom under: are denoted¢ and£, andtop and
bottom under<;, are denoted” and_L, respectively. We will assume that bilattices arénitary
distributive bilatticesin which all distributive laws connecting, vV, ® and® hold. We also
assume that every bilattice satisfies thfinitary interlacing conditionsi.e. each of the lattice
operations\, vV, ® and® is monotone w.r.t. both orderings. An example of interlacing condition
is: x <: y andx’ <: ¢ impliesz ® 2’ <: y ® y'. Finally, we assume that each bilattice has
anegation i.e. an operatot- that reverses the&; ordering, leaves unchanged tke ordering,
and verifies——x = .

Additionally, we provide a familyF of <; and =<:-continuous binary and unary functions
f:Bx B — Bandf:B — B, that is, for any<,-monotone chain, z1, ... of values in3,
f(®izi) = @if(z;) and for any=<,-monotone chairxo, z1, ...of values inB, f(Viz;) =
V;f(z;). The binary case is similar. Notably, it is not difficult to see that/, ® andV are
both <j-continuous and<;-continuous, while- is <;-continuous but no;-continuous (it is
=<¢-antitone).

Bilattices come up in natural ways. Indeed, there are two general, but different, construction
methods, which allow to build a bilattice from a lattice and are widely used. We just sketch them
here in order to give a feeling of their application (see also [20, 27]).

The first bilattice construction method comes from [27]. Suppose we have two complete
distributive lattices(L1, <1) and (L2, <2). Think of L; as a lattice of values we use when
we measure the degree of belief of a statement, while think,oés the lattice we use when
we measure the degree of doubt of it. Now, we define the strud¢ture L, as follows. The
structure is(L1 X Lo, <¢, <), where

o (z1,x2) =4 (y1,y2) if 1 <1 y1 andys <2 z2;
o (x1,x2) =k (y1,y2) if z1 =1 y1 andzz <2 yo.
In L1 ® L, the idea is: knowledge goes up if both degree of belief and degree of doubt go

up; truth goes up if the degree of belief goes up, while the degree of doubt goes down. It is
easily verified that., ® L is a bilattice. Furthermore, if, = L, = L, i.e. we are measuring
belief and doubt in the same way, then negation can be defined.ag) = (y,z). Thatis,
negation switches the roles of belief and doubt. In Figure 1 we report the bilattice based on
L, = L, ={f, 1,t} and order<;==,==, wheref < | < t. Notably, under this approach
fall work on paraconsistent logic programming [1, 15] and anti-tonic logic programming [16].
The second construction method has been sketched in [27] and addressed in more details
in [24], and is probably the more used one. Suppose we have a complete distributive lattice of
truth values(L, <) (like e.g. in Many-valued Logics [28]). Think of these values as the ‘real
values we are interested in, but due to lack of knowledge we are able just to ‘approximate’ the
exact values. That is, rather than considering a paiy) € L x L as indicator for degree
of belief and doubt{z, y) is interpreted as the set of elements L such thatz < z < y.
Therefore, a paifz,y) is interpreted as aimterval. An interval (z,y) may be seen as an
approximation of an exact value. Formally, given a distributive lat{ite=<), the bilattice of
intervals denotedC(L), is (L x L, =, =), where:

o (x1,z2) =t (y1,y2) if z1 X y1 andzz < yo;
o (z1,z2) =k (y1,y2) if z1 < y1 andyz =< x.

The intuition of those orders is that truth increases if the interval contains greater values, whereas
the knowledge increases when the interval becomes more precise. Negation can be defined as
—(z,y) = (—y,x), where— is a negation operator oh. As an example, in Figure 1 we

report the bilatticéC([0, 1] N Q). This approach has been used in e.g. [38, 39, 40]), where

is the unit interval0, 1] N Q with standard orderingl, x L is interpreted as the set of (closed)
sub-intervals 0f0, 1] N Q, and the pairx, y) is interpreted as a lower and an upper bound of

the exact value of the certainty value. Notably these works also show how to extend many logic
program formalisms for the management of uncertainty over a lditiséh negation. Just take

the bilattice/C(Z) and extend the functions point-wise, e.§([z, y]) = [f (=), f(y)] *.

2.3 Logic programs and models

We start with the definitions given in [20] and extend it to the case arbitrary funcfioasF
are allowed in logic programs. For ease the presentation, will limit our attention to propositional
logic programs. The first order case can be handled by grounding.

Logic programs. Consider an alphabet of propositional letters. @woms denotedA is a
propositional letter. A literal], is of the formA or —A, whereA is an atom. Aformula, ¢, is

an expression built up from the literals, the members of a bilafiesing A, vV, ® and$ and

the functionsf € F. Note that members of the bilattice may appear in a formula, as well as
functions: e.g. INFOUR, f(p A q,r @ £) @ v is a formula.

A rule is of the formA — ¢, whereA is an atom ang is a formula. The atord is called
thehead and the formula is called thebody A logic program denoted withP, is a finite set
of rules. TheHerbrand basef P (denotedBy) is the set of atoms occurring B.

Given P, the setP™ is constructed as followg) if an atomA is not head of any rule in
P*, then add the rulel — £ to P*; 2 and (i) replace several rules iR* having same head,
A— 1, A— 2, ...WithA «— @1 V2 V.... Note that inP*, each atom appears in the head
of exactly oneule.

Interpretations. An interpretation of a logic progranon the bilattice(B, <:, <) is a mapping
from atoms to members &f. An interpretatiory is extended from atoms to formulae as follows:

10f course, the same can be done by using the belief-doubt bilattice construction.
2Jtis a standard practice in logic programming to consider such atorfiagsas

(z) forb € B, I(b) = b; (iz) for formulaey andy’, I(p A ¢") = I(v) A I(¢"), and similarly
for v, ®, ® and—; and (i) for formulaef(v), I(f(¢)) = f(I(¢)), and similarly for binary
functions. The truth and knowledge orderings are extended Bdorthe sefZ (B) of all interpre-
tations point-wise(:) Iy < I iff I (A) <, I>(A), for every ground atom; and(ii) I1 =i I2

iff 11(A) <k I2(A), for every ground atorl. We define(1; A I5)(A) = I1(A) A I2(A), and
similarly for the other operations. With andI we denote the bottom interpretations under
<+ and <y, respectively (they map any atom infoand L, respectively). It is easy to see that
(Z(B), =, =) is an infinitary interlaced and distributive bilattice as well.

Classical setting. Note that in aclassical logic programthe body is a conjunction of literals.
Therefore, ifA — ¢ € P* (except for the casd — £ € P*), thenp = p1 V...V ¢, and

wi = Liy A ... N\ L;,. Furthermore, &lassical total interpretatioris an interpretation over
FOUR such that an atom is mapped into eitlieor t. A partial classical interpretatioris a
classical interpretation where the truth of some atom may be left unspecified. This is the same
as saying that the interpretation maps all atoms into ettheor L.

Models. An interpretation/ is amodelof a logic programP, denoted byl = P, iff for the
unique rule involving4, A «— ¢ € P*, I(A) = I(p) holds. Note that the above definition
of model follows the so-calle@lark-completionprocedure [11], where we replace®i* each
occurrence of— with —. Indeed, usually a model has to satidfity) <: I(A) only, i.e.

A — ¢ € P~ specifies the necessary condition 4n“ A is at least as true as”. Under the
Clark-completion, the constraint becomes also sufficient as the unique rule invelviimg™*
completelydefinesA (see e.g. [21]).

Query. A query, denotedy, is an expression of the forfi (query aton), intended as a question
about the truth of the atom in the selected intended model of a logic progrBmVe also allow
aquery to be aet{?A,,...,7A,} of query atoms. In that latter case we ask about the truth of
all the atomsA4; € ¢ in the intended model of a logic prografn

2.4 Semantics of logic programs

The semantics of a logic prografhis usually determined by selecting a particular model, or a set
of models, ofP. In our context we will consider three possible intended semantics, namely the
Kripke-Kleene, the Well-founded semantics and stable modets; iimcreasing order. Notably,
the well-founded semantics is th¢,-least stable model.

To ease our presentation, we will rely on the following simple running example to illustrate
the concepts we introduce in the paper.

Example 1 (running example) Consider the following logic prograr® with the following
rules.

p—p

q <+ —r

T — Tq AN -p
In the following table, we report the different interpretations and models presented in this paper:
models, Kripke-Kleene (KK), Well-Founded (WF) semantics and stable models [20, 21, 22, 41,
61].

Kripke-Kleene semantics. The Kripke-Kleene semantics [20, 22] has a simple and intuitive
characterization, as it corresponds to thg-least model of a logic program, i.e. th&ipke-
Kleene modebf a logic programP is KK (P) = min<, {I:I = P}. Theexistence and
uniquenessf K K (P) is guaranteed by the fixed-point characterization below, by means of the
immediate consequence operafos. For an interpretatiod, for any ground aton?

Op(1)(A) = I(p),

I; stable

LE=EP| p q r || KK | WF | models

I 1 1 1 °

I> 1 t f

I3 f 1 L ° °

Iy f f t °

I5 f t f °

Ig £ T T .

Iz t t f

Ig T t f

I T T T

Table 1: Models, Kripke-Kleene (KK), Well-Founded (WF) semantics and stable mod-
els.

whereA — ¢ € P*. 2 It can be shown that (based on [20, 39]) that

Proposition 2 In the space of interpretations, the operair is <j-continuous, the set of
fixed-points of®» is a complete lattice under; and, thus,®» has a=<j-least (and=<;-
greatest) fixed-point; andl is a model of a prograr® iff I is a fixed-point ofbp.

Therefore, the Kripke-Kleene model &f coincides with the least fixed-point 6 under=,
which can be computed in the usual way by iterating overI ; and is attained after at mast
iterations.

Example 2 Consider the bilatticéC([0, 1] N Q), the functionf € F, f({z,1)) = (&2, 1)
(0 < a <1,a € Q), and the logic progranP = {A «— f(A)}. Then the Kripke-Kleene model
is attained afterw steps of®p iterations overI; = (0,1) and is such thatk K (P)(A) =
(a,1).

Stable models and the well-founded semanticsThe stable model semanti@pproach, has
been defined first by Gelfond and Lifschitz [26] with respect to the classical two valued truth
space{f, t} and extended by Fitting to bilattices [20, 21]. Informally, an interpretafios a
stable modebf a logic progranf if I = I’, wherel’ is computed according to the so-called
Gelfond-Lifschitz transformation

1. substitute (fix) ifP* the negative literals by their evaluation with respeci thet P7 be
the resultingpositiveprogram, calledeductof P w.r.t. I; and

2. compute the truth-minimal modé& of P’.

For instance, givef® and s in Example 1,P72 is {(p < p), (¢ «— L), (r +— L A t)}, whose
<;-least model id3. Therefore,l5 is a stable model. On the other hand, it can be verified that
the <;-least model ofP’t (= P™3), is I3, sol; is nota stable model.

Formally, Fitting [20] relies on a binary immediate consequence opetatouhich accepts
two input interpretations over a bilattice, the first one is used to assign meanings to positive
literals, while the second one is used to assign meanings to negative literalsah@y be two
interpretations in the bilatticéZ (B), <, <x). The notion ofpseudo-interpretatiod A J over

3Recall that all atoms are head of exactly one rul@in

the bilattice is defined as followd @ives meaning to positive literals, whilegives meaning to
negative literals): for a pure ground atofn

ITADA) = I(4)
(IAJ)(~A) = —J(A).

Pseudo-interpretations are extended to non-literals in the obvious*wagr instance (I A
D(f(FAAB)) = f(IAT)(~ANB)) = F(IAT)(AANIAT)(B)) = f(~J(A)AL(B)),
We can now defin@p as follows. Forl, J € Z(B), ¥»(I, J) is the interpretation, which for
any ground atonA is such that

Ui (1, 7)(A) = (I A J)(p),

whereA — ¢ € P*. Note that®p is a special case o », as by constructio®» () =
U (I,I). Similarly to [20], it can be shown that

Proposition 3 In the space of interpretations the operatbr is <j-continuous in both argu-
ments,<¢-continuous in its first argument and;-antitone in its second argument.

To define the stable model semantics, Fitting [20] introducesitheoperator, whose fixed-
points will be the stable models of a program. For any interpretdtiol/, (1) is the <;-least
fixed-point of the operatokz. ¥p(x, I), i.e.

Wi (I) = lfp_, M. Wp(x,T)) .

Due to the=<,-continuity of U on its first argument¥’% is well defined. ¥’ (1) can be com-
puted by iteratingl » (z, I') overIs and the limit is attained in at mostiterations. Additionally,
it can be shown that

Proposition 4 The operator¥’, is <x-continuous<;-antitone and every fixed-point &7 is
also a fixed-point o p, i.e. a model ofP.

A stable modefor a logic programP is a fixed-point of¥%. Therefore, the set of fixed-
points of U%, i.e. the set of stable models &, is a complete lattice undex, and, thus,
U’% has a=xj-least (and<j-greatest) fixed-point, which is denotétl F(P). WF(P) is the
Well-Founded modedf P and, by definition coincides with th&-least stable model, i.e.
WF(P) = min<, ({I: I stable model oP}).

Finally, the well-founded model and thex-greatest stable model can be computed by iter-
ating ¥’ starting fromI, andIt, respectively, and the limit is attained in at masiterations.

Example 3 Let us consider the bilattice of intervats([0, 1] N Q@) Consider the following logic
program?P,

A «— AVB

B «— (=CAA)V{0.3,0.5)

C «— =BVv(0.2,04)

The table below shows the computation of the Kripke-Kleene semanfsiof (P), as <-
least fixed-point ob .

A B C K;
01 (01 0,1) o
0,1) 03,1y {0.2,1) e
03,1) (03,08 (0.2,0.7) e
(03,1 (0.3,08) (0.2,0.7) | K3 = Ko = KK(P)

4Note that negation may appear in front of a literal only.

Note that knowledge increases during the computation as the intervals becomes more precise,
ie. K <p Kiy1.

The following table shows us the computation of the well-founded semarEc316#'(P),
as <j-least fixed-point oft’.

(o[A B c I a4 B c | W,
U(‘)/Vo <070> <07 0> <010> <07 1> <01 1> <Oa 1> Wo
o0 | (0,0) (0.3,0.5) (0,1)
vy | (0.3,0.5) (0.3,0.5) (0,1)
vy | (0.3,0.5) (0.3,0.5) (0,1)
ot | (0,0) (0,0) (0,0) (0.3,0.5) (0.3,0.5) (0,1) Wi

oz | (0,0) (0,0) (0,0) (0.3,0.5) (0.3,0.5) (0.5,0.7) W,

| [Ml (0.3,0.5) (0.3,0.5) (0.5,0.7) [Ws = Wa =WF(P)]

Notice thatW; <, W;4+1 and K K(P) =, WF(P), as expected. S

3 Top-down query answering

Given a logic prograr® and an intended model (either Kripke-Kleene or Well-founded model),
one way to answer to a quetyl is to compute the intended modebf P by a bottom-up fixed-
point computation and then answer withA). This always requires to compute a whole model,
even if in order to determing&(A), not all the atom’s truth is required.

Our goal is to present a simple general top-down method, which relies on the computation
of just a partial part of an intended model. Essentially, we will try to determine the value of
a single atom by investigating only a part of the progrBmOur method is a modification of
the method described in [2] and slightly inspired on [31]. The former presents a quite general
top-down (local) procedure for computing the answer to a query with respect to the minimal
fixed-point of a system of equations of monotonic functions over lattices, while the latter is a
(global) bottom-up computation.

Let (B, <¢, <k) be a bilattice and leP be a logic program. Consider the Herbrand base
Bp = {Ai,..., A} of P. We have seen that we can restrict our attentio®tdn which any
atom A; appears exactly once in the head of a rule. Let us associate to eactlatenBp a
variablex;, which will take a value in the domaifi (sometimes, we will refer to that variable
with z4 as well). An interpretatiod may be seen as an assignment of bilattice values to the
variablesz, ..., z,,. For an immediate consequence oper&ipe.g.d», a fixed-point is such
thatl = O(I), i.e. for all atomsA; € Bp, I(A;) = O(I)(A;). As a consequence, we may
identify the fixed-points of an immediate consequence opeai@s the solutions oves of the
system of equations of the following form:

r1 = fi(Tig,..,T1,,),

@)

Tn fn($n17~~~733nan)7

where forl < ¢ < n,1 < k < a;, we havel < i < n. Each variabler;, will take a

value in the domairB, each (monotone) functiofi determines the value af; (i.e. A;) given

an assignmeni(A;,) to each of thes; variablesz;, . The functionf; implementsO(I)(As).

Of course, we are especially interested in the computation of the least fixed-point of the above
system. For instance, by considering the logic program in Example 1, the fixed-pointsief the
operator are the solutions over a bilattice of the system of equations{1, g — x2,r — x3)

X1 = 1,
Xro = —x3 , (3)
I3 = —xo A\ Ty .

It is easily verified that all nine interpretatiods in Eaxmple 1 are bijectively related to the
solutions of the system (3) ovéfOUR and(z1, z2,z3) = (L, L, L) is the=<,-least solution
and corresponds to the Kripke-Kleene modeof

In the following, we will adapt the general, easy to implement procedure [2] for the top-down
computation of the value of variablein the <-least solution to the system (2), given a lattice
L = (L, =<). Then, we will customize it to the particular case of the Kripke-Kleene semantics
and the Well-founded semantics.

We use some auxiliary functions(x) denotes the set sonsof z, i.e.

s(z) = {@iy, . .. ,xz‘ai} -

p(z) denotes the set gfarentsof z, i.e. the set
p(z) = {zs:z € s(zy)} .

In the general case, we assume that each fungtioh®* — L in Equation (2) is<-monotone.
We also usef,. in place of f;, for x = x;. We refer to the monotone system as in Equation (2)
as the tupleS = (£, V, f), whereL is a lattice,V = {z1, ..., z,} are the variables anfi =

(f1, ..., fn) is the tuple of functions.

As it is well known, a monotonic equation system(@$ has a=-least solution, Ifg(f),

the <-least fixed-point off is given as the least upper bound of tRemonotone sequence,
Zo,...,Z1,..., where

R
To

Pl !

Tit1 (&) -)

We are ready to describe informally the algorithm. Assume that we are interested in the value
of variablex, in the least fixed-point of the system. We associate to each varallenarking
v(z;), which denotes the current valuewf Initially, the value of each variable is. We start
with puttingz, in theactivelist of variablesA, for which we evaluate whether the current value
of the variable is identical to whatever its right-hand side evaluates to. When evaluating a right-
hand side it might of course turn out that we do indeed need a better value of some sons, which
will assumed to have the valuk and put them on the list of active nodes to be examined. In
doing so we keep track of the dependencies between variables, and whenever it turns out that a
variable changes its value (actually, it can orlyincrease) all variables that might depend on
this particular variable are put in the active set to be examined. At some point the active list will
become empty and, and we have actually found part of the fixed-point, sufficient to determine
the value of the query,.

The general algorithm is given in Table 2. Note that the varidgleollects the variables
that may influence the value of the query variables, the array varapléraces the equations
that has been “expanded” (the body variables are put into the active list), while the vatiable

10

keeps track of the variables that have been put into the active list so far due to an expansion (to
avoid, to put the same variable multiple times in the active list due to function body expansion).
Note also that our algorithm is indeed a simplification of the one in [2] as this latter allows also
to deal with partial functions. That is, it tries to evaluate as view sons as possible, by allowing
some variable to have an undefined truth-value. Informally, this is useful whenever one would
like to take advantage of the fact that e.g.A « is evaluated td&, whatever the value fat is

and, thuse has not to be evaluated. Our approach can be extended to this case as well but some
technicalities have to be introduced to cope with partial functions, which do not fit into the space
constraints of this paper.

Procedure Solve(S, Q)
Input: <-monotonic systen$ = (L, V, f) where@ C V is the set of query variables;
Output: AsetB C V, with Q@ C B such that the mappingequals Ifps (f) on B.
A=Q,dg:=Q,in:=0,forall z € Vdov(z) = L, exp(x) = false
while A £ () do
selectr; € A, A:= A\ {x;},dg: = dg U s(z;)
r.= fi(v(:pil), ceey V(:Eiai))
if r > v(z;)thenv(z;):=r, A:= AU (p(z;) Ndg) fi
if not exp(z;) then exp(z;) = true, A:= AU (s(z;) \ in), in: = in U s(z;) fi
od

o0 hrwNE

Table 2: General Top-down algorithm.

The attentive reader will notice that tt¥lve procedure has much in common with the so-
calledtabulationprocedures, like [9, 10, 13, 58]. Indeed, it is a generalization of it to arbitrary
monotone equational systems over lattices.

Given a systens = (£, V,), where£ = (L, <), let h(£) be theheightof the truth-value
setL, i.e. the length of the longest strictly-increasing chain i, minus 1, where the length
of a chainv, ..., va, ... is the cardinal{v1, ..., va, ...}|. Thecardinal of a countable seX is
the least ordinad such thate and X areequipollenti.e. there is a bijection from: to X. For
instanceh(FOUR) = 2 w.r.t. =<, as well as w.r.t=<¢, while L(K([0,1] N Q)) = w. Likewise
to [2], it can be shown that the above algorithm behaves correctly.

=

Proposition 5 Given a monotone system of equatishs: (£, V, f), then there is a limit ordi-
nal A such that aftef\| stepsSolve(S, Q) determines a seB C V, with @ C B such that the

—

mappingv equals Ifp, (f) on B, i.e.viz = Ifp(f)|5-

Example 4 Let us consider Example 3 and the associated equational systeith query vari-
ablez 4. Below is a sequence Sblve(S, {z4}) computation w.r.t=;. Each line is a sequence
of steps in the 'while loop’. What is left unchanged is not reported.

1. M={zat,zii=za,0:=0,dg:={za,xzp}, 7= L, exp(xa): = true,A:= {z4,2p5},
in:={za,zB}

2. zii=zp,Ai={za}t,dg:={za,25,2¢c},m=(0.3,1),v(zp):= (0.3,1),A: = {z 4, zc},

exp(xp): = true,in:= {za,zB,zc}

zii=zc, A= {xa},r=(0.2,0.7),v(zc): = (0.2,0.7),

zii=xzp,hi={za},7:=(0.3,0.8),v(zp): = (0.3,0.8),

zii=zc, A= {xa},r=(0.2,0.7)

zii=x4,A=0,7:=(0.3,1),v(z4):= (0.3,1),A:= {z 4,25}

zi:=zp,Ai={xa},m=(0.3,0.8),

zii=xa,A:=0,7:=(0.3,1)

0. stop.returnv(za,zp,zc) = ((0.3,1),(0.3,0.8),(0.2,0.7))

A:={z 4,25}, exp(zc): = true
A:= {IA,:Ec}

SO NS oA w

11

Note thatSolve(S, {za}) answers w.r.t. the Kripke-Kleene semantics as we considereglthe
ordering.

From a Computational point of view, it is easily verified that by means of appropriate data struc-
tures, the operations ay v, dg, in, exp, p andson can be performed in constant time. There-
fore, Stepl. is O(|V]), all other steps, except St@pand Stept. areO(1). Letc(f.) be the
maximal cost of evaluating functiofi, on its arguments, so Step is O(c(f.)). It remains
to determine the number of loops of Stepin case the heighti(L£) of the bilattice” is finite,
observe that any variable is increasing in therder as it enters in thelist (Step5.), except the
case it enters due to Stép which may happen one time only. Therefore, each variablgill
appear ins at most

a; - h([,) +1
times, whereu; is the arity of f;, as a variable is only re-entered intaf one of its son gets an

increased value (which for each son only can happel) times), plus the additional entry due
to Step6. As a consequence, the worst-case complexity is

O (elfs) - (as - h(L) + 1)) . (5)

z;, €V

As a consequence,

—

Proposition 6 Given a monotone system of equatidhs= (£, V, f). If the cost of computing
each of the functions ifis bounded by, the arity bounded by, and the height is bounded by
h, then the worst-case complexity of the algoritiaive is O(|V |cah).

In case the height of a bilattice is not finite, the computation may not terminate after a finite
number of steps (see Example 2). Fortunately, under reasonable assumptions on the functions,
we may guarantee the termination 8blve. We exploit two of such conditions. Consider a
monotonic equational systes = (£, V, f}. Consider a functiorf: L — L, where(L, <) is
a lattice. Let[L]; be thef-closure of{ L}, i.e. the smallest set that contaifis } and is closed
under f. We say thatf has a finite generatiofsee also [7] for more on this issue) |] is
finite. For instance, it can be verified that the functions/, ®, @, — have a finite generation on
anyfinite setX C B. Note also that iff, g have a finite generation ovéf then so hag o g.

Therefore, given an equational systém= (£, V, f). If f has a finite generation, then] -

g

is finite. Thatis{L, f(L), f2(L),...} is finite. In particular, on induction on the computation
of the <-least fixed-point ofS it can be shown that at each step of the bottom-up computation
of the <-least fixed-point, the values of the variables arglifz. Therefore, thdreightof [L] -,
h([-L]7), is finite. On the other hand, it can easily be seen fhdbe terminates if the sequence

- —

defined by Equation (4)[, f(L), fj(f_), ... converges after a finite number of steps. Therefore,

—

Proposition 7 Given a monotone system of equatighs= (£, V, f). ThenSolve terminates
iff fhas a finite generation. If the cost of computing each of the functioﬁésirbounded by:
and the arity bounded bythen the worst-case complexity of the algoritBmive is O(|V'|cah),
whereh is the height of L] .

Example 5 ConsiderS = (L, V, f) where£L has a finite heighti. Consider a chaine; <
22 < ... = z, in £. Assumef has exactly one equation = f(z), where f(z;) = xiy1,
f(xp) = xp and f(x) = L, forz # z; (1 < ¢ < n). Thenf has a finite generation, the
variable xz entersh times into thel list, and Solve terminates afterh iterations.

12

The second condition on the functions, which guarantees the terminati$isi of, is inspired
directly by [12, 14] and is a special case of above. On bilattices, we say that a fuficign—

B is boundediff f(z1,...,2.) =<k ®:z;. Now, consider a monotone system of equations
S = (L,V, f} We say thatf is boundediff each f; is a composition of functions, each of
which is either bounded, or a constantfhor one ofV, A, ®,® and—. For instance, the
function in Example 2 is not bounded, whife({(z, y)) = (max(0,z +y — 1),1) A (0.3,0.4)
over/C([0,1] N Q) is. The idea is to prevent the existence of an infinite ascending chain of the
form I <, f(f_) <k ... <k fm(l) <k Thisis indeed the case. Roughly, consider a
<x-monotone functiorf’ = g o h, whereg is a bounded function, whilg is the composition

of constants in3 or functions among/, A, @, ® and—. Thenl <, f(1) = Go (L) =
G(h(1)) =& h(L). Buth has a finite generation and, thus, so fia¥he argument fof = hog

is similar. Therefore,

—

Proposition 8 Given a monotone system of equatiéhs: (£, V, f), wherefis bounded. Then
Solve terminates. The cost is as for Proposition 7.

Note that for bounded functiorﬁ: go h, the height oi[J_}f is given by the height ofL]. We

belief that this latter height is bounded by the numbet: |V'| as we conjecture thdt" (1) =
ﬁ"“(f_) (this is compatible with [12, 14]). This would imply that the worst-case complexity of
the algorithmSolve is O(|V |*ca) in that case.

3.1 Top-down query answering under the Kripke-Kleene seman-
tics

We start with the Kripke-Kleene semantics, for which we have almost anticipated how we will
proceed. LefP be a logic program and considBr. As already pointed out, each atom appear
exactly once in the head of a rule 7a*. The system of equations that we build frgai is
straightforward. Assign to each atarha variabler 4 and substitute irP* each occurrence of
A with z4. Finally, substitute each occurrence-ef with = and letSxx (P) = (£, V, f»)

be the resulting equational system (see Equation 3). Of colirde= |Bp|, |Skx(P)| can

be computed in time(|P|) and all functions inSy x (P) are <j-continuous. Asfp is one

to one related tabp, it follows that the=<j-least fixed-point ofSx x (P) corresponds to the
Kripke-Kleene semantics 0. The algorithmSolvex x (P, 7A), first computesSk x (P) and
then callsSolve(Sk ik (P), {xa}) and returns the outpwton the query variable, wheteis the
output of the call toSolve. It can be shown thafolve x x behaves correctly (see Example 4).

Proposition 9 LetP and? A be alogic program and a query, respectively. THeK (P)(A) =
Solvex k (P,{?A}).

The extension to a set of query atoms is straightforward.

From a computational point of view, we can avoid the cost of transl&ingto Sk x (P)
as we can directly operate @0 So the cos(|P|) can be avoided. In case the height of the
bilattice is finite, from Proposition 6 it follows immediately that

Proposition 10 The worst-case complexity for top-down query answering under the Kripke-
Kleene semantics of a logic prografis O(|Bp|cah).

Furthermore, note that is reasonable to assume that the cost of computing each of the functions
of fp isin O(1). By observing thatBr|a is in O(|P|) we immediately have that

Proposition 11 If the height is bounded by, then the worst-case complexity for top-down query
answering under the Kripke-Kleene semantics of a logic progaisO (| P|h).

13

It follows that over the bilatticeFOUR (h = 2) the top-down algorithm works in linear
time. Moreover, if the height is a fixed parameter, i.e. a constant, we can conclude that the
additional expressive power of Kripke-Kleene semantics of logic programs over bilattices (with
functions with constant cost) does not increase the computational complexity of classical logic
programs [18].

The computational complexity of the case where the height of the bilattice is not finite is
determined by Proposition 7 and Proposition 8. In general, the continuity of the functions in
Sk i (P) guarantees the termination after at mostteps.

3.2 Top-down query answering under the Well-founded semantics

We address now the issue of a top-down computation of the value of a query under the well-
founded semantics. As we have seen, according to Fitting’s formulation, the well-founded se-
mantics of a logic prograr® is the < -least fixed-point of the operatdry, defined as

whereU» (I, J)(A) = (I A J)(p). Before we are going to present our top-down procedure for
the well-founded semantics, we roughly explain the approach. To this purpose, let us consider
Example 1. Assume that our query?’isand consider the related equational sysf8in So, our
query variable is3. Following theSolve algorithm,z3 becomes the active variable. We have
to introduce a major change in Step 4. Indeed, it is not hard to see that, due to Eqéation
above, in order to compute:= —z2 A —x1, we have to compute the valuesf andzs w.r.t.

the <;-least fixed-point of another equational system, where the current partial evahiaiits

as the interpretatiof. This means that we have to make a call to another instance 6fdhe
algorithm, which computes the valuesaaf andz, w.r.t. to the current evaluationz1, x2, z3).

In our case, we consider the equational systgjin which negated variables have been replaced
with their value w.r.t. to the current evaluation and, thus, we reptace —z> and—z3 with
v(z1) andv(z2), andv(zs) respectively. Once the sub-routine call gives us back the values of
the arguments, z2 of the functionfs we compute: = -2 A -z, and continue with Step.

Let us formalize the above illustrated concept. Given a logic progPagiven a truth value
assignment, let us denoteS(P’) the equational system obtained frafw x (P) in which all
occurrences ofz have been replaced withl (z), except thatS(P’) is based on thet; order.

It can be shown that

Proposition 12 Solve(S(P’), Q) outputs aseB C V, with@Q C B, s.t. the mapping equals
to the <,-least fixed-point orB of the functions irS(P") and, thusy|z = V(1) 5.

Moreover, from a computational complexity point of view, the same properti¢®hfe hold
for Solve(S(P!), Q) as well. This completes the first part.
Finally, Solvew (P, ?7A) is asSolvex ik (P, 7A), except that Step. is replaced with

41. Q:=s(z); I:=v;

4.2. v' := Solve(S(Ph),Q);

43, ri= fi(v'(2iy), oV (24,,)-
It can be shown that

Proposition 13 Let? and? A be a logic program and a query, respectively. THEd' (P)(A) =
Solvew r(P,7A).

14

Example 6 Let us consider Example 3 and the associated equational sy&teith query vari-
ablex 4. Below is a sequence Sblveww (P, 7A) computation. It resembles the one we have
seen in Example 6. Each line is a sequence of steps in the 'while loop’. What is left unchanged
is not reported.

1. h={zal,zii=za,Ai=0,dg:={za,25},@:={za,zB},v:= ((0.3,0.5),(0.3,0.5), (0, 1)),
r:=(0.3,0.5),v(z4): = (0.3,0.5),A: = {za,zp},exp(va): = true,in:= {z4,zB}

2. zpi=zp,A={za},dg={za,zB,2c},®={z4a,2c},v:= ((0.3,0.5),(0.3,0.5), (0.5,0.7)),
r:=(0.3,0.5),v(zp):= (0.3,0.5),A: = {za,xc},exp(zp): = true,A: = {z4,2C},
ini={z4,zB,zc}

3. zii=zc,Ai={za},@={zp},v:= ((0.3,0.5),(0.3,0.5),(0.5,0.7)),
r:=(0.5,0.7),v(z¢c):= (0.5,0.7),A: = {z 4,2z}, exp(zc): = true

4. zi=zg,A={za},@:={za,z0c},v:= ({0.3,0.5),(0.3,0.5), (0.5,0.7)),r: = (0.3,0.5)

5. zii=x4,0:=0,Q={za,zp},v:=({0.3,0.5),(0.3,0.5),(0.5,0.7)), r: = (0.3,0.5)

6. stop.returnv(za,Tn,rc) = ({(0.3,0.5),(0.3,0.5), (0.5,0.7)) = (0.3,0.5)

|za |za

We conclude with addressing the computational complexitya@bew . The analysis parallels
the one we have made féllvek k. We first address the case the height of a bilattice is finite.
Like Solvex i, each variabler; will appear inA at mosta; - (h(£) + 1) times and, thus,
the worst-case complexity '@(szev(c(fj) - (a; - (h(L) + 1)). But now, the cost o€(f;)

is the cost of a recursive call t§olve, which analogously to Proposition 10 (| Bp|cah).
Therefore Solveww runs in timeO(|Bp|?a*h?c). Therefore,

Proposition 14 The worst-case complexity for top-down query answering under the well-founded
semantics of a logic prograr® over bilattices igO(|P|*h%c), whereh is the height of the bilat-
tice.

If the bilattice is fixed, then the height parameter is a constant. Furthermore, it is reasonable to
assume that is O(1) and, thus, the worst-case complexity reduce®({|*). However, note
that for the classical case we can do better, as worked out in [36]. It remains open whether those
results extends to our case as well.

In the case the height of a bilattice is not finite, the continuity of the functiprns F
guarantees that each recursive calbtdve requires at most steps. Thus, we have at mos
steps forSolvew . In case the functions have a finite generation or are bounded, Proposition 7
and Proposition 8 can be applied.

4 Conclusions and outlook

We have presented a general, top-down algorithm to answer queries to monotone equational sys-
tems over lattices and bilattices and, thus, for logic programs over thereof. We believe that its
interest relies on the fact that most approaches to paraconsistency and uncertainty of logic pro-
grams with negation can be reduced to the bilattice framework and, thus, the presented algorithm
gives us an easy to implement query-solving procedure for them. However, we are aware that the
“quadratic bound” for the well-founded semantics case may not be completely satisfactory, espe-
cially in the light of the results [36]. Itis, thus, interesting to investigate whether modifications to
our algorithmSolvew r inspired by [36] or by [58] may give advantages from a computational
point of view.

References

[1] Jodo Alcanéra, Carlos Viegas Daasio, and Lis Moniz Pereira. Paraconsistent logic
programs. InProc. of the 8th European Conference on Logics in Artificial Intelligence

15

(2]
(3]
[4]
(5]
(6]
[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(JELIA-02) number 2424 in Lecture Notes in Computer Science, pages 345-356, Cosenza,
Italy, 2002. Springer-Verlag.

Henrik R. Andersen. Local computation of simultaneous fixed-points. Technical Report
PB-420, DAIMI, October 1992.

Ofer Arieli. Paraconsistent declarative semantics for extended logic progranmals of
Mathematics and Atrtificial Intelligen¢@6(4):381-417, 2002.

Ofer Arieli and Arnon Avron. The value of the four valuéattificial Intelligence Journal
102(1):97-141, 1998.

Nuel D. Belnap. A useful four-valued logic. In Gunnar Epstein and J. Michael Dunn,
editors,Modern uses of multiple-valued logigsages 5-37. Reidel, Dordrecht, NL, 1977.

H. Blairand V. S. Subrahmanian. Paraconsistent logic programmimgpretical Computer
Science68:135-154, 1989.

Elmar Bohler, Christian Glaer, Bernhard Schwarz, and Klaus Wagner. Generation prob-
lems. In29th International Symposium on Mathematical Foundations of Computer Science
(MFCS-04) volume 3153 ot_ecture Notes in Computer Scienpages 392—403. Springer
Verlag, 2004.

True H. Cao. Annotated fuzzy logic progranBuzzy Sets and System43(2):277-298,
2000.

Weidong Chen, Terrance Swift, and David Scott Warren. Efficient top-down computation
of queries under the well-founded semantidsurnal of Logic Programming24(3):161—
199, 1995.

Weidong Chen and David S. Warren. Tabled evaluation with delaying for general logic
programs.Journal of the ACM43(1):20-74, 1996.

K.L. Clark. Negation as failure. In HeevGallaire and Jack Minker, editorspgic and
data basespages 293-322. Plenum Press, New York, NY, 1978.

Carlos Viegas Da#sio, J. Medina, and M. Ojeda Aciego. Sorted multi-adjoint logic pro-
grams: Termination results and applications. Pimceedings of the 9th European Con-
ference on Logics in Atrtificial Intelligence (JELIA-Q4umber 3229 in Lecture Notes in
Computer Science, pages 252-265. Springer Verlag, 2004.

Carlos Viegas Da#sio, J. medina, and M. Ojeda Aciego. A tabulation proof procedure for
residuated logic programming. Rroceedings of the 6th European Conference on Atrtificial
Intelligence (ECAI-04)2004.

Carlos Viegas Dassio, J. Medina, and M. Ojeda Aciego. Termination results for sorted
multi-adjoint logic programs. IRroceedings of the 10th International Conference on Infor-
mation Processing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-
04), pages 1879-1886, 2004.

Carlos Viegas Da#sio and Lis Moniz Pereira. A survey of paraconsistent semantics for
logic programs. In D. Gabbay and P. Smets, editblamdbook of Defeasible Reasoning
and Uncertainty Management Systemages 241-320. Kluwer, 1998.

Carlos Viegas Da#sio and Lis Moniz Pereira. Antitonic logic programs. Rroceed-

ings of the 6th European Conference on logic programming and Nonmonotonic Reasoning
(LPNMR-01) number 2173 in Lecture Notes in Computer Science. Springer-Verlag, 2001.
Carlos Viegas Da@sio and Lis Moniz Pereira. Sorted monotonic logic programs and
their embeddings. IRroceedings of the 10th International Conference on Information Pro-
cessing and Managment of Uncertainty in Knowledge-Based Systems, (IPMpag4s
807-814, 2004.

16

[18] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of propo-
sitional horn formulasJournal of Logic Programming3(1):267—284, 1984.

[19] Didier Dubois, &rome Lang, and Henri Prade. Towards possibilistic logic programming.
In Proc. of the 8th Int. Conf. on Logic Programming (ICLP-9ftages 581-595. The MIT
Press, 1991.

[20] M. C. Fitting. The family of stable modelslournal of Logic Programmingl7:197-225,
1993.

[21] M. C. Fitting. Fixpoint semantics for logic programming - a survEigeoretical Computer
Science21(3):25-51, 2002.

[22] Melvin Fitting. A Kripke-Kleene-semantics for general logic programsurnal of Logic
Programming 2:295-312, 1985.

[23] Melvin Fitting. Bilattices and the semantics of logic programmingpurnal of Logic
Programming 11:91-116, 1991.

[24] Melvin Fitting. Kleene’s logic, generalizedournal of Logic and Computatioi (6):797—
810, 1992.

[25] Norbert Fuhr. Probabilistic Datalog: Implementing logical information retrieval for ad-
vanced applicationsJournal of the American Society for Information Sciere®(2):95—
110, 2000.

[26] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert A. Kowalski and Kenneth Bowen, editd?spceedings of the 5th Interna-
tional Conference on Logic Programmingages 1070-1080, Cambridge, Massachusetts,
1988. The MIT Press.

[27] Matthew L. Ginsberg. Multi-valued logics: a uniform approach to reasoning in artificial
intelligence.Computational Intelligence4:265-316, 1988.

[28] Reiner Hanle and Gonzalo Escalada-Imaz. Deduction in many-valued logics: a survey.
Mathware and Soft Computintv(2):69-97, 1997.

[29] M. Kifer and Ai Li. On the semantics of rule-based expert systems with uncertainty. In
Proc. of the Int. Conf. on Database Theory (ICDT-88Umber 326 in Lecture Notes in
Computer Science, pages 102-117. Springer-Verlag, 1988.

[30] Michael Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming
and its applicationsJournal of Logic Programmingl2:335-367, 1992.

[31] Gary A. Kildall. A unified approach to global program optimization Pirmceedings of the
1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages
pages 194-206. ACM Press, 1973.

[32] Laks Lakshmanan. An epistemic foundation for logic programming with uncertainty. In
Foundations of Software Technology and Theoretical Computer Scianogber 880 in
Lecture Notes in Computer Science, pages 89-100. Springer-Verlag, 1994.

[33] Laks V.S. Lakshmanan and Fereidoon Sadri. Uncertain deductive databases: a hybrid
approachlInformation System®2(8):483-508, 1997.

[34] Laks V.S. Lakshmanan and Nematollaah Shiri. Probabilistic deductive databasesl In
Logic Programming Symposiuympages 254268, 1994.

[35] Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to deductive
databases with uncertaintylEEE Transactions on Knowledge and Data Engineering
13(4):554-570, 2001.

17

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

Zbigniew Lonc and Mirostaw Truszcmgki. On the problem of computing the well-
founded semanticsTheory and Practice of Logic Programming(1):591-609, 2001.

Yann Loyer and Umberto Straccia. Uncertainty and partial non-uniform assumptions in
parametric deductive databases. FAroc. of the 8th European Conference on Logics in
Artificial Intelligence (JELIA-02) number 2424 in Lecture Notes in Computer Science,
pages 271-282, Cosenza, ltaly, 2002. Springer-Verlag.

Yann Loyer and Umberto Straccia. The well-founded semantics in normal logic programs
with uncertainty. InProc. of the 6th International Symposium on Functional and Logic
Programming (FLOPS-2002humber 2441 in Lecture Notes in Computer Science, pages
152-166, Aizu, Japan, 2002. Springer-Verlag.

Yann Loyer and Umberto Straccia. The approximate well-founded semantics for logic
programs with uncertainty. IB8th International Symposium on Mathematical Foundations
of Computer Science (MFCS-2008umber 2747 in Lecture Notes in Computer Science,
pages 541-550, Bratislava, Slovak Republic, 2003. Springer-Verlag.

Yann Loyer and Umberto Straccia. Default knowledge in logic programs with uncertainty.
In Proc. of the 19th Int. Conf. on Logic Programming (ICLP-08)mber 2916 in Lecture
Notes in Computer Science, pages 466—480, Mumbai, India, 2003. Springer Verlag.

Yann Loyer and Umberto Straccia. Epistemic foundation of the well-founded semantics
over bilattices. In29th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS-2004)umber 3153 in Lecture Notes in Computer Science, pages
513-524, Bratislava, Slovak Republic, 2004. Springer Verlag.

James J. Lu. Logic programming with signs and annotatidoarnal of Logic and Com-
putation 6(6):755—778, 1996.

James J. Lu, Jacques Calmet, and Joachinii.S€omputing multiple-valued logic pro-
grams.Mathware % Soft Computin@(4):129-153, 1997.

Thomas Lukasiewicz. Many-valued first-order logics with probabilistic semantid2ton
ceedings of the Annual Conference of the European Association for Computer Science
Logic (CSL'98) number 1584 in Lecture Notes in Computer Science, pages 415-429.
Springer Verlag, 1998.

Thomas Lukasiewicz. Probabilistic logic programming. Aroc. of the 13th European
Conf. on Atrtificial Intelligence (ECAI-98)ages 388—-392, Brighton (England), August
1998.

Thomas Lukasiewicz. Many-valued disjunctive logic programs with probabilistic seman-
tics. InProceedings of the 5th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’99)umber 1730 in Lecture Notes in Computer Science,
pages 277-289. Springer Verlag, 1999.

Thomas Lukasiewicz. Probabilistic and truth-functional many-valued logic programming.
In The IEEE International Symposium on Multiple-Valued Logeges 236—241, 1999.

Thomas Lukasiewicz. Fixpoint characterizations for many-valued disjunctive logic pro-
grams with probabilistic semantics. Im Proceedings of the 6th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR+Qihber 2173 in Lec-
ture Notes in Artificial Intelligence, pages 336—350. Springer-Verlag, 2001.

Thomas Lukasiewicz. Probabilistic logic programming with conditional constraft@s/
Transactions on Computational Logi2(3):289-339, 2001.

18

[50] Cristinel Mateis. Extending disjunctive logic programming by t-norms.Ptaceedings
of the 5th International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-99) number 1730 in Lecture Notes in Computer Science, pages 290-304.
Springer-Verlag, 1999.

[51] Cristinel Mateis. Quantitative disjunctive logic programming: Semantics and computation.
Al Communicationsl3:225-248, 2000.

[52] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtás. A procedural seman-
tics for multi-adjoint logic programming. IRroceedings of the10th Portuguese Confer-
ence on Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extrac-
tion, Multi-agent Systems, Logic Programming and Constraint Sol\pages 290—-297.
Springer-Verlag, 2001.

[53] Jesis Medina and Manuel Ojeda-Aciego. Multi-adjoint logic programmingPioceed-
ings of the 10th International Conference on Information Processing and Managment of
Uncertainty in Knowledge-Based Systems, (IPMU-p4dpes 823-830, 2004.

[54] Jedis Medina, Manuel Ojeda-Aciego, and Peter &jtMulti-adjoint logic programming
with continuous semantics. Rroceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-0dlume 2173 of_ecture Notes
in Artificial Intelligence pages 351-364. Springer Verlag, 2001.

[55] Raymond Ng and V.S. Subrahmanian. Stable model semantics for probabilistic deduc-
tive databases. In Zbigniew W. Ras and Maria Zemenkova, edRoes. of the 6th Int.
Sym. on Methodologies for Intelligent Systems (ISMIS+@dmber 542 in Lecture Notes
in Artificial Intelligence, pages 163—-171. Springer-Verlag, 1991.

[56] Raymond Ng and V.S. Subrahmanian. Probabilistic logic programniirfigrmation and
Computation101(2):150-201, 1993.

[57] Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-based
systems. IrProceedings of the 8th International Joint Conference on Artificial Intelligence
(IJCAI-83), pages 529-532, 1983.

[58] Terrance Swift. Tabling for non-monotonic programmingnnals of Mathematics and
Artificial Intelligence 25(3-4):201-240, 1999.

[59] A. Tarski. A lattice-theoretical fixpoint theorem and its applicatiofscific Journal of
Mathematics(5):285-309, 1955.

[60] M.H. van Emden. Quantitative deduction and its fixpoint thealgurnal of Logic Pro-
gramming 4(1):37-53, 1986.

[61] Allen van Gelder, Kenneth A. Ross, and John S. Schlimpf. The well-founded semantics
for general logic programslournal of the ACM38(3):620-650, January 1991.

[62] Peter Vojés. Fuzzy logic programmindzuzzy Sets and Syster24:361-370, 2004.

[63] Gerd Wagner. Negation in fuzzy and possibilistic logic programs. In T. Martin and F. Ar-
celli, editors,Logic programming and Soft Computingesearch Studies Press, 1998.

[64] Beat Wuttrich. Probabilistic knowledge baséEEE Transactions on Knowledge and Data
Engineering 7(5):691-698, 1995.

19

