
Top-Down Query Answering for Logic Programs
over Bilattices

Umberto Straccia

I.S.T.I. - C.N.R.,
Via G. Moruzzi,1 I-56124 Pisa (PI) ITALY

straccia@isti.cnr.it

Techincal Report

November 9, 2004

Abstract

Bilattices are generalizations of classical logics allowing reasoning with par-
tial, incomplete, uncertain and/or inconsistent information and have interesting
mathematical properties for both practical as well as theoretical investigations.
In this paper we present a very simple, yet general, top-down query answering
procedure under the Kripke-Kleene semantics as well as under the well-founded
semantics for logic programs over bilattices.

Category: F.4.1: Mathematical Logic and Formal Languages: Mathematical Logic: [Logic and
constraint programming]

Category: I.2.3: Artificial Intelligence: Deduction and Theorem Proving: [Logic program-
ming]

Terms: Theory

Keywords: Logic programs, uncertainty, bilattices, top-down query answering

1 Introduction
The management of uncertainty within deduction systems is an important issue whenever the
real world information to be represented is of imperfect nature. In logic programming, the
problem has attracted the attention of many researchers and numerous frameworks have been
proposed. Essentially, they differ in the underlying notion of uncertainty (e.g. probability the-
ory [25, 34, 44, 45, 46, 47, 48, 49, 55, 56, 64], fuzzy set theory [8, 57, 60, 62, 63], multi-valued
logic [12, 13, 14, 15, 16, 17, 29, 30, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 50, 51, 52, 53, 54],
possibilistic logic [19]) and how uncertainty values, associated to rules and facts, are managed.

1

Apart from the different notion of uncertainty they rely on, these frameworks differ in the way
in which uncertainty is associated with the facts and rules of a program. With respect to this
latter point, these frameworks can be classified intoannotation based(AB) and implication
based(IB), which we briefly summarize below. In the AB approach, a rule is of the form
A : f(β1, . . . , βn) ← B1 : β1, . . . , Bn : βn, which asserts “the certainty of atomA is at least
(or is in)f(β1, . . . , βn), whenever the certainty of atomBi is at least (or is in)βi, 1 ≤ i ≤ n”.
Heref is ann-ary computable function andβi is either a constant or a variable ranging over an
appropriate certainty domain. Examples of AB frameworks include [29, 30, 55, 56]. In the IB
approach, a rule is of the formA

α← B1, ..., Bn, which says that the certainty associated with
the implicationB1 ∧ ... ∧Bn → A is α. Computationally, given an assignmentv of certainties
to theBis, the certainty ofA is computed by taking the “conjunction” of the certaintiesv(Bi)
and then somehow “propagating” it to the rule head. The truth-values are taken from a certainty
lattice. Examples of the IB frameworks include [34, 35, 54, 60] (see [12, 35] for a more detailed
comparison between the two approaches). More recently, [12, 17, 35, 62] show that most of the
frameworks can be embedded into the IB framework (some exceptions deal with probability the-
ory). However, most of the approaches stress an important limitation for real-world applications,
as they do not address any mode ofnon-monotonic reasoning(in particular, no negation opera-
tion is defined). The need of non-monotonic formalisms for real-world applications is commonly
accepted: our knowledge about the world is almost alwaysincompleteand, thus, we are forced to
reason in theabsence of complete information. Exception to this limitation are [48, 55] in which
the stable semantics has been considered, but limited to the case where the underlying uncer-
tainty formalism is probability theory. That semantics has been considered also in [63], where
a semi-possibilistic logic has been proposed, a particular negation operator has been introduced
and a fixed min/max-evaluation of conjunction and disjunction is adopted. In [16] the underlying
truth-space are lattices, while [37, 38, 39] are based onbilattices [27], a slightly more general
structure than lattices.

In this paper we will present a goal-oriented/top-down query procedure for logic programs
over bilattices [20, 21, 22, 23]. Bilattices are obvious generalizations of three-valued truth to
many-valued truth allowing reasoning with partial, incomplete, uncertain and/or inconsistent
(notably, paraconsistent logic programming [1, 3, 6, 15]) information and having interesting
mathematical properties for both practical as well as theoretical investigations [27] (see also
[39], as an example of extension of logic programs over bilattices to the IB framework). The
procedure we will present is quite general and inspired to [2], which presents a top-down pro-
cedure for computing the minimal fixed-points of a system of equations of monotonic functions
over lattices. We adapt it and extend it to the query answering under thewell-founded seman-
tics [61] over bilattices [20, 21, 23]. We will also address the computational complexity issue.
To the best of our knowledge the only work addressing the above issue are [13, 30, 35, 62], but
no non-monotonicity is considered.

The structure of the paper is as follows. In order to make the paper self-contained, in the
next section, we will briefly recall definitions and properties of bilattices and logic programs
over bilattices. Section 3 is the main part of this work, where we present our top-down query
procedure and the computational complexity analysis, while Section 4 concludes.

2 Preliminaries
We start with some well-known basic definitions and properties of lattices, bilattices and logic
programs.

2

2.1 Lattices
A lattice is a partially ordered setL = 〈L,�〉 such that every two element set{x, y} ⊆ L
has aleast upper bound, lub�(x, y) (called thejoin of x andy), and agreatest lower bound,
glb�(x, y) (called themeetof x andy). For ease, we will writex ≺ y if x � y andx 6= y. A
lattice 〈L,�〉 is completeif every subset ofL has both least upper and greatest lower bounds.
Consequently, a complete lattice has a least element,⊥, and a greatest element>. For ease,
throughout the paper, given a complete lattice〈L,�〉 and a subset of elementsS ⊆ L, with �-
leastand�-greatestwe will always meanglb�(S) andlub�(S), respectively. Withmin�(S)
we denote the set of minimal elements inS w.r.t.�, i.e.min�(S) = {x ∈ S: 6 ∃y ∈ S s.t. y ≺
x}. Note that whileglb�(S) is unique,|min�(S)| > 1 may hold. Ifmin�(S) is a singleton
{x}, for convenience we may also writex = min�(S) in place of{x} = min�(S). An
operator on a lattice〈L,�〉 is a function fromL to L, f : L → L. An operatorf on L is
monotone, if for every pair of elementsx, y ∈ L, x � y implies f(x) � f(y), while f is
antitone if x � y implies f(y) � f(x). A fixed-pointof f is an elementx ∈ L such that
f(x) = x.

The basic tool for studying fixed-points of operators on lattices is the well-known Knaster-
Tarski theorem [59].

Proposition 1 ([59]) Let f be a monotone operator on a complete lattice〈L,�〉. Thenf has
a fixed-point, the set of fixed-points off is a complete lattice and, thus,f has a�-leastand
a �-greatestfixed-point. The�-least(respectively,�-greatest) fixed-point can be obtained by
iterating f over⊥ (respectively,>), i.e. is the limit of the non-decreasing (respectively, non-
increasing) sequencex0, . . . ,xi, xi+1, . . . ,xλ, . . . , where for a successor ordinali ≥ 0,

x0 = ⊥,

xi+1 = f(xi)

(respectively,x0 = >), while for a limit ordinalλ,

xλ = lub�{xi: i < λ} (respectively, xλ = glb�{xi: i < λ}) . (1)

We denote the�-least and the�-greatest fixed-point by lfp�(f) and gfp�(f), respectively.
Often, throughout the paper, we will define monotone operators, whose sets of fixed-points

define certain classes of models of a logic program. As a consequence, please note that this
will also mean that a least modelalwaysexists for such classes. Additionally, for ease, for the
monotone operators defined in this study, we will specify the initial conditionx0 and the next
iteration stepxi+1 only, while Equation 1 is always considered as implicit.

2.2 Bilattices
We work in the well-studied context of bilattices [27]. The simplest non-trivial bilattice, called
FOUR, is due to Belnap [5], who introduced a logic intended to deal with incomplete and/or in-
consistent information – see also [4, 15].FOUR already illustrates many of the basic properties
concerning bilattices. Essentially,FOUR extends the classical truth set{f, t} to {f, t,⊥,>},
where⊥ standsunknown, and> stands forinconsistent. FOUR has two quite intuitive and
natural ‘orthogonal’ orderings,�k and�t (see Figure 1), each giving toFOUR the structure
of a complete lattice. The two orders are the so-calledknowledge ordering�k and thetruth or-
dering�t. If x �k y theny represents ‘more information’ thanx. On the other hand, ifx �t y
theny represents ‘more truth’ thanx. For instance, inFOUR,⊥ �k f �k >,⊥ �k t �k >,
f �t ⊥ �t t andf �t > �t t.

3

-

6

�t

�k

t

t
t t

⊥

>

f t

(a)

�
�

�
�

�
�

�
�
@

@
@

@

@
@

@
@

r

r
r r

〈f, f〉

〈t, t〉

〈f, t〉 〈t, f〉

(b)

�
�

�
��

�
�

�
��
@

@
@

@@

@
@

@
@@

�
�

�
��

@
@

@
@@

r
r r

r
〈f,⊥〉 〈⊥, f〉

〈⊥, t〉 〈t,⊥〉

r

r
r r

〈0, 1〉

〈1, 0〉

〈0, 0〉 〈1, 1〉

(c)

�
�

�
��

�
�

�
��
@

@
@

@@

@
@

@
@@

�
�

�
��

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

@
@

@
@@

r
r r

〈0, y〉

〈x, 1〉

〈x,y〉

0 ≤ x, y ≤ 1

Figure 1: Bilattices.(a) FOUR, (b) {f,⊥, t} � {f,⊥, t} and(c) K([0, 1] ∩Q).

Formally [21, 27], abilattice is a structure〈B,�t,�k〉 whereB is a non-empty, countable
set and�t and�k are both partial orderings givingB the structure of acomplete latticewith a
top and bottom element.Meet (or greatest lower bound)andjoin (or least upper bound)under
�t, denoted∧ and∨, correspond to extensions of classical conjunction and disjunction. On the
other hand,meet and join under�k are denoted⊗ and⊕. x ⊗ y corresponds to the maximal
informationx andy can agree on, whilex ⊕ y simply combines the information represented
by x with that represented byy. Top and bottom under�t are denotedt andf, andtop and
bottom under�k are denoted> and⊥, respectively. We will assume that bilattices areinfinitary
distributive bilatticesin which all distributive laws connecting∧,∨,⊗ and⊕ hold. We also
assume that every bilattice satisfies theinfinitary interlacing conditions, i.e. each of the lattice
operations∧,∨,⊗ and⊕ is monotone w.r.t. both orderings. An example of interlacing condition
is: x �t y andx′ �t y′ impliesx ⊗ x′ �t y ⊗ y′. Finally, we assume that each bilattice has
a negation, i.e. an operator¬ that reverses the�t ordering, leaves unchanged the�k ordering,
and verifies¬¬x = x.

Additionally, we provide a familyF of �k and�t-continuous binary and unary functions
f :B × B → B andf :B → B, that is, for any�k-monotone chainx0, x1, . . . of values inB,
f(⊕ixi) = ⊕if(xi) and for any�t-monotone chainx0, x1, . . . of values inB, f(∨ixi) =
∨if(xi). The binary case is similar. Notably, it is not difficult to see that∧,∨,⊗ and∨ are
both�k-continuous and�t-continuous, while¬ is�k-continuous but not�t-continuous (it is
�t-antitone).

Bilattices come up in natural ways. Indeed, there are two general, but different, construction
methods, which allow to build a bilattice from a lattice and are widely used. We just sketch them
here in order to give a feeling of their application (see also [20, 27]).

The first bilattice construction method comes from [27]. Suppose we have two complete
distributive lattices〈L1,�1〉 and 〈L2,�2〉. Think of L1 as a lattice of values we use when
we measure the degree of belief of a statement, while think ofL2 as the lattice we use when
we measure the degree of doubt of it. Now, we define the structureL1 � L2 as follows. The
structure is〈L1 × L2,�t,�k〉, where

• 〈x1, x2〉 �t 〈y1, y2〉 if x1 �1 y1 andy2 �2 x2;

• 〈x1, x2〉 �k 〈y1, y2〉 if x1 �1 y1 andx2 �2 y2.

In L1 � L2 the idea is: knowledge goes up if both degree of belief and degree of doubt go

4

up; truth goes up if the degree of belief goes up, while the degree of doubt goes down. It is
easily verified thatL1 � L2 is a bilattice. Furthermore, ifL1 = L2 = L, i.e. we are measuring
belief and doubt in the same way, then negation can be defined as¬〈x, y〉 = 〈y, x〉. That is,
negation switches the roles of belief and doubt. In Figure 1 we report the bilattice based on
L1 = L2 = {f,⊥, t} and order�1=�2=�, wheref � ⊥ � t. Notably, under this approach
fall work on paraconsistent logic programming [1, 15] and anti-tonic logic programming [16].

The second construction method has been sketched in [27] and addressed in more details
in [24], and is probably the more used one. Suppose we have a complete distributive lattice of
truth values〈L,�〉 (like e.g. in Many-valued Logics [28]). Think of these values as the ‘real’
values we are interested in, but due to lack of knowledge we are able just to ‘approximate’ the
exact values. That is, rather than considering a pair〈x, y〉 ∈ L × L as indicator for degree
of belief and doubt,〈x, y〉 is interpreted as the set of elementsz ∈ L such thatx � z � y.
Therefore, a pair〈x, y〉 is interpreted as aninterval. An interval 〈x, y〉 may be seen as an
approximation of an exact value. Formally, given a distributive lattice〈L,�〉, thebilattice of
intervals, denotedK(L), is 〈L× L,�t,�k〉, where:

• 〈x1, x2〉 �t 〈y1, y2〉 if x1 � y1 andx2 � y2;

• 〈x1, x2〉 �k 〈y1, y2〉 if x1 � y1 andy2 � x2.

The intuition of those orders is that truth increases if the interval contains greater values, whereas
the knowledge increases when the interval becomes more precise. Negation can be defined as
¬〈x, y〉 = 〈¬y,¬x〉, where¬ is a negation operator onL. As an example, in Figure 1 we
report the bilatticeK([0, 1] ∩ Q). This approach has been used in e.g. [38, 39, 40]), whereL
is the unit interval[0, 1] ∩ Q with standard ordering,L × L is interpreted as the set of (closed)
sub-intervals of[0, 1] ∩ Q, and the pair〈x, y〉 is interpreted as a lower and an upper bound of
the exact value of the certainty value. Notably these works also show how to extend many logic
program formalisms for the management of uncertainty over a latticeL with negation. Just take
the bilatticeK(L) and extend the functions point-wise, e.g.f([x, y]) = [f(x), f(y)] 1.

2.3 Logic programs and models
We start with the definitions given in [20] and extend it to the case arbitrary functionsf ∈ F
are allowed in logic programs. For ease the presentation, will limit our attention to propositional
logic programs. The first order case can be handled by grounding.

Logic programs. Consider an alphabet of propositional letters. Anatoms, denotedA is a
propositional letter. A literal,l, is of the formA or ¬A, whereA is an atom. Aformula, ϕ, is
an expression built up from the literals, the members of a bilatticeB using∧,∨,⊗ and⊕ and
the functionsf ∈ F . Note that members of the bilattice may appear in a formula, as well as
functions: e.g. inFOUR, f(p ∧ q, r ⊗ f)⊕ v is a formula.

A rule is of the formA← ϕ, whereA is an atom andϕ is a formula. The atomA is called
thehead, and the formulaϕ is called thebody. A logic program, denoted withP, is a finite set
of rules. TheHerbrand baseof P (denotedBP) is the set of atoms occurring inP.

GivenP, the setP∗ is constructed as follows;(i) if an atomA is not head of any rule in
P∗, then add the ruleA ← f to P∗; 2 and(ii) replace several rules inP∗ having same head,
A← ϕ1, A← ϕ2, . . . withA← ϕ1 ∨ϕ2 ∨ Note that inP∗, each atom appears in the head
of exactly onerule.
Interpretations. An interpretation of a logic programon the bilattice〈B,�t,�k〉 is a mapping
from atoms to members ofB. An interpretationI is extended from atoms to formulae as follows:

1Of course, the same can be done by using the belief-doubt bilattice construction.
2It is a standard practice in logic programming to consider such atoms asfalse.

5

(i) for b ∈ B, I(b) = b; (ii) for formulaeϕ andϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′), and similarly
for ∨,⊗,⊕ and¬; and(iii) for formulaef(ϕ), I(f(ϕ)) = f(I(ϕ)), and similarly for binary
functions. The truth and knowledge orderings are extended fromB to the setI(B) of all interpre-
tations point-wise:(i) I1 �t I2 iff I1(A) �t I2(A), for every ground atomA; and(ii) I1 �k I2

iff I1(A) �k I2(A), for every ground atomA. We define(I1 ∧ I2)(A) = I1(A) ∧ I2(A), and
similarly for the other operations. WithIf andI⊥ we denote the bottom interpretations under
�t and�k respectively (they map any atom intof and⊥, respectively). It is easy to see that
〈I(B),�t,�k〉 is an infinitary interlaced and distributive bilattice as well.
Classical setting. Note that in aclassical logic programthe body is a conjunction of literals.
Therefore, ifA ← ϕ ∈ P∗ (except for the caseA ← f ∈ P∗), thenϕ = ϕ1 ∨ . . . ∨ ϕn and
ϕi = Li1 ∧ . . . ∧ Lin . Furthermore, aclassical total interpretationis an interpretation over
FOUR such that an atom is mapped into eitherf or t. A partial classical interpretationis a
classical interpretation where the truth of some atom may be left unspecified. This is the same
as saying that the interpretation maps all atoms into eitherf, t or⊥.
Models. An interpretationI is a modelof a logic programP, denoted byI |= P, iff for the
unique rule involvingA, A ← ϕ ∈ P∗, I(A) = I(ϕ) holds. Note that the above definition
of model follows the so-calledClark-completionprocedure [11], where we replace inP∗ each
occurrence of← with ↔. Indeed, usually a model has to satisfyI(ϕ) �t I(A) only, i.e.
A ← ϕ ∈ P∗ specifies the necessary condition onA, “A is at least as true asϕ”. Under the
Clark-completion, the constraint becomes also sufficient as the unique rule involvingA in P∗
completelydefinesA (see e.g. [21]).
Query. A query, denotedq, is an expression of the form?A (query atom), intended as a question
about the truth of the atomA in the selected intended model of a logic programP. We also allow
a query to be aset{?A1, . . . , ?An} of query atoms. In that latter case we ask about the truth of
all the atomsAi ∈ q in the intended model of a logic programP.

2.4 Semantics of logic programs
The semantics of a logic programP is usually determined by selecting a particular model, or a set
of models, ofP. In our context we will consider three possible intended semantics, namely the
Kripke-Kleene, the Well-founded semantics and stable models, in�k-increasing order. Notably,
the well-founded semantics is the�k-least stable model.

To ease our presentation, we will rely on the following simple running example to illustrate
the concepts we introduce in the paper.

Example 1 (running example) Consider the following logic programP with the following
rules.

p← p
q ← ¬r
r ← ¬q ∧ ¬p

In the following table, we report the different interpretations and models presented in this paper:
models, Kripke-Kleene (KK), Well-Founded (WF) semantics and stable models [20, 21, 22, 41,
61].

Kripke-Kleene semantics. The Kripke-Kleene semantics [20, 22] has a simple and intuitive
characterization, as it corresponds to the�k-least model of a logic program, i.e. theKripke-
Kleene modelof a logic programP is KK(P) = min�k

{I: I |= P}. The existence and
uniquenessof KK(P) is guaranteed by the fixed-point characterization below, by means of the
immediate consequence operatorΦP . For an interpretationI, for any ground atomA

ΦP(I)(A) = I(ϕ) ,

6

Ii stable
Ii |= P p q r KK WF models

I1 ⊥ ⊥ ⊥ •
I2 ⊥ t f

I3 f ⊥ ⊥ • •
I4 f f t •
I5 f t f •
I6 f > > •
I7 t t f

I8 > t f

I9 > > >

Table 1: Models, Kripke-Kleene (KK), Well-Founded (WF) semantics and stable mod-
els.

whereA← ϕ ∈ P∗. 3 It can be shown that (based on [20, 39]) that

Proposition 2 In the space of interpretations, the operatorΦP is �k-continuous, the set of
fixed-points ofΦP is a complete lattice under�k and, thus,ΦP has a�k-least (and�k-
greatest) fixed-point; andI is a model of a programP iff I is a fixed-point ofΦP .

Therefore, the Kripke-Kleene model ofP coincides with the least fixed-point ofΦP under�k,
which can be computed in the usual way by iteratingΦP overI⊥ and is attained after at mostω
iterations.

Example 2 Consider the bilatticeK([0, 1] ∩ Q), the functionf ∈ F , f(〈x, 1〉) = 〈x+a
2

, 1〉
(0 < a ≤ 1, a ∈ Q), and the logic programP = {A← f(A)}. Then the Kripke-Kleene model
is attained afterω steps ofΦP iterations overI⊥ = 〈0, 1〉 and is such thatKK(P)(A) =
〈a, 1〉.

Stable models and the well-founded semantics.The stable model semanticsapproach, has
been defined first by Gelfond and Lifschitz [26] with respect to the classical two valued truth
space{f, t} and extended by Fitting to bilattices [20, 21]. Informally, an interpretationI is a
stable modelof a logic programP if I = I ′, whereI ′ is computed according to the so-called
Gelfond-Lifschitz transformation:

1. substitute (fix) inP∗ the negative literals by their evaluation with respect toI. LetPI be
the resultingpositiveprogram, calledreductof P w.r.t. I; and

2. compute the truth-minimal modelI ′ of PI .

For instance, givenP andI3 in Example 1,PI3 is {(p ← p), (q ← ⊥), (r ← ⊥ ∧ t)}, whose
�t-least model isI3. Therefore,I3 is a stable model. On the other hand, it can be verified that
the�t-least model ofPI1 (= PI3), is I3, soI1 is not a stable model.

Formally, Fitting [20] relies on a binary immediate consequence operatorΨP , which accepts
two input interpretations over a bilattice, the first one is used to assign meanings to positive
literals, while the second one is used to assign meanings to negative literals. LetI andJ be two
interpretations in the bilattice〈I(B),�t,�k〉. The notion ofpseudo-interpretationI 4 J over

3Recall that all atoms are head of exactly one rule inP∗.

7

the bilattice is defined as follows (I gives meaning to positive literals, whileJ gives meaning to
negative literals): for a pure ground atomA:

(I 4 J)(A) = I(A)
(I 4 J)(¬A) = ¬J(A) .

Pseudo-interpretations are extended to non-literals in the obvious way.4 For instance,(I 4
J)(f(¬A∧B)) = f((I4J)(¬A∧B)) = f((I4J)(¬A)∧(I4J)(B)) = f(¬J(A)∧I(B)).
We can now defineΨP as follows. ForI, J ∈ I(B), ΨP(I, J) is the interpretation, which for
any ground atomA is such that

ΨP(I, J)(A) = (I 4 J)(ϕ) ,

whereA ← ϕ ∈ P∗. Note thatΦP is a special case ofΨP , as by constructionΦP(I) =
ΨP(I, I). Similarly to [20], it can be shown that

Proposition 3 In the space of interpretations the operatorΨP is�k-continuous in both argu-
ments,�t-continuous in its first argument and�t-antitone in its second argument.

To define the stable model semantics, Fitting [20] introduces theΨ′
P operator, whose fixed-

points will be the stable models of a program. For any interpretationI, Ψ′
P(I) is the�t-least

fixed-point of the operatorλx.ΨP(x, I), i.e.

Ψ′
P(I) = lfp�t

(λx.ΨP(x, I)) .

Due to the�t-continuity ofΨP on its first argument,Ψ′
P is well defined.Ψ′

P(I) can be com-
puted by iteratingΨP(x, I) overIf and the limit is attained in at mostω iterations. Additionally,
it can be shown that

Proposition 4 The operatorΨ′
P is�k-continuous,�t-antitone and every fixed-point ofΨ′

P is
also a fixed-point ofΦP , i.e. a model ofP.

A stable modelfor a logic programP is a fixed-point ofΨ′
P . Therefore, the set of fixed-

points of Ψ′
P , i.e. the set of stable models ofP, is a complete lattice under�k and, thus,

Ψ′
P has a�k-least (and�k-greatest) fixed-point, which is denotedWF (P). WF (P) is the

Well-Founded modelof P and, by definition coincides with the�k-least stable model, i.e.
WF (P) = min�k

({I: I stable model ofP}).
Finally, the well-founded model and the�k-greatest stable model can be computed by iter-

atingΨ′
P starting fromI⊥ andI>, respectively, and the limit is attained in at mostω iterations.

Example 3 Let us consider the bilattice of intervalsK([0, 1]∩Q) Consider the following logic
programP,

A ← A ∨B
B ← (¬C ∧A) ∨ 〈0.3, 0.5〉
C ← ¬B ∨ 〈0.2, 0.4〉

The table below shows the computation of the Kripke-Kleene semantics ofP, KK(P), as�k-
least fixed-point ofΦP .

A B C Ki

〈0, 1〉 〈0, 1〉 〈0, 1〉 K0

〈0, 1〉 〈0.3, 1〉 〈0.2, 1〉 K1

〈0.3, 1〉 〈0.3, 0.8〉 〈0.2, 0.7〉 K2

〈0.3, 1〉 〈0.3, 0.8〉 〈0.2, 0.7〉 K3 = K2 = KK(P)

4Note that negation may appear in front of a literal only.

8

Note that knowledge increases during the computation as the intervals becomes more precise,
i.e.Ki �k Ki+1.

The following table shows us the computation of the well-founded semantics ofP, WF (P),
as�k-least fixed-point ofΨ′

P .

v
Wj

i A B C A B C Wj

vW0
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 W0

vW0
1 〈0, 0〉 〈0.3, 0.5〉 〈0, 1〉

vW0
2 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉

vW0
3 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉

vW1
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉 W1

vW1
1 〈0, 0〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW1
2 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW1
3 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW2
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 W2

vW2
1 〈0, 0〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW2
2 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW2
3 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 W3 = W2 = WF (P)

Notice thatWi �k Wi+1 andKK(P) �k WF (P), as expected. �

3 Top-down query answering
Given a logic programP and an intended model (either Kripke-Kleene or Well-founded model),
one way to answer to a query?A is to compute the intended modelI of P by a bottom-up fixed-
point computation and then answer withI(A). This always requires to compute a whole model,
even if in order to determineI(A), not all the atom’s truth is required.

Our goal is to present a simple general top-down method, which relies on the computation
of just a partial part of an intended model. Essentially, we will try to determine the value of
a single atom by investigating only a part of the programP. Our method is a modification of
the method described in [2] and slightly inspired on [31]. The former presents a quite general
top-down (local) procedure for computing the answer to a query with respect to the minimal
fixed-point of a system of equations of monotonic functions over lattices, while the latter is a
(global) bottom-up computation.

Let 〈B,�t,�k〉 be a bilattice and letP be a logic program. Consider the Herbrand base
BP = {A1, . . . , An} of P. We have seen that we can restrict our attention toP∗ in which any
atomAi appears exactly once in the head of a rule. Let us associate to each atomAi ∈ BP a
variablexi, which will take a value in the domainB (sometimes, we will refer to that variable
with xA as well). An interpretationI may be seen as an assignment of bilattice values to the
variablesx1, ..., xn. For an immediate consequence operatorO, e.g.ΦP , a fixed-point is such
that I = O(I), i.e. for all atomsAi ∈ BP , I(Ai) = O(I)(Ai). As a consequence, we may
identify the fixed-points of an immediate consequence operatorO as the solutions overB of the
system of equations of the following form:

x1 = f1(x11 , . . . , x1a1
) ,

...
xn = fn(xn1 , . . . , xnan

) ,

(2)

9

where for1 ≤ i ≤ n, 1 ≤ k ≤ ai, we have1 ≤ ik ≤ n. Each variablexik will take a
value in the domainB, each (monotone) functionfi determines the value ofxi (i.e. Ai) given
an assignmentI(Aik) to each of theai variablesxik . The functionfi implementsO(I)(Ai).
Of course, we are especially interested in the computation of the least fixed-point of the above
system. For instance, by considering the logic program in Example 1, the fixed-points of theΦP
operator are the solutions over a bilattice of the system of equations (p 7→ x1, q 7→ x2, r 7→ x3)

x1 = x1 ,
x2 = ¬x3 ,
x3 = ¬x2 ∧ ¬x1 .

(3)

It is easily verified that all nine interpretationsIi in Eaxmple 1 are bijectively related to the
solutions of the system (3) overFOUR and(x1, x2, x3) = (⊥,⊥,⊥) is the�k-least solution
and corresponds to the Kripke-Kleene model ofP.

In the following, we will adapt the general, easy to implement procedure [2] for the top-down
computation of the value of variablex in the�-least solution to the system (2), given a lattice
L = 〈L,�〉. Then, we will customize it to the particular case of the Kripke-Kleene semantics
and the Well-founded semantics.

We use some auxiliary functions.s(x) denotes the set ofsonsof x, i.e.

s(xi) = {xi1 , . . . , xiai
} .

p(x) denotes the set ofparentsof x, i.e. the set

p(x) = {xi: x ∈ s(xi)} .

In the general case, we assume that each functionfi: L
ai 7→ L in Equation (2) is�-monotone.

We also usefx in place offi, for x = xi. We refer to the monotone system as in Equation (2)
as the tupleS = 〈L, V, ~f〉, whereL is a lattice,V = {x1, ..., xn} are the variables and~f =
〈f1, ..., fn〉 is the tuple of functions.

As it is well known, a monotonic equation system as(2) has a�-least solution, lfp�(~f),

the�-least fixed-point of~f is given as the least upper bound of the�-monotone sequence,
~x0, . . . , ~x1, . . ., where

~x0 = ~⊥
~xi+1 = ~f(~xi) .

(4)

We are ready to describe informally the algorithm. Assume that we are interested in the value
of variablex0 in the least fixed-point of the system. We associate to each variablexi a marking
v(xi), which denotes the current value ofxi. Initially, the value of each variable is⊥. We start
with puttingx0 in theactivelist of variablesA, for which we evaluate whether the current value
of the variable is identical to whatever its right-hand side evaluates to. When evaluating a right-
hand side it might of course turn out that we do indeed need a better value of some sons, which
will assumed to have the value⊥ and put them on the list of active nodes to be examined. In
doing so we keep track of the dependencies between variables, and whenever it turns out that a
variable changes its value (actually, it can only�-increase) all variables that might depend on
this particular variable are put in the active set to be examined. At some point the active list will
become empty and, and we have actually found part of the fixed-point, sufficient to determine
the value of the queryx0.

The general algorithm is given in Table 2. Note that the variabledg collects the variables
that may influence the value of the query variables, the array variableexp traces the equations
that has been “expanded” (the body variables are put into the active list), while the variablein

10

keeps track of the variables that have been put into the active list so far due to an expansion (to
avoid, to put the same variable multiple times in the active list due to function body expansion).
Note also that our algorithm is indeed a simplification of the one in [2] as this latter allows also
to deal with partial functions. That is, it tries to evaluate as view sons as possible, by allowing
some variable to have an undefined truth-value. Informally, this is useful whenever one would
like to take advantage of the fact that e.g.f ∧ x is evaluated tof, whatever the value forx is
and, thusx has not to be evaluated. Our approach can be extended to this case as well but some
technicalities have to be introduced to cope with partial functions, which do not fit into the space
constraints of this paper.

ProcedureSolve(S, Q)

Input: �-monotonic systemS = 〈L, V, ~f〉, whereQ ⊆ V is the set of query variables;
Output: A setB ⊆ V , with Q ⊆ B such that the mappingv equals lfp�(f) onB.

1. A: = Q, dg: = Q, in: = ∅, for all x ∈ V do v(x) = ⊥, exp(x) = false

2. while A 6= ∅ do
3. selectxi ∈ A, A: = A \ {xi}, dg: = dg ∪ s(xi)
4. r: = fi(v(xi1), ..., v(xiai

))

5. if r � v(xi) then v(xi):= r, A: = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = true, A: = A ∪ (s(xi) \ in), in: = in ∪ s(xi) fi

od

Table 2: General Top-down algorithm.

The attentive reader will notice that theSolve procedure has much in common with the so-
calledtabulationprocedures, like [9, 10, 13, 58]. Indeed, it is a generalization of it to arbitrary
monotone equational systems over lattices.

Given a systemS = 〈L, V, ~f〉, whereL = 〈L,�〉, let h(L) be theheightof the truth-value
setL, i.e. the length of the longest strictly�-increasing chain inL minus 1, where the length
of a chainv1, ..., vα, ... is the cardinal|{v1, ..., vα, ...}|. Thecardinal of a countable setX is
the least ordinalα such thatα andX areequipollent, i.e. there is a bijection fromα to X. For
instance,h(FOUR) = 2 w.r.t.�k as well as w.r.t.�t, while h(K([0, 1] ∩ Q)) = ω. Likewise
to [2], it can be shown that the above algorithm behaves correctly.

Proposition 5 Given a monotone system of equationsS = 〈L, V, ~f〉, then there is a limit ordi-
nal λ such that after|λ| stepsSolve(S, Q) determines a setB ⊆ V , with Q ⊆ B such that the
mappingv equals lfp�(~f) onB, i.e.v|B = lfp�(~f)|B .

Example 4 Let us consider Example 3 and the associated equational systemS with query vari-
ablexA. Below is a sequence ofSolve(S, {xA}) computation w.r.t.�k. Each line is a sequence
of steps in the ’while loop’. What is left unchanged is not reported.

1. A: = {xA}, xi: = xA, A: = ∅, dg: = {xA, xB}, r: = ⊥, exp(xA): = true, A: = {xA, xB},
in: = {xA, xB}

2. xi: = xB , A: = {xA}, dg: = {xA, xB , xC}, r: = 〈0.3, 1〉, v(xB): = 〈0.3, 1〉, A: = {xA, xC},
exp(xB):= true, in: = {xA, xB , xC}

3. xi: = xC , A: = {xA}, r: = 〈0.2, 0.7〉, v(xC): = 〈0.2, 0.7〉, A: = {xA, xB}, exp(xC): = true

4. xi: = xB , A: = {xA}, r: = 〈0.3, 0.8〉, v(xB): = 〈0.3, 0.8〉, A: = {xA, xC}
5. xi: = xC , A: = {xA}, r: = 〈0.2, 0.7〉
6. xi: = xA, A: = ∅, r: = 〈0.3, 1〉, v(xA):= 〈0.3, 1〉, A: = {xA, xB}
7. xi: = xB , A: = {xA}, r: = 〈0.3, 0.8〉,
8. xi: = xA, A: = ∅, r: = 〈0.3, 1〉
10. stop. return v(xA, xB , xC) = 〈〈0.3, 1〉, 〈0.3, 0.8〉, 〈0.2, 0.7〉〉

11

Note thatSolve(S, {xA}) answers w.r.t. the Kripke-Kleene semantics as we considered the�k

ordering.

From a Computational point of view, it is easily verified that by means of appropriate data struc-
tures, the operations onA, v, dg, in, exp, p andson can be performed in constant time. There-
fore, Step1. is O(|V |), all other steps, except Step2. and Step4. areO(1). Let c(fx) be the
maximal cost of evaluating functionfx on its arguments, so Step4. is O(c(fx)). It remains
to determine the number of loops of Step2. In case the heighth(L) of the bilatticeL is finite,
observe that any variable is increasing in the� order as it enters in theA list (Step5.), except the
case it enters due to Step6., which may happen one time only. Therefore, each variablexi will
appear inA at most

ai · h(L) + 1

times, whereai is the arity offi, as a variable is only re-entered intoA if one of its son gets an
increased value (which for each son only can happenh(L) times), plus the additional entry due
to Step6. As a consequence, the worst-case complexity is

O(
∑

xi∈V

(c(fi) · (ai · h(L) + 1)) . (5)

As a consequence,

Proposition 6 Given a monotone system of equationsS = 〈L, V, ~f〉. If the cost of computing
each of the functions in~f is bounded byc, the arity bounded bya, and the height is bounded by
h, then the worst-case complexity of the algorithmSolve is O(|V |cah).

In case the height of a bilattice is not finite, the computation may not terminate after a finite
number of steps (see Example 2). Fortunately, under reasonable assumptions on the functions,
we may guarantee the termination ofSolve. We exploit two of such conditions. Consider a
monotonic equational systemS = 〈L, V, ~f〉. Consider a functionf : L → L, where〈L,�〉 is
a lattice. Let[⊥]f be thef -closure of{⊥}, i.e. the smallest set that contains{⊥} and is closed
underf . We say thatf has a finite generation(see also [7] for more on this issue) iff[⊥]f is
finite. For instance, it can be verified that the functions∧,∨,⊗,⊕,¬ have a finite generation on
anyfinite setX ⊆ B. Note also that iff, g have a finite generation overX then so hasf ◦ g.

Therefore, given an equational systemS = 〈L, V, ~f〉. If ~f has a finite generation, then[⊥]~f

is finite. That is,{⊥, ~f(~⊥), ~f2(~⊥), ...} is finite. In particular, on induction on the computation
of the�-least fixed-point ofS it can be shown that at each step of the bottom-up computation
of the�-least fixed-point, the values of the variables are in[⊥]~f . Therefore, theheightof [⊥]~f ,
h([⊥]~f), is finite. On the other hand, it can easily be seen thatSolve terminates if the sequence

defined by Equation (4),~⊥, ~f(~⊥), ~f2(~⊥), ... converges after a finite number of steps. Therefore,

Proposition 7 Given a monotone system of equationsS = 〈L, V, ~f〉. ThenSolve terminates
iff ~f has a finite generation. If the cost of computing each of the functions in~f is bounded byc
and the arity bounded bya then the worst-case complexity of the algorithmSolve is O(|V |cah),
whereh is the height of[⊥]~f .

Example 5 ConsiderS = 〈L, V, ~f〉, whereL has a finite heighth. Consider a chainx1 �
x2 � ... � xh in L. Assume~f has exactly one equationx = f(x), wheref(xi) = xi+1,
f(xh) = xh and f(x) = ⊥, for x 6= xi (1 ≤ i ≤ n). Thenf has a finite generation, the
variablex entersh times into theA list, andSolve terminates afterh iterations.

12

The second condition on the functions, which guarantees the termination ofSolve, is inspired
directly by [12, 14] and is a special case of above. On bilattices, we say that a functionf :Bn →
B is boundediff f(x1, . . . , xn) �k ⊗ixi. Now, consider a monotone system of equations
S = 〈L, V, ~f〉. We say that~f is boundediff each fi is a composition of functions, each of
which is either bounded, or a constant inB or one of∨,∧,⊕,⊗ and¬. For instance, the
function in Example 2 is not bounded, whilefi(〈x, y〉) = 〈max(0, x + y − 1), 1〉 ∧ 〈0.3, 0.4〉
overK([0, 1] ∩ Q) is. The idea is to prevent the existence of an infinite ascending chain of the
form ~⊥ ≺k

~f(~⊥) ≺k . . . ≺k
~fm(~⊥) ≺k This is indeed the case. Roughly, consider a

�k-monotone function~f = ~g ◦ ~h, where~g is a bounded function, while~h is the composition
of constants inB or functions among∨,∧,⊕,⊗ and¬. Then ~⊥ �k

~f(~⊥) = ~g ◦ ~h(~⊥) =

~g(~h(~⊥)) �k
~h(~⊥). But~h has a finite generation and, thus, so has~f . The argument for~f = ~h◦~g

is similar. Therefore,

Proposition 8 Given a monotone system of equationsS = 〈L, V, ~f〉, where~f is bounded. Then
Solve terminates. The cost is as for Proposition 7.

Note that for bounded functions~f = ~g ◦~h, the height of[⊥]~f is given by the height of[⊥]~h. We

belief that this latter height is bounded by the numbern = |V | as we conjecture that~hn(~⊥) =
~hn+1(~⊥) (this is compatible with [12, 14]). This would imply that the worst-case complexity of
the algorithmSolve is O(|V |2ca) in that case.

3.1 Top-down query answering under the Kripke-Kleene seman-
tics

We start with the Kripke-Kleene semantics, for which we have almost anticipated how we will
proceed. LetP be a logic program and considerP∗. As already pointed out, each atom appear
exactly once in the head of a rule inP∗. The system of equations that we build fromP∗ is
straightforward. Assign to each atomA a variablexA and substitute inP∗ each occurrence of
A with xA. Finally, substitute each occurrence of← with = and letSKK(P) = 〈L, V, ~fP〉
be the resulting equational system (see Equation 3). Of course,|V | = |BP |, |SKK(P)| can
be computed in timeO(|P|) and all functions inSKK(P) are�k-continuous. As~fP is one
to one related toΦP , it follows that the�k-least fixed-point ofSKK(P) corresponds to the
Kripke-Kleene semantics ofP. The algorithmSolveKK(P, ?A), first computesSKK(P) and
then callsSolve(SKK(P), {xA}) and returns the outputv on the query variable, wherev is the
output of the call toSolve. It can be shown thatSolveKK behaves correctly (see Example 4).

Proposition 9 LetP and?A be a logic program and a query, respectively. ThenKK(P)(A) =
SolveKK(P, {?A}).

The extension to a set of query atoms is straightforward.
From a computational point of view, we can avoid the cost of translatingP into SKK(P)

as we can directly operate onP. So the costO(|P|) can be avoided. In case the height of the
bilattice is finite, from Proposition 6 it follows immediately that

Proposition 10 The worst-case complexity for top-down query answering under the Kripke-
Kleene semantics of a logic programP is O(|BP |cah).

Furthermore, note that is reasonable to assume that the cost of computing each of the functions
of ~fP is in O(1). By observing that|BP |a is in O(|P|) we immediately have that

Proposition 11 If the height is bounded byh, then the worst-case complexity for top-down query
answering under the Kripke-Kleene semantics of a logic programP is O(|P|h).

13

It follows that over the bilatticeFOUR (h = 2) the top-down algorithm works in linear
time. Moreover, if the height is a fixed parameter, i.e. a constant, we can conclude that the
additional expressive power of Kripke-Kleene semantics of logic programs over bilattices (with
functions with constant cost) does not increase the computational complexity of classical logic
programs [18].

The computational complexity of the case where the height of the bilattice is not finite is
determined by Proposition 7 and Proposition 8. In general, the continuity of the functions in
SKK(P) guarantees the termination after at mostω steps.

3.2 Top-down query answering under the Well-founded semantics
We address now the issue of a top-down computation of the value of a query under the well-
founded semantics. As we have seen, according to Fitting’s formulation, the well-founded se-
mantics of a logic programP is the�k-least fixed-point of the operatorΨ′

P defined as

Ψ′
P(I) = lfp�t

(λx.ΨP(x, I)) , (6)

whereΨP(I, J)(A) = (I4 J)(ϕ). Before we are going to present our top-down procedure for
the well-founded semantics, we roughly explain the approach. To this purpose, let us consider
Example 1. Assume that our query is?r and consider the related equational system(3). So, our
query variable isx3. Following theSolve algorithm,x3 becomes the active variable. We have
to introduce a major change in Step 4. Indeed, it is not hard to see that, due to Equation(6)
above, in order to computer := ¬x2 ∧ ¬x1, we have to compute the values ofx1 andx2 w.r.t.
the�t-least fixed-point of another equational system, where the current partial evaluationv acts
as the interpretationI. This means that we have to make a call to another instance of theSolve
algorithm, which computes the values ofx1 andx2 w.r.t. to the current evaluationv(x1, x2, x3).
In our case, we consider the equational system(3) in which negated variables have been replaced
with their value w.r.t. to the current evaluation and, thus, we replace¬x1,¬x2 and¬x3 with
v(x1) andv(x2), andv(x3) respectively. Once the sub-routine call gives us back the values of
the argumentsx1, x2 of the functionf3 we computer: = ¬x2 ∧ ¬x1 and continue with Step5.

Let us formalize the above illustrated concept. Given a logic programP, given a truth value
assignmentI, let us denoteS(PI) the equational system obtained fromSKK(P) in which all
occurrences of¬x have been replaced with¬I(x), except thatS(PI) is based on the�t order.

It can be shown that

Proposition 12 Solve(S(PI), Q) outputs a setB ⊆ V , withQ ⊆ B, s.t. the mappingv equals
to the�t-least fixed-point onB of the functions inS(PI) and, thus,v|B = Ψ′

P(I)|B .

Moreover, from a computational complexity point of view, the same properties ofSolve hold
for Solve(S(PI), Q) as well. This completes the first part.

Finally, SolveWF (P, ?A) is asSolveKK(P, ?A), except that Step4. is replaced with

4.1. Q := s(xi); I := v;

4.2. v′ := Solve(S(PI), Q);

4.3. r: = fi(v
′(xi1), ..., v

′(xiai
)).

It can be shown that

Proposition 13 LetP and?A be a logic program and a query, respectively. ThenWF (P)(A) =
SolveWF (P, ?A).

14

Example 6 Let us consider Example 3 and the associated equational systemS with query vari-
ablexA. Below is a sequence ofSolveWW (P, ?A) computation. It resembles the one we have
seen in Example 6. Each line is a sequence of steps in the ’while loop’. What is left unchanged
is not reported.

1. A: = {xA}, xi: = xA, A: = ∅, dg: = {xA, xB}, Q: = {xA, xB}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0, 1〉〉,
r: = 〈0.3, 0.5〉, v(xA): = 〈0.3, 0.5〉, A: = {xA, xB}, exp(xA): = true, in: = {xA, xB}

2. xi: = xB , A: = {xA}, dg: = {xA, xB , xC}, Q: = {xA, xC}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉,
r: = 〈0.3, 0.5〉, v(xB): = 〈0.3, 0.5〉, A: = {xA, xC}, exp(xB):= true, A: = {xA, xC},
in: = {xA, xB , xC}

3. xi: = xC , A: = {xA}, Q: = {xB}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉,
r: = 〈0.5, 0.7〉, v(xC):= 〈0.5, 0.7〉, A: = {xA, xB}, exp(xC): = true

4. xi: = xB , A: = {xA}, Q: = {xA, xC}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉, r: = 〈0.3, 0.5〉
5. xi: = xA, A: = ∅, Q: = {xA, xB}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉, r: = 〈0.3, 0.5〉
6. stop. return v(xA, xB , xC)|xA

= 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉|xA
= 〈0.3, 0.5〉

We conclude with addressing the computational complexity ofSolveWF . The analysis parallels
the one we have made forSolveKK . We first address the case the height of a bilattice is finite.
Like SolveKK , each variablexj will appear inA at mostaj · (h(L) + 1) times and, thus,
the worst-case complexity isO(

∑
xj∈V (c(fj) · (aj · (h(L) + 1)). But now, the cost ofc(fj)

is the cost of a recursive call toSolve, which analogously to Proposition 10 isO(|BP |cah).
Therefore,SolveWW runs in timeO(|BP |2a2h2c). Therefore,

Proposition 14 The worst-case complexity for top-down query answering under the well-founded
semantics of a logic programP over bilattices isO(|P|2h2c), whereh is the height of the bilat-
tice.

If the bilattice is fixed, then the height parameter is a constant. Furthermore, it is reasonable to
assume thatc is O(1) and, thus, the worst-case complexity reduces toO(|P|2). However, note
that for the classical case we can do better, as worked out in [36]. It remains open whether those
results extends to our case as well.

In the case the height of a bilattice is not finite, the continuity of the functionsf ∈ F
guarantees that each recursive call toSolve requires at mostω steps. Thus, we have at mostωω

steps forSolveWF . In case the functions have a finite generation or are bounded, Proposition 7
and Proposition 8 can be applied.

4 Conclusions and outlook
We have presented a general, top-down algorithm to answer queries to monotone equational sys-
tems over lattices and bilattices and, thus, for logic programs over thereof. We believe that its
interest relies on the fact that most approaches to paraconsistency and uncertainty of logic pro-
grams with negation can be reduced to the bilattice framework and, thus, the presented algorithm
gives us an easy to implement query-solving procedure for them. However, we are aware that the
“quadratic bound” for the well-founded semantics case may not be completely satisfactory, espe-
cially in the light of the results [36]. It is, thus, interesting to investigate whether modifications to
our algorithmSolveWF inspired by [36] or by [58] may give advantages from a computational
point of view.

References
[1] João Alcant̂ara, Carlos Viegas Daḿasio, and Lúıs Moniz Pereira. Paraconsistent logic

programs. InProc. of the 8th European Conference on Logics in Artificial Intelligence

15

(JELIA-02), number 2424 in Lecture Notes in Computer Science, pages 345–356, Cosenza,
Italy, 2002. Springer-Verlag.

[2] Henrik R. Andersen. Local computation of simultaneous fixed-points. Technical Report
PB-420, DAIMI, October 1992.

[3] Ofer Arieli. Paraconsistent declarative semantics for extended logic programs.Annals of
Mathematics and Artificial Intelligence, 36(4):381–417, 2002.

[4] Ofer Arieli and Arnon Avron. The value of the four values.Artificial Intelligence Journal,
102(1):97–141, 1998.

[5] Nuel D. Belnap. A useful four-valued logic. In Gunnar Epstein and J. Michael Dunn,
editors,Modern uses of multiple-valued logic, pages 5–37. Reidel, Dordrecht, NL, 1977.

[6] H. Blair and V. S. Subrahmanian. Paraconsistent logic programming.Theoretical Computer
Science, 68:135–154, 1989.

[7] Elmar Böhler, Christian Glaer, Bernhard Schwarz, and Klaus Wagner. Generation prob-
lems. In29th International Symposium on Mathematical Foundations of Computer Science
(MFCS-04), volume 3153 ofLecture Notes in Computer Science, pages 392–403. Springer
Verlag, 2004.

[8] True H. Cao. Annotated fuzzy logic programs.Fuzzy Sets and Systems, 113(2):277–298,
2000.

[9] Weidong Chen, Terrance Swift, and David Scott Warren. Efficient top-down computation
of queries under the well-founded semantics.Journal of Logic Programming, 24(3):161–
199, 1995.

[10] Weidong Chen and David S. Warren. Tabled evaluation with delaying for general logic
programs.Journal of the ACM, 43(1):20–74, 1996.

[11] K.L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors,Logic and
data bases, pages 293–322. Plenum Press, New York, NY, 1978.

[12] Carlos Viegas Daḿasio, J. Medina, and M. Ojeda Aciego. Sorted multi-adjoint logic pro-
grams: Termination results and applications. InProceedings of the 9th European Con-
ference on Logics in Artificial Intelligence (JELIA-04), number 3229 in Lecture Notes in
Computer Science, pages 252–265. Springer Verlag, 2004.

[13] Carlos Viegas Daḿasio, J. medina, and M. Ojeda Aciego. A tabulation proof procedure for
residuated logic programming. InProceedings of the 6th European Conference on Artificial
Intelligence (ECAI-04), 2004.

[14] Carlos Viegas Daḿasio, J. Medina, and M. Ojeda Aciego. Termination results for sorted
multi-adjoint logic programs. InProceedings of the 10th International Conference on Infor-
mation Processing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-
04), pages 1879–1886, 2004.

[15] Carlos Viegas Daḿasio and Lúıs Moniz Pereira. A survey of paraconsistent semantics for
logic programs. In D. Gabbay and P. Smets, editors,Handbook of Defeasible Reasoning
and Uncertainty Management Systems, pages 241–320. Kluwer, 1998.

[16] Carlos Viegas Daḿasio and Lúıs Moniz Pereira. Antitonic logic programs. InProceed-
ings of the 6th European Conference on logic programming and Nonmonotonic Reasoning
(LPNMR-01), number 2173 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

[17] Carlos Viegas Daḿasio and Lúıs Moniz Pereira. Sorted monotonic logic programs and
their embeddings. InProceedings of the 10th International Conference on Information Pro-
cessing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-04), pages
807–814, 2004.

16

[18] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of propo-
sitional horn formulas.Journal of Logic Programming, 3(1):267–284, 1984.

[19] Didier Dubois, J́erome Lang, and Henri Prade. Towards possibilistic logic programming.
In Proc. of the 8th Int. Conf. on Logic Programming (ICLP-91), pages 581–595. The MIT
Press, 1991.

[20] M. C. Fitting. The family of stable models.Journal of Logic Programming, 17:197–225,
1993.

[21] M. C. Fitting. Fixpoint semantics for logic programming - a survey.Theoretical Computer
Science, 21(3):25–51, 2002.

[22] Melvin Fitting. A Kripke-Kleene-semantics for general logic programs.Journal of Logic
Programming, 2:295–312, 1985.

[23] Melvin Fitting. Bilattices and the semantics of logic programming.Journal of Logic
Programming, 11:91–116, 1991.

[24] Melvin Fitting. Kleene’s logic, generalized.Journal of Logic and Computation, 1(6):797–
810, 1992.

[25] Norbert Fuhr. Probabilistic Datalog: Implementing logical information retrieval for ad-
vanced applications.Journal of the American Society for Information Science, 51(2):95–
110, 2000.

[26] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert A. Kowalski and Kenneth Bowen, editors,Proceedings of the 5th Interna-
tional Conference on Logic Programming, pages 1070–1080, Cambridge, Massachusetts,
1988. The MIT Press.

[27] Matthew L. Ginsberg. Multi-valued logics: a uniform approach to reasoning in artificial
intelligence.Computational Intelligence, 4:265–316, 1988.

[28] Reiner Ḧanle and Gonzalo Escalada-Imaz. Deduction in many-valued logics: a survey.
Mathware and Soft Computing, IV(2):69–97, 1997.

[29] M. Kifer and Ai Li. On the semantics of rule-based expert systems with uncertainty. In
Proc. of the Int. Conf. on Database Theory (ICDT-88), number 326 in Lecture Notes in
Computer Science, pages 102–117. Springer-Verlag, 1988.

[30] Michael Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming
and its applications.Journal of Logic Programming, 12:335–367, 1992.

[31] Gary A. Kildall. A unified approach to global program optimization. InProceedings of the
1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 194–206. ACM Press, 1973.

[32] Laks Lakshmanan. An epistemic foundation for logic programming with uncertainty. In
Foundations of Software Technology and Theoretical Computer Science, number 880 in
Lecture Notes in Computer Science, pages 89–100. Springer-Verlag, 1994.

[33] Laks V.S. Lakshmanan and Fereidoon Sadri. Uncertain deductive databases: a hybrid
approach.Information Systems, 22(8):483–508, 1997.

[34] Laks V.S. Lakshmanan and Nematollaah Shiri. Probabilistic deductive databases. InInt’l
Logic Programming Symposium, pages 254–268, 1994.

[35] Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to deductive
databases with uncertainty.IEEE Transactions on Knowledge and Data Engineering,
13(4):554–570, 2001.

17

[36] Zbigniew Lonc and Mirosław Truszczyński. On the problem of computing the well-
founded semantics.Theory and Practice of Logic Programming, 5(1):591–609, 2001.

[37] Yann Loyer and Umberto Straccia. Uncertainty and partial non-uniform assumptions in
parametric deductive databases. InProc. of the 8th European Conference on Logics in
Artificial Intelligence (JELIA-02), number 2424 in Lecture Notes in Computer Science,
pages 271–282, Cosenza, Italy, 2002. Springer-Verlag.

[38] Yann Loyer and Umberto Straccia. The well-founded semantics in normal logic programs
with uncertainty. InProc. of the 6th International Symposium on Functional and Logic
Programming (FLOPS-2002), number 2441 in Lecture Notes in Computer Science, pages
152–166, Aizu, Japan, 2002. Springer-Verlag.

[39] Yann Loyer and Umberto Straccia. The approximate well-founded semantics for logic
programs with uncertainty. In28th International Symposium on Mathematical Foundations
of Computer Science (MFCS-2003), number 2747 in Lecture Notes in Computer Science,
pages 541–550, Bratislava, Slovak Republic, 2003. Springer-Verlag.

[40] Yann Loyer and Umberto Straccia. Default knowledge in logic programs with uncertainty.
In Proc. of the 19th Int. Conf. on Logic Programming (ICLP-03), number 2916 in Lecture
Notes in Computer Science, pages 466–480, Mumbai, India, 2003. Springer Verlag.

[41] Yann Loyer and Umberto Straccia. Epistemic foundation of the well-founded semantics
over bilattices. In29th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS-2004), number 3153 in Lecture Notes in Computer Science, pages
513–524, Bratislava, Slovak Republic, 2004. Springer Verlag.

[42] James J. Lu. Logic programming with signs and annotations.Journal of Logic and Com-
putation, 6(6):755–778, 1996.

[43] James J. Lu, Jacques Calmet, and Joachim Schü. Computing multiple-valued logic pro-
grams.Mathware % Soft Computing, 2(4):129–153, 1997.

[44] Thomas Lukasiewicz. Many-valued first-order logics with probabilistic semantics. InPro-
ceedings of the Annual Conference of the European Association for Computer Science
Logic (CSL’98), number 1584 in Lecture Notes in Computer Science, pages 415–429.
Springer Verlag, 1998.

[45] Thomas Lukasiewicz. Probabilistic logic programming. InProc. of the 13th European
Conf. on Artificial Intelligence (ECAI-98), pages 388–392, Brighton (England), August
1998.

[46] Thomas Lukasiewicz. Many-valued disjunctive logic programs with probabilistic seman-
tics. InProceedings of the 5th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’99), number 1730 in Lecture Notes in Computer Science,
pages 277–289. Springer Verlag, 1999.

[47] Thomas Lukasiewicz. Probabilistic and truth-functional many-valued logic programming.
In The IEEE International Symposium on Multiple-Valued Logic, pages 236–241, 1999.

[48] Thomas Lukasiewicz. Fixpoint characterizations for many-valued disjunctive logic pro-
grams with probabilistic semantics. InIn Proceedings of the 6th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-01), number 2173 in Lec-
ture Notes in Artificial Intelligence, pages 336–350. Springer-Verlag, 2001.

[49] Thomas Lukasiewicz. Probabilistic logic programming with conditional constraints.ACM
Transactions on Computational Logic, 2(3):289–339, 2001.

18

[50] Cristinel Mateis. Extending disjunctive logic programming by t-norms. InProceedings
of the 5th International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-99), number 1730 in Lecture Notes in Computer Science, pages 290–304.
Springer-Verlag, 1999.

[51] Cristinel Mateis. Quantitative disjunctive logic programming: Semantics and computation.
AI Communications, 13:225–248, 2000.

[52] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtás. A procedural seman-
tics for multi-adjoint logic programming. InProceedings of the10th Portuguese Confer-
ence on Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extrac-
tion, Multi-agent Systems, Logic Programming and Constraint Solving, pages 290–297.
Springer-Verlag, 2001.

[53] Jeśus Medina and Manuel Ojeda-Aciego. Multi-adjoint logic programming. InProceed-
ings of the 10th International Conference on Information Processing and Managment of
Uncertainty in Knowledge-Based Systems, (IPMU-04), pages 823–830, 2004.

[54] Jeśus Medina, Manuel Ojeda-Aciego, and Peter Vojtá̌s. Multi-adjoint logic programming
with continuous semantics. InProceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-01), volume 2173 ofLecture Notes
in Artificial Intelligence, pages 351–364. Springer Verlag, 2001.

[55] Raymond Ng and V.S. Subrahmanian. Stable model semantics for probabilistic deduc-
tive databases. In Zbigniew W. Ras and Maria Zemenkova, editors,Proc. of the 6th Int.
Sym. on Methodologies for Intelligent Systems (ISMIS-91), number 542 in Lecture Notes
in Artificial Intelligence, pages 163–171. Springer-Verlag, 1991.

[56] Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming.Information and
Computation, 101(2):150–201, 1993.

[57] Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-based
systems. InProceedings of the 8th International Joint Conference on Artificial Intelligence
(IJCAI-83), pages 529–532, 1983.

[58] Terrance Swift. Tabling for non-monotonic programming.Annals of Mathematics and
Artificial Intelligence, 25(3-4):201–240, 1999.

[59] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pacific Journal of
Mathematics, (5):285–309, 1955.

[60] M.H. van Emden. Quantitative deduction and its fixpoint theory.Journal of Logic Pro-
gramming, 4(1):37–53, 1986.

[61] Allen van Gelder, Kenneth A. Ross, and John S. Schlimpf. The well-founded semantics
for general logic programs.Journal of the ACM, 38(3):620–650, January 1991.

[62] Peter Vojt́ǎs. Fuzzy logic programming.Fuzzy Sets and Systems, 124:361–370, 2004.

[63] Gerd Wagner. Negation in fuzzy and possibilistic logic programs. In T. Martin and F. Ar-
celli, editors,Logic programming and Soft Computing. Research Studies Press, 1998.

[64] Beat Ẅuttrich. Probabilistic knowledge bases.IEEE Transactions on Knowledge and Data
Engineering, 7(5):691–698, 1995.

19

