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An Offline-Sampling SMPC Framework with
Application to Autonomous Space Maneuvers

Martina Mammarella1 Member, IEEE, Matthias Lorenzen2, Elisa Capello3 Member, IEEE,
Hyeongjun Park4 Member, IEEE, Fabrizio Dabbene5, Senior Member, IEEE, Giorgio Guglieri1,

Marcello Romano4, Senior Member, IEEE, and Frank Allgöwer2, Member, IEEE

Abstract—In this paper, a sampling-based Stochastic Model
Predictive Control algorithm is proposed for discrete-time linear
systems subject to both parametric uncertainties and additive
disturbances. One of the main drivers for the development
of the proposed control strategy is the need of reliable and
robust guidance and control strategies for automated rendezvous
and proximity operations between spacecraft. To this end, the
proposed control algorithm is validated on a floating spacecraft
experimental testbed, proving that this solution is effectively
implementable in real time. Parametric uncertainties due to
the mass variations during operations, linearization errors, and
disturbances due to external space environment are simultane-
ously considered. The approach enables to suitably tighten the
constraints to guarantee robust recursive feasibility when bounds
on the uncertain variables are provided. Moreover, the offline
sampling approach in the control design phase shifts all the
intensive computations to the offline phase, thus greatly reducing
the online computational cost, which usually constitutes the main
limit for the adoption of Stochastic Model Predictive Control
schemes, especially for low-cost on-board hardware. Numerical
simulations and experiments show that the approach provides
probabilistic guarantees on the success of the mission, even
in rather uncertain and noisy situations, while improving the
spacecraft performance in terms of fuel consumption.

Index Terms— Stochastic Model Predictive Control; Chance
Constraints; Sampling-based Approach; Real-time Imple-
mentability; Autonomous Rendezvous between Spacecraft.

I. INTRODUCTION

IN the last decades, model predictive control (MPC) has
become one of the most successful advanced control tech-

niques for industrial processes, thanks to its ability to handle
multi-variable systems, explicitly taking into account state and
equipment constraints, see for instance the recent survey [1].
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Early publications on the topic already emphasized that
moving horizon schemes like MPC might incur significant
performance degradation in the presence of uncertainty [2].
Furthermore, ignoring modeling errors and disturbances can
lead to constraint violation in closed loop and the online op-
timization being infeasible. To cope with these disadvantages,
in the last years Robust MPC has received a great deal of
attention and, at least for linear systems, it can nowadays
be considered well-understood and having achieved a mature
state [3]. More recently, for processes where a stochastic
model can be formulated to represent the uncertainty and
disturbance and constraints violation does not correspond to
compromise the application or lose the mission, Stochastic
Model Predictive Control (SMPC) approaches have gained
popularity [4]. Indeed, a probabilistic model allows to optimize
average performance or appropriate risk measures, and the
introduction of so-called chance constraints, which seem more
appropriate in those applications where allowing a (small)
probability of constraints violation provides a higher cost-
effectiveness of the application itself. Furthermore, chance
constraints lead to an increased region of attraction and enlarge
the set of states for which MPC provides a valid control
law [5].

On the other hand, the classical criticism of MPC schemes,
especially in their robust/stochastic instantiations, is their slow-
ness. This has limited their application to problems involving
slow dynamics, where the sample time is measured in tens
of seconds or minutes. In particular, due to the increased
computational load, SMPC has mainly been applied for: (i)
slow systems, as e.g. water networks [6], river flood control
[7] and chemical processes [8], and (ii) fast-dynamics systems
in which a dedicated high-performance computing platform is
exploited to solve online the optimization problem, e.g. [9], in
which an NVIDIA Tesla k20 GPU allows to run parallelized
code efficiently.

Indeed, typically this widely recognized shortcoming is
mainly due to the computational effort required in the on-
line solution of the ensuing optimization problem, and to
the difficulty of embedding a real-time solver for MPC im-
plementation. For example, in [10], a heuristic Randomized
MPC is proposed and experimentally validated for controlling
mini race cars. In this case, the optimization problem involves
a small number of samples (lower than 100) and is solved
on a desktop PC which streams the optimal control input to
the cars via bluetooth. Indeed, when the number of samples,
variables and/or prediction horizon increases and the system
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to be controlled is also characterized by fast dynamics (in
the order of ms or s), the problem could easily become
intractable. A practical solution proposed in the literature
is to evaluate offline the control law, and then the control
action is implemented online as a lookup table [11]. However,
this solution renders the controller less apt to deal with
model uncertainties and external disturbances. Moreover, a
substantial computational capability and large memory are
required, especially for systems with fast dynamics, such as
UAV, aircraft, and spacecraft.

In space applications, the available processors provide lim-
ited on board computational power. In this framework, the
requirement of real-time implementability for new Guidance
Navigation and Control (GNC) algorithms gains the highest
priority.

The contribution of the paper is twofold. From a theoret-
ical viewpoint, the paper integrates and extends the previous
works of the authors [5], [12], proposing offline sample-
based strategies for addressing in a computationally tractable
manner SMPC. In particular, as detailed Section I-A, the
paper develops for the first time a complete and integrated
framework, able to cope simultaneously with additive random
noise and parametric stochastic uncertainty.

From an application viewpoint, the paper demonstrates real-
time implementability of the proposed scheme, addressing a
very important control problem arising in aerospace applica-
tions, the Autonomous Rendezvous and Docking (ARVD) ma-
neuver among spacecraft. Indeed, as discussed in Section I-B,
the ability to carry over proximity operations in a completely
autonomous manner represents one of the main challenges
of modern spacecraft missions. These require the capability
of dealing in an efficient way with external disturbances due
to the space environment, and with uncertainties. The SMPC
scheme is shown to be able to cope with all these requirements,
providing sufficiently high guarantees in terms of safety and
constraints satisfaction, and at the same time being sufficiently
fast to be implemented in a real-time framework.

The framework developed in this paper has recently been
applied in [13] to the problem of guidance and control of
a fixed-wing UAV for urban monitoring applications. In that
paper, it is shown how the approach can be extended to
tracking, and can easily deal with the time-constants involved
in UAV dynamics.

In the next section, we highlight the contributions of the
present work to the SMPC theory, while the next section
describes in detail the application example considered, high-
lighting how it can benefit from the performance guarantees
provided by the introduced control framework.

A. A Novel Stochastic Model Predictive Control Framework

The main problem encountered in the design of SMPC algo-
rithms is the derivation of computationally tractable methods
to propagate the uncertainty for evaluating the cost function
and the chance constraints. Both problems involve multivari-
ate integrals, whose evaluation requires the development of
suitable techniques. An exact evaluation is in general only
possible for linear systems with additive Gaussian disturbance,

where the constraints can be reformulated as second-order
cone constraints [14], or for finitely supported disturbances as
in [15]. Approximate solutions include a particle approach [16]
or polynomial chaos expansion [17]. Among the different
methods, randomized algorithms [18], and in particular the
scenario approach [19], represent one of the most promising
one when the computational capability of the stochastic algo-
rithm represents a stringent constraint for the chosen applica-
tion and several types of stochastic uncertainty are involved
and can enter nonlinearly in the system. The first approaches
in this direction can be found in the methods proposed in
[20], [21], [22], in which the uncertainty is propagated as
a finite number of scenarios to be considered at each step.
However, these approaches may still be rather demanding for
real-time implementations, since different samples need to be
drawn at each step. Recently, this drawback was overcome
by the introduction of offline sampling strategies, that allow
to reduce the computational effort made online by means of
a pre-processing of data made offline. In particular, in [12]
this approach was developed for problems involving additive
disturbances, acting on a nominal system. In [5], parametric
uncertainties are instead considered in a noise-free setting.

This paper solves the nontrivial problem of extending the
previous result into a comprehensive framework, able to tackle
situations in which both additive disturbances and parametric
uncertainties are simultaneously present. The SMPC scheme
here proposed results to be less conservative than most ana-
lytical approaches based on Chebyschev’s inequality (see [23]
and [24] for further details), is computationally tractable and
guarantees recursive feasibility. As in [12], the computational
load is reduced by generating scenarios offline and keeping
only selected, necessary samples for the online optimization.
The algorithm guarantees robust satisfaction of the input
constraints and bounds on the confidence that the chance
constraints are satisfied can be chosen by the designer. Due
to the additive disturbance, the state does not converge to the
origin. Instead, an asymptotic performance bound is provided.
The presented theory is attractive for real-world applications,
since the design can be based on real data gathered from
experiments or high fidelity simulations. Moreover, thanks
to the offline sampling approach, this SMPC scheme can be
applied to relatively fast dynamics, as those of space platforms
during the final phase of the automated rendezvous and mating
maneuver.

B. ARVD Problem (Problem Setup)

The advancement of robotics and autonomous systems
will be central to the transition of space missions from
current ground-in-the-loop (geocentric) architectures to more
autonomous systems. For instance, the Committee on NASA
Technology Roadmaps has highlighted as “Robotics, Tele-
Robotics, and Autonomous Systems” shall be regarded as
high-priority technology area in broadening access to space
and expanding human presence in the Solar System [25].
Among them, ARVD represents the cornerstone technology,
since all of the scenarios that space agencies have defined for
the future exploration program have one thing in common:
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each mission architecture heavily relies on the ability to ren-
dezvous and mate multiple elements in space autonomously. In
order to meet the exploration enterprise goals of affordability,
safety and sustainability, the critical capabilities of rendezvous,
capture and in-space assembly must become autonomous,
increasing their reliability [26]. The complexity of the ARVD
mainly results from the multitude of safety and operational
constraints which must be fulfilled. These constraints are
defined with respect to the rendezvous approach phase consid-
ered. In terms of safety, the close range rendezvous phase is the
most critical, since the space systems involved are relatively
close together and the trajectory of the chaser, by definition,
leads toward the target, so that any deviation from the planned
trajectory can potentially lead to a collision. Therefore, the
main focus of this paper is on the final approach between
the chaser vehicle and the target one, considering the typical
minus V-bar approach.

First, for sensing purposes (see [27]), it is required that
the chaser vehicle remains inside a Line-Of-Sight (LOS) from
the docking point, constraint usually defined in terms of
an approaching corridor, as represented in Figure 1, which
can be modeled as a polytope (without any generality loss,
a rectangular parallelepiped can be used). Moreover, soft
docking constraints can be enforced, reducing the approach
velocity in line with distance to the target, as well as limiting
the maximum approach velocity. When using thrusters for
spacecraft trajectory control, not only there are constraints on
the maximum force that can be applied at any given instant,
i.e. saturation of the actuators, but there is also the physical
constraint of a thrust “dead-zone” between the thruster being
fully off, and delivering its minimum non-zero thrust, often
referred to as the “Minimum Impulse Bit” (MIB). Indeed,
constraints on the maximum deliverable ∆v are placed on
each element of the input vector. Last but not least, another
constraint can be imposed on the fuel consumption or on the
amount of fuel dedicated to the maneuver.

Fig. 1. Line-Of-Sight constraint defined in terms of infeasible/feasible region
considering a minus V-bar approach [28].

A second important challenge for close-range ARVD is
represented by the need to handle uncertainty. Thruster fir-
ings, mass and geometry model, aerodynamic drag in Low
Earth Orbit (LEO), Inertial Measurement Unit (IMU) and
camera measurements introduce uncertainties in relative state
knowledge and control accuracy. As the chaser spacecraft
approaches its target, these uncertainties can induce violations
in any of the aforementioned mission constraints. Hence, one
should embed in ARVD algorithms the capability to handle
any expected uncertainty directly, i.e. incorporating strategies
to deal with all known unknowns. The key for ARVD GNC
strategies is relying on solution techniques that can be made

efficient for real-time implementation. Indeed, to meet the
GNC challenges of next-generation space missions, onboard
algorithms will need to satisfy the following specifications:
(i) real-time implementability; (ii) optimality; (iii) verifiability.
Therefore, new GNC algorithms need to be implemented and
executed on real-time processors, in a compatible amount
of time, providing a feasible and (approximately) optimal
solution, verifying the design metrics identified to describe
their performance.

Several methodologies have been proposed in literature
for ARVD, which have shown robustness with respect to
known and unknown uncertainty and disturbance affecting the
system during the final phase of the rendezvous maneuver.
The reader is referred to [29] for a recent survey. In particular,
we want to recall the approach proposed in [30], where a
robust MPC is adopted to solve the problem of spacecraft
rendezvous, using the Hill-Clohessy-Wiltshire (HCW) model
and including additive disturbances and LOS constraints.
Furthermore, it has been proved that a robust approach
implies higher fuel consumption with respect to classical
methods where disturbances are neglected (see [31]). On
the other hand, still a probability of constraints violation
can be considered thanks to the possibility of relaxing the
safety requirements also during the critical final phase of
ARVD. In this work, a stochastic approach is proposed in
order to relax the safety trajectory constraints reducing the
conservativeness with respect to a robust approach, as well
as fuel consumption, optimizing the average performance and
allowing an affordable level of constraints violation.

The remainder of this paper is organized as follows.
Section II introduces the finite horizon receding optimal
control problem, starting with a suitable formulation of the
constraints through an offline uncertainty sampling approach.
Thereafter, the SMPC scheme algorithm is introduced, and
its main theoretical properties are summarized and proved.
In Section III, the experimental testbed used to validate
the real-time implementability of the proposed scheme
is described. Its dynamic model is derived, including the
identification and modeling of uncertainty and additive
disturbance and presenting the main issues linked to real-time
implementability and principal solvers investigated. The
simulation and experimental results are discussed in Section
IV and the algorithm performances are discussed with respect
to computational effort and fuel consumption. Finally, Section
V provides some conclusions and directions for future works.

Notation: Uppercase letters are used for matrices and
lower case for vectors. [A]j and [a]j denote the j-th row and
entry of the matrix A and vector a, respectively. Positive
(semi)definite matrices A are denoted A � 0 (A � 0)
and ‖x‖2A = xTAx. The set N>0 denotes the positive
integers and N≥0 = {0} ∪ N>0, similarly R>0, R≥0 for
positive real numbers. The notation Pk {A} = P {A|xk}
denotes the conditional probability of an event A given
the realization of xk, similarly Ek {A} = E {A|xk} for
the expected value. We use xk for the (measured) state
at time k and x`|k for the state predicted l steps ahead at
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time k. The sequence of length T of vectors v0|k, . . . , vT |k
is denoted by vT |k. A ⊕ B = {a+ b| a ∈ A, b ∈ B},
A	 B = {a ∈ A| a+ b ∈ A,∀b ∈ B} denote the Minkowski
sum and the Pontryagin set difference, respectively. The
notation 1n is used to denote a n-dimensional vector of ones.

II. SMPC DESIGN UNDER UNCERTAINTY AND RANDOM
NOISE

We consider the following discrete-time system subject to
both random noise and stochastic uncertainty

xk+1 = A(qk)xk +B(qk)uk +Bw(qk)wk, (1)

with state xk ∈ Rn, control input uk ∈ Rm, additive
disturbance wk ∈ Rmw , and parametric uncertainty qk ∈ Rnq .

In the following, the disturbance sequence (wk)k∈N≥0
is

assumed to be a realization of a stochastic process (Wk)k∈N≥0
.

Assumption 1 (Bounded Random Disturbance). The distur-
bances Wk, for k = 0, 1, 2..., are independent and identically
distributed (iid), zero-mean random variables with support W,
which is a bounded and convex set.

We assume that the system matrices A(qk), B(qk), and
Bw(qk), of appropriate dimensions, are (possibly nonlinear)
functions of the uncertainty qk. The uncertainty vector
qk belongs to a given set Q and satisfies the following
assumption.

Assumption 2 (Stochastic Uncertainty). The uncertainties
qk ∈ Q ⊂ Rnq , for k ∈ N, are realizations of i.i.d.
multivariate real valued random variables Qk. Moreover, let
G = {(A(qk), B(qk), Bw(qk)}qk∈Q, a polytopic outer approx-
imation with Nc vertexes Ḡ .

= co
{
Aj , Bj , Bjw

}
j∈NNc

1
⊇ G

exists and is known.

The system is subject to px individual chance-constraints
on the state and m hard constraints on the input

P
{

[Hx]αx`|k ≤ [hx]α
}
≥ 1− εα, ∀ ` ∈ N≥0, α ∈ Npx1 (2a)

Huu`|k ≤ hu, ∀ ` ∈ N>0, (2b)

with Hx ∈ Rpx×n, hx ∈ Rpx , Hu ∈ Rm×m, hx ∈ Rm,
and εα ∈ (0, 1). Note that the probability P in (2) denotes
the joint probability with respect to both, the uncertainty and
disturbance sequences qk and wk, where qk

.
=
{
q`|k
}
`∈NT−1

0

and wk
.
=
{
w`|k

}
`∈NT−1

0
. Then, as typical in stabilizing

MPC, we assume that a suitable terminal set XT and an
asymptotically stabilizing control gain for (1) exist.

Assumption 3 (Terminal set). There exists a terminal set
XT = {xk |HTxk ≤ hT }, which is robustly forward invariant
for (1) under the (given) control law uk = Kxk. Given any
xk ∈ XT , the state and input constraints (2) are satisfied and
there exists P ∈ Rn×n such that

Q+KTRK + E[Acl(qk)TPAcl(qk)]− P � 0 (3)

for all q ∈ Q, with Acl(qk)
.
= A(qk) + B(qk)K, and with

Q ∈ Rn×n, Q � 0, R ∈ Rm×m, R � 0.

Following a scheme adopted in [4] for defining the predicted
control sequence for nominal, robust and also stochastic MPC,
we consider the design of a parametrized feedback policy of
the form

u`|k = Kx`|k + v`|k, (4)

where K satisfies is quadratically stabilizing for the system (1)
and, for a given x0|k = xk, the sequence of correction terms
vk

.
=
{
v`|k
}
`∈NT−1

0
is determined by the SMPC algorithm as

the minimizer of the expected finite-horizon cost

JT (xk, vk) = E

{
T−1∑
l=0

(xT`|kQx`|k + uT`|kRu`|k) + xTT |kPxT |k

}
,

(5)
subject to constraints (2).

A. Offline Uncertainty Sampling for SMPC

For the following analysis, we first explicitly solve equa-
tion (1) with prestabilizing input (4) for the predicted
states x1|k, . . . , xT |k and predicted inputs u0|k, . . . , uT−1|k.
In particular, simple algebraic manipulations show that it
is possible to derive suitable transfer matrices Φ0

`|k(qk),
Φv`|k(qk),Φw`|k(qk), and Γ` (the reader is referred to Ap-
pendix A for details), such that

x`|k(qk,wk) = Φ0
`|k(qk)xk + Φv`|k(qk)vk + Φw`|k(qk)wk(6a)

u`|k(qk,wk) =KΦ0
`|k(qk)xk + (KΦv`|k(qk) + Γ`)vk

+KΦw`|k(qk)wk, (6b)

In the previous equations, we highlight that both predicted
states and inputs are function of the uncertainty and the noise
sequence, qk and wk respectively. Given the solution (6), the
expected value of the finite-horizon cost (5) can be evaluated
offline, leading to a quadratic cost function of the form

JT (xk, vk) = [xTk vTk 1Tmw
]S̃

 xk
vk

1mw

 (7)

in the deterministic variables xk and vk. The evaluation of S̃
requires the computation of an expected value, which can be
explicitly evaluated or sufficiently exact approximated taking
random samples of the sequences qk and wk (see again
Appendix A for details).

We now follow the same approach proposed in [12], and
observe that an inner approximation for the chance constraint
(2a) can be derived in the form of linear constraints on xk,
vk and wk, utilizing a sampling-based approach. In particular,
for each probabilistic state constraint α ∈ Npx1 , and for each
time step ` ∈ NT−10 , let us define the corresponding chance-
constrained set as follows

XP,α` =
{
xk, vk | P

{
[Hx]αx`|k(qk,wk) ≤ [hx]α

}
≥ 1− εα

}
.

(8)
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In the above definition, we use the apex P as in [12] to indicate
that the set has probabilistic nature. Then, exploiting results
from statistical learning theory [32], an estimate of XP,α` may
be constructed extracting Nx

` iid sample sequences q(ix` ) and
w(ix` ), with ix` ∈ NN

x
`

1 , and building the corresponding sampled
state constraint set

XS,α` =
{
xk, vk | [Hx]αx`|k(q(ix` ),w(ix` )) ≤ [hx]α, i

x
` ∈ NN

x
`

1

}
,

for ` ∈ NT−10 . The apex S is used to indicate that the set is
the outcome of a sampling process.

In particular it was shown in [12] that, for given probabilistic
levels δ ∈ (0, 1) and εα ∈ (0, 0.14), if we define

Ñ(d, εα, δ) =
4.1

εα

(
ln

21.64

δ
+ 4.39d log2

( 8e

εα

))
,

then the choice Nx
` ≥ Ñ(p + `m, εα, δ) guarantees that

XS,α` ⊆ XP,α` with probability greater than 1 − δ. Hence, we
obtain that x`|k ∈ XS,α` is guaranteed with high probability
whenever x`|k satisfies the following set of linear constraints

Hxx`|k(q(ix` ),w(ix` )) ≤ hx, for ix` ∈ NN
x
`

1 .

Note that, from (6a), the above equations rewrite as the
following linear constraint in xk, vk[

H̃x
x H̃u

x

] [xk
vk

]
≤ h̃x (9)

where we defined

[H̃x
x H̃u

x ] =



HxΦ0
0|k(q(1)) HxΦv0|k(q(1))

...
...

HxΦ0
0|k(q(Nx

0 )) HxΦv0|k(q(Nx
0 ))

...
...

HxΦ0
T−1|k(q(1)) HxΦvT−1|k(q(1))

...
...

HxΦ0
T−1|k(q(Nx

T−1)) HxΦvT−1|k(q(Nx
T−1))


,

(10a)

h̃x =



hx−HxΦw0|k(q(1))w(1)
k

...
hx−HxΦw0|k(q(Nx

0 ))w(Nx
0 )

k

...
hx−HxΦwT−1|k(q(1))w(1)

k

...

hx−HxΦwT−1|k(q(Nx
T−1))w(Nx

T−1)

k


. (10b)

Note that the total number of samples to be drawn to construct
the sampled constraint sets (9) is equal to Nx .

=
∑T−1
`=0N

x
` ,

and thus the total number of linear inequalities will be pNx.
On the other hand, these sets can be be computed offline.

In a similar way, the hard input constraints can be approx-
imated by introducing a suitable sampled approximation. To
this end, for given probabilistic level εβ ∈ (0, 0.14) for each

β ∈ Npu1 , we draw Nu
` ≥ Ñ(n + `m, εβ , δ) random samples

and construct the sampled input constraint set

US,β` =
{
xk, vk | [Hu]βu`|k(qiu ,w(iu)) ≤ hu, iu ∈ NN

u
`

1

}
for ` ∈ NT−10 , thus obtaining the Nu

` linear constraints

Huu`|k(q(iu),w(iu)) ≤ hu,

which, from (6b), rewrites as the following linear constraint
in xk, vk [

H̃x
u H̃u

u

] [xk
vk

]
≤ h̃u. (11)

where H̃x
u and H̃u

u are defined analogously to (10), and involve
Nu .

=
∑T−1
`=1 N

u
` samples. Finally, for each γ ∈ Nn1 , εγ ∈

(0, 0.14), the terminal constraints can also be approximated
by drawing NT ≥ Ñ(n + Tm, εγ , δ) random samples and
constructing the sets

XS,γT =
{
xk, vk | [HT ]γxT |k(qiT ,w(iT )) ≤ hT , iT ∈ NNT

1

}
for iT ∈ NNT

1 , which lead to

HTxT |k(q(iT ),w(iT )) ≤ hT
that through (6a), [

H̃x
T H̃u

T

] [xk
vk

]
≤ h̃T (12)

where H̃x
T and H̃u

T involve NT samples.
The linear constraints (9), (11), (12), possibly after con-

straint reduction, can be summarized in the following linear
constraint set

D =

xk, vk |
H̃x

x H̃u
x

H̃x
T H̃u

T

H̃x
u H̃u

u

[xk
vk

]
≤

h̃xh̃T
h̃u


=

{
xk, vk | H̃

[
xk
vk

]
≤ h̃

}
. (13)

We note also that, due to the sampling procedure, these linear
constraints are in general highly redundant. To cope with this
issue, suitable algorithms for redundant constraints removal
may be applied and the sets can be further simplified. The
reader is referred to [12] for a thorough discussion on this
issue.

Moreover, again similar to [12], a first step constraint is
added to (13), defined starting from the set

CT =

{[
xk
v0|k

]
∈ Rn+m

∣∣∣∃v1|k, · · · , vT−1|k ∈ Rn,
s.t. (xk, vk) ∈ D

}
(14)

which defines the set of feasible states and first inputs of the
scenario program with given fixed samples. Therefore, we can
define C∞T,x = {xk |H∞xk ≤ h∞} as the (maximal) robust
control invariant set for the system (1) with (xk, uk) ∈ CT .
Finally, in order to ensure robust recursive feasibility, a con-
straint on the first input is added to (13) and the additional
constraint set is given by

DR =
{
xk, vk | H∞Ajclxk +H∞B

jv0|k ≤

h∞ −H∞Bjww0|k
}

(15)
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with Aj , Bj , Bjw from Assumption 2 and Ajcl = Aj + BjK.
The final set of linear constraints to be employed in online
implementation is thus given by the intersection of the sets D
and DR, defined in (13) and (15) respectively.

B. SMPC Algorithm Based on Offline Sampling

The complete sampling-based SMPC algorithm we propose
is split into two parts: (i) an offline step, which comprises
the sample generation and the computation of the ensuing
sets, and (ii) a repeated online optimization. While the first
step may be rather costly, the online implementation only
involves the solution of quadratic programs, which may be
carried out in a very efficient way. A detailed description
of the Offline Sampling-Based Stochastic Model Predictive
Control (OS-SMPC) scheme is reported next.

OS-SMPC scheme

OFFLINE STEP. Before running the online control algorithm:
1) Compute the finite-horizon cost matrix S̃ in (7);
2) Draw a sufficiently large number of samples to deter-

mine the sampled constraints XS,α` , US,β` , and XS,γT ,
defined respectively in (9), (11), (12),

3) Remove redundant constraints and get D in (13)
4) Determine the first step constraint set DR in (15).

ONLINE IMPLEMENTATION. At each time step k:
1) Measure the current state xk;
2) Determine the minimizer of the quadratic cost (7) subject

to the pre-computed linear constraints D and DR

v∗k = arg min
vk

[xk vk 1mw ]S̃

 xk
vk

1mw

 (16a)

s.t. (xk, vk) ∈ D ∩ DR; (16b)

3) Apply the control input

uk = Kxk + v∗0|k,

where v∗0|k is the first control action of the optimal
sequence v∗k.

In the next section, we prove several important properties
of the proposed OS-SMPC scheme.

C. Theoretical Guarantees of OS-SMPC

First, we show that the introduction of the first step con-
straint DR allows to prove recursive feasibility of the OS-
SMPC scheme.

Proposition 1 (Recursive Feasibility). The closed loop dy-
namics xk+1 = Acl(qk)xk +B(qk)vk +Bw(qk)wk under the
control law (4) renders the set D ∩ DR forward invariant.
In particular, let V(xk) =

{
vk ∈ RmT | (xk, vk) ∈ D ∩ DR

}
.

If vk ∈ V(xk), then, for every realization qk and wk, and
xk+1 = Acl(qk)xk +B(qk)v0|k +Bw(qk)w0|k, the OS-SMPC
guarantees

V(xk+1) 6= ∅.

The proof follows similar lines to the one provided in [12],
and is briefly sketched here: From (xk, vk) ∈ DR it follows
xk+1 ∈ C∞T,x robustly. Then, C∞T,x ⊂ {x |V(x) 6= ∅}, by
construction, which proves the claim.

The previous proposition, besides showing how the OS-
SMPC algorithm guarantees recursive feasibility, it is also
instrumental in proving that the control input returned by the
algorithm guarantees satisfaction of the chance-constraints on
the state and hard constraints on the input defined in (2). This
is formally stated next.

Proposition 2 (Constraint Satisfaction). If x0 ∈ C∞T,x, then
the closed-loop system under the OS-SMPC control law, for
all k ≥ 1, satisfies each probabilistic state constraint (2a) with
confidence (1−δ), and the hard input constraint (2b) robustly.

Proof Since the OS-SMPC algorithm is robustly recursively
feasible (Proposition 1), hard input constraint satisfaction is
guaranteed, because of Huu0|k ≤ hu, which does not rely
on sampling. On the other hand, for all j = 1, . . . , p, we
have D ⊆ XS,j1 . Hence, by Proposition 1, for all feasible
(xk, vk) ∈ D, we can ensure with confidence (1− δ) that the
chance constraint (2a) is satisfied. �

Finally, we analyze the convergence properties of the pro-
posed scheme. To this end, we first remark that, since additive
disturbances affect the system at every time instant, we cannot
expect the closed-loop system to be asymptotically stable at
the origin. However, we can show that, under persistent noise
excitation, the closed-loop state at time k+1 does remain
bounded even if the candidate solution, i.e. the previously
planned trajectory, may not remain feasible with given prob-
ability. First, let us formally define the candidate solution as
follows.

Definition 1 (Candidate Solution). Given the OS-SMPC opti-
mization problem in (16) and a feasible solution vT |k at time
k, the candidate solution ṽ`|k+1 at time k+1 is defined as

ṽ`|k+1 =

{
v`+1|k +KA`clBwwk, ` = 0, . . . , T − 2

KA`clBwwk, ` = T − 1
.

Then, under the following assumption, we can prove that
the cost increase is bounded if the candidate solution does not
remain feasible for a given probability.

Assumption 4 (Bounded Optimal Value Function). Let
VT (xk) be the optimal value function of the quadratic program
(16), and let P`, Pu ∈ Rn×n, P` � 0, Pu � 0, c ∈ R be
such that xTk P`xk ≤ VT (xk) − c ≤ xTk Puxk holds for all
xk ∈ C∞T,x.

We are now in the position to state the main result of this
section, i.e. the asymptotic average stage cost converges to a
steady-state value, which is finite. Indeed, due to the presence
of additive disturbance, the system does not asymptotically
converge to the origin but it remain in its neighborhood, ”os-
cillating” with a bounded variance, as proved in the following
Proposition. The proof is reported in Appendix B.

Proposition 3 (Asymptotic Bound). Let εf = [0, 1) be the
maximum probability that the previously planned trajectory is
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not feasible. Then, there exists a constant C = C(εf ) such
that

lim
t→∞

1

t

t∑
k=0

E
{
‖xk‖22

}
≤ C. (17)

Remark 1. The probability εf is a problem-dependent param-
eter related to the maximum probability that the previously
planned trajectory does not remain feasible. In our approach,
this parameter can only be evaluated a posteriori and depends
on the application and indirectly on the chosen allowed
probability of constraint violation. However, similar to the
approach discussed in [12], the constraint tightening could
be modified to guarantee an user-chosen bound on εf .

The results of this section guarantee that the proposed OS-
SMPC scheme enjoys important theoretical properties. These,
combined with the efficiency of the scheme, which confines
all costly computations in an offline step, and the generality
of the considered setup, addressing both additive noise and
parametric uncertainty, render the scheme suitable for efficient
real-time and safety-critical applications. In the next section,
we show how the scheme can be applied to control the last
stage of an ARVD mission.

III. PROXIMITY OPERATIONS MODEL SETUP

The objective of the following section is to investigate the
applicability of the OS-SMPC to achieve autonomous docking
in an ARVD mission. Goal of the control, in the docking stage,
is to guide an active vehicle, the chaser, towards a passive one,
the target, along a specific trajectory, while satisfying security
constraints.

A. The NPS-POSEYDIN Simulator

The proposed MPC controller was experimentally evaluated
at the Naval Postgraduate School (NPS) Proximity Operation
with Spacecraft: Experimental hardware-In-the-loop DYNamic
simulator (POSEIDYN), an experimental testbed developed
to provide a representative system-level platform upon which
to develop, experimentally test, and partially validate GNC
algorithms.

As shown in Figure 2, the NPS-POSEIDYN consists of
four main elements: (i) a 15 ton, 4-by-4 meter polished
granite monolith, with a planar accuracy of ±0.0127 mm
and a horizontal leveling accuracy at least 0.01 deg; (ii)
two Floating Spacecraft Simulators (FSS), representing real
spacecraft, which use three 25 mm air bearings, which use
compressed air to lift the FSS approximately 5 µm, to float
on top of the granite table emulating orbital spacecraft moving
in close proximity of another vehicle or object (see Figure
3) thanks to eight cold-gas thrusters used to propel the FSS,
each one providing a maximum thrust of 0.15 N; (iii) a
commercial motion capture system, produced by British Vicon
Motion Systems Ltd [33], composed by ten overhead cameras,
which accurately determines the position of objects carrying
passive markers (i.e. the FSS); (iv) a ground station computer,
connecting the station with both the FSS and the Vicon system
via Wi-Fi. The onboard computational capabilities of the FSS
are provided by a PC-104 form-factor onboard computer,

Fig. 2. NPS-POSEIDYN testbed with the Vicon motion capture cameras,
FSSs, and granite monolith in the Spacecraft Robotics Laboratory at the Naval
Postgraduate School. The target FSS is on the right and the chaser FSS is on
the left. For obvious reasons, the applicability of the testbed, as a high-fidelity
dynamic simulator, is limited to short lived close proximity operations, with
respect to the planar motion only.

Fig. 3. NPS-POSEIDYN FSSs: the chaser on the left and the target on the
right.

based on an Intel Atom 1.6 GHz 32-bit processor, with 2
GB of RAM and an 8 GB solid-state drive. Moreover, as
described in [34], a real-time operating system (OS) represents
the core of the FSS software architecture and the desired real-
time requirement is ensured by the adoption of a Ubuntu
10.04, 32-bit server-edition OS and its Linux kernel 2.6.33.
The multi-rate GNC software running atop the RT-Linux OS
is developed utilizing MATLAB/Simulink environment, and
once developed, the Simulink models are autocoded to C,
compiled and sent from the ground station to the FSS via
Wi-Fi, loading the software on the FSS on-board computer.

The main FSS physical properties are resumed in Table I,
in terms of mass, geometry, and moment of inertia (MOI).
Additional information about the testbed are provided in [34],
where the simplified procedure to develop and consequently
implement the GNC algorithm onboard the FSS are exhaus-
tively described.
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TABLE I
SUMMARY OF RELEVANT FSS PHYSICAL PROPERTIES.

Parameter Value

Dry Mass [kg] 9.465± 0.001

Wet Mass [kg] 9.882± 0.001

Dimensions [m] 0.27× 0.27× 0.52

MOI [kg·m2] 0.2527

B. Model of the Planar Experimental Testbed

To design the control architecture, we started by deriving
a continuous-time description of the Chaser dynamics, taking
into account parametric uncertainties and additive noise, ob-
taining an uncertain state-space equation of the form

ẋ = A(q)x+B(q)u+Bww, (18)

in which w is the vector of additive disturbance and q is
the vector of parametric uncertainty, defined according to
Assumption 1 and Assumption 2, respectively. In our setup,
the additive noise term, which is modeled as a random
and bounded model (truncated Gaussian), is related to the
external environment, in which the experimental tests will be
performed. The uncertainties in the state-space model are due
to several sources: (i) discrepancies between the mathematical
model and the actual dynamics of the physical system in
operation, as linearization effects and neglected high-order
dynamics; (ii) parametric physical uncertainties, such as mass
and MOI variation due to fuel consumption, characterized by
a uniform distribution.

In particular, we describe next how linearization introduces
important uncertainty sources in the state-space model. The
linearized relative dynamics of the chaser with respect to the
target vehicle during the final approach of the rendezvous
maneuver, modeled as two double integrators, has been de-
rived by Clohessy and Wiltshire in [35], starting from the
nonlinear equations for the restricted three-body problem and
considering for both the spacecraft on a reference circular
orbit around a master body. Considering the two spacecraft
masses infinitesimal with respect to the mass of the main
body (reference planet), we define ρ = ρiρ and r1 = r1 iξ
as the position vectors of the chaser and the target spacecraft
respectively, where iρ and iξ represent the unit vector in the
direction of the main body-chaser and the main body-target,
respectively. Then, letting r = r iξ the vectorial sum of the two
positions, r = ρ + r1, the equations of motion of the chaser
spacecraft can be rewritten as

d2ρ

dt2
+ 2ω × dρ

dt
+ ω × [ω × (ρ+ r1)] = −ω

2r31
r3

r, (19)

where ω is the orbital angular rate. Note that this differential
equation presents nonlinearities due to the term 1/r3. In [35],
using a Taylor Series expansion, a linear equation was obtained
by ignoring the high order terms O(ρ2/r21), as r31

r3 = 1 −
3 iξ · iρ ρr1 + O(ρ

2

r21
). That is, Eq. (19) reduces to the linearized

differential equation for the motion of the chaser relative to
the target spacecraft as

d2ρ

dt2
+ 2ω × dρ

dt
= −ω2ζiζ + 3ω2ξiξ + O(ρ2). (20)

Ignoring the O(ρ2) and expressing the position vector in a
more convenient way as

ρ ≡ r = x iθ + z ir − y iy, ir1 = ir ω = −ω iy, (21)

with x in the direction of the motion iθ, z in the radial direction
ir and iy = iθ × ir normal to the orbital plane, the scalar
form of the well-known Clohessy-Wiltshire (CW) Equation
can be obtained. Hence, the parametric uncertainty introduced
in the model are of the same order of O(ρ2/r21) and O(ρ2).
When external forces are acting on the system with a mass
mCV , in this case due to the correction actions actuated by
the thrusters (Fx, Fy, Fz) of the Attitude and Orbit Control
Subsystem (AOCS), we have

d2x

dt2
− 2ω

dz

dt
=

Fx
mCV

,

d2y

dt2
+ ω2y =

Fy
mCV

,

d2z

dt2
+ 2ω

dx

dt
− 3ω2z =

Fz
mCV

.

(22)

Considering only the in-plane motion, here defined by the
x-z plane, and neglecting the terms (−2ωż), (+2ωẋ−3ω2z),
we get double integrators for the translational dynamics

ẍ =
Fx
mCV

z̈ =
Fz
mCV

. (23)

Furthermore, a double integrator is also considered for the
rotational dynamics as θ̈ = τ/Iz , where θ̈ is the angular
acceleration, τ is the control torque and Iz denotes the MOI
about the vertical axis of the chaser FSS. Then, starting
from the definition of the FSS dynamic model, and defining
the state vector as x =

[
x, y, ẋ, ẏ

]T
and the contol vector

u =
[
Fx, Fy

]T
, a continuous-time linearized model of the

form (18). Then, after discretization, we obtained the following
discrete-time representation of the FSS uncertain dynamics as

xk+1 = A(qk)xk +B(qk)uk +Bwwk (24)

where xk ∈ R4 is the state vector at time k, uk ∈ R2 is the
control input, and wk ∈ R4 and qk = [q1, q2, q3, q4] ∈ R4 are
the vectors of the additive disturbance and the parametric un-
certainty, respectively. In particular, the uncertainty vector qk
takes into account the linearization errors previously discussed,
and the parametric uncertainty due to the mass variation. The
corresponding continuous uncertain state and control matrices
are

A(q) =

q1 0 1 0
0 q1 0 1
0 2q2 0 0
0 3q3 −2q2 0

 , B(q) =

 02×2
1
m

+ q4 0
0 1

m
+ q4

 .

(25)
All the described uncertainty sources were taken into ac-
count in constructing the linearized state and control matrices
defined in (25). In particular, the parametric uncertainties
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q1, q2, q3 take into account linearization effects and multi-
plicative disturbances, and are approximated as iid random
variables with uniform distribution: q1 ∼ U [5 ·10−5, 5 ·10−4],
q2 ∼ U [0.001, 0.0014], q3 ∼ U [10−6, 1.44 · 10−6], while
q4 refers to uncertainty in the mass, and is expressed as
q4 ∼ U [−0.0091, 10−4]. Furthermore, the system is affected
by persistent bounded disturbances w ∈ R4, described as a
truncated Gaussian with zero mean value and unitary covari-
ance, bounded in the set W .

=
{
w ∈ R4 | ‖w‖∞ ≤ 5 · 10−3

}
.

The focus of this experimental campaign is to investigate
the performance of the OS-SMPC algorithm in the control
of the translational dynamics of the chaser during the last
part of the rendezvous maneuver. Attitude control of the FSS
was achieved through a Tube-based Robust MPC (TRMPC)
approach, already experimentally validated in [31]. The re-
quirement of (deterministic) robust control for the attitude
was driven by the physical characteristic of the docking
mechanisms, located on both the FSS. Indeed, docking is
ensured by an attractive force generated by the magnets on
the docking interfaces, which requires a fine alignment of the
two vehicles. The TRMPC was hence adopted to align and
maintain the FSS pointing at the desired attitude, with respect
to the target one.

Goal of the translational control is to drive the chaser to
the docking position, where the target is located, while guar-
anteeing the satisfaction of the typical position and velocity
constraints applied to the proximity maneuver. It is important
to clarify that the x-y coordinate system of the testbed “coin-
cides” with the x-z orbital plane of (23). In particular, the tra-
jectories should lie in a desired approach cone (see Figure 4),
i.e. LOS-like constraint, whose polytope vertices are defined
as follows: χ1 = (0, 0), χ2 = (4, 2.25), χ3 = (2.25, 4). The
target is located in the suitable terminal region, determined ac-
cording to Assumption 3. From the state constraint polytopes,
linear inequality constraints can be derived. Additionally, the
approaching and terminal velocities are bounded according to
soft docking constraints. These constraints on the state are
expressed in terms of chance constraints of the form (2a).

Moreover, the thrusters of the chaser are limited by a sat-
uration constraint, according to the maximum thrust available
for each cold thruster equipped on the FSS. This is an hard
input constraints of the form (2b), that is

uk ∈ U =
{
u ∈ R2 | ‖u‖∞ ≤ 0.3

}
,

since at most two thrusters can be fired contemporary in the
same direction.

C. Real-time Implementability

In this section, we discuss implementation issues related
to real-time applicability of the proposed scheme, showing
how it is possible to envisage the application of an OS-SMPC
in an onboard implementation. In fact, this is due to the
offline uncertainty approach, which significantly lowers the
online computational effort with respect to other sampling-
based method which require online sampling, as e.g. [20],
[21]. Anyway, it should be remarked the the computational
cost of the proposed OS-SMPC approach is negatively affected

Fig. 4. NPS-POSEIDYN testbed with the cone constraints. The chaser initial
condition has to be chosen within the feasible region (light green) whereas
the target spacecraft can be located within the feasible terminal region (dark
green). φ defines the cone half-angle, whereas θ represents the chaser FSS
attitude with respect to the testbed reference system.

by the possibly high number of constraints involved in the
optimization problem definition. Hence, a meticulous analysis
of the solver to be implemented in the embedded microcon-
troller is still mandatory, together with the simplification of
the constraint polytope.

In this regard, it should be pointed out that the OS-SMPC
proposed in this work has before never been implemented
in real-time applications, and more generally the validation
in realistic simulation environments of scenario programs
as well as sampling-based SMPC approaches [12], [5]
is rather limited. For this reason, a deep analysis of the
available solvers has been performed to find the best one
able to deal with a very high number of constraints and
compliant with online implementation and low computational
power hardware. Several solvers have been tested to evaluate
their computational capabilities and limitations with respect
to embedded implementation. Moreover, since hardware
GNC software running on the FSS is developed in a
MATLAB/Simulink environment, the selection criteria for
the solver analyzed was driven by the compatibility with
this environment and available MATLAB interface. The
tested solvers were: (i) IBM ILOG CPLEX Optimizer
[36], a decision optimization software developed by IBM
which provides flexible, high-performance mathematical
programming solvers also for quadratic programming
problems; (ii) Mosek [37], a tool for solving mathematical
optimization problems such as convex quadratic problems
based on a powerful state-of-the-art interior-point optimizer;
(iii) Gurobi Optimizer [38], a state-of-the-art solver for
mathematical programming, designed from the ground up to
exploit modern architectures and multi-core processors, using
the most advanced implementations of the latest algorithms,
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including a quadratic programming solver; (iv) quadprog, the
interior-point-convex algorithm provided by the MATLAB
Optimization Toolbox to solve quadratic programming
problem; (v) fastmpc exploits the structure of the quadratic
programming that arise in MPC, obtaining an innovative
online optimization tool, based on an interior-point method,
able to evaluate the control action about 100 times than a
method that uses a generic optimizer, as presented in [39];
(vi) quadwright, a quadratic programming solver developed
by J. Currie at al., presented in [40], able to speed up the
computational capabilities for embedded applications.

IBM CPLEX and Gurobi are commercial softwares that
provide quite easy MATLAB interfaces, enabling the user
access to higher performing state-of-the-art solvers. However,
both optimizers are not hardware-driven even if they provide
embedding methods, and they showed bad memory leaks when
calling the solver many times. Mosek is a tool for solving
mathematical optimization problems, and in particular, convex
quadratic problems. The software provides replacements for
some MATLAB functions, including quadprog, and showed a
rather high computational time when facing the large number
of constraints involved in our setup. The MATLAB quad-
prog gives the possibility to choose between two different
approaches: (i) an interior-point-convex method; and (ii) an
active-set method. The first algorithm handles only convex
problems whereas the second one, identified as trust-region-
reflective algorithm, is able to manage problems with only
bounds, or only linear equality constraints, but not both. In
both cases, MATLAB quadprog showed slower performance
than Mosek, and moreover it cannot be C-compiled. For what
concerns the fastmpc solver, it has been developed to speed
up MPC computational time and it has been proved to be able
to compute in approximately 5ms the control actions for a
problem with 12 states, 3 inputs, 30 as prediction horizon and
about 1300 constraints. However, even if the number of states
and inputs was lower for our problem, as well the prediction
horizon is smaller, the much higher number of constraints
resulted in a degeneration of its performance.

Our final choice fell on the quadratic programming solver
quadwright. This very fast solver, developed with a focus on
efficient memory use, ease of implementation, and high speed
convergence, is based on the optimization algorithm proposed
in [41]. This approach has been specifically developed to
handle the core problem in MPC, namely control of a linear
process with quadratic objectives subject to general linear
inequality constraints. In particular, the algorithm does not
exploit sparsity and it has been refined by pre-factorizing
where possible, using the Cholesky Decomposition factoriza-
tion when required, and heuristic for warm start, as reported
in [40].

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present both simulation and experimental
results related to the application of the OS-SMPC scheme to
control the uncertain FSS system dynamics in the last-part of
the ARVD phase. To this end, we first set the probabilistic

parameters of the state chance constraints as εα = εβ = εγ =
0.05 and δ = 10−3 (they should be satisfied with probability
of 95% and confidence 99.9%). The ensuing number of
samples Ntot = Nx+Nu+NT is equal to 32, 370, following
the approach of [5] for ε ∈ (0, 0.14). Then, MPC cost
weight matrices were set to Q = diag

{
104, 104, 108, 108

}
and

R = diag
{

106, 106
}

, and the prediction horizon to T = 10.
An appropriately robustly stabilizing feedback gain matrix K
was designed offline using classical robust tools [42].

The main sample times set for the FSS model are reported
in Table II. The initialization settings introduced here have
been adopted both for simulations and experiments, to be
as conservative as possible and obtain comparable results.
In particular, the sample time for OS-SMPC has been set
in compliance with the real-time implementability for the
experimental validation.

TABLE II
MODEL INITIALIZATION SETTINGS.

Parameter Sample Time [s]

Sensors, Actuators, Telemetry 0.01

Navigation 0.02

TRMPC, SMPC 5

Samples of the uncertainty and of the noise sequence were
extracted offline and the constraint sets (9), (11), and (12)
were derived offline, leading to a total of 956,752 linear
inequality constraints. Then, an iterative reduction procedure
was applied leading to a final reduced constraint set of the
form (13), composed by only 10,125 constraints. Once the first
step constraint (15) has been obtained and intersected with
(13). This completed the offline part of the OS-SMPC scheme.

The OS-SMPC algorithm was first validated by MATLAB
simulations, and subsequently applied to the NPS-POSEIDYN
system. It should be remarked that preliminary simulation
results were presented in [43] in which 100 trajectories,
each one for a feasible random initial condition (IC), were
simulated. In this paper, considering the NPS-POSEIDYN
setup and the diagonal symmetry of both the granite monolith
and the cone constraint, the ICs for the OS-SMPC simulated
and experimental validation were set only in one half of
the plane. Thus, three case studies corresponding to three
relevant ICs were chosen due to their peculiarities: (i) the
first IC represents the diagonal case, in which the chaser FSS
is farthest from the cone boundaries (case A); (ii) the second
IC is the most critical IC, since the FSS is very close to cone
constraint (case B); (iii) the last case represents the halfway
condition (case C).

Each case study was simulated and subsequently experimen-
tally reproduced several times, to validate the behavior of the
controller. The results obtained are represented in Figure 5,
which depict 20 repetitions for each IC, both for simula-
tions and experiments. Comparing the simulation trajectories
(Figure 5(a)) with the experimental ones (Figure 5(b)), we



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 11

(a) Simulation Results

(b) Experimental Results

Fig. 5. Simulation and experimental results for 3 different ICs, considering
20 repetitions for each one.

observed a rather good adherence of the results. In particular,
in all experiments the chaser FSS is always driven from the
IC to the terminal region, where the target FSS is located.

A zoom-in of the terminal region, both for simulations and
experiments, is reported in Figure 6. We notice a relevant
difference between Figure 6(a) and Figure 6(b) with respect
to the stopping condition. In the simulations, the chaser stops
when the relative distance with respect to the virtual target
Center of Mass (CoM) is lower than a certain threshold (0.18
m). On the other hand, in the experimental setup, the target
is a real FSS, which is equipped with a female magnetic
docking mechanism. Similarly, the chaser FSS has a male
interface. Hence, the end of the docking phase between the
spacecraft is due to the magnetic force generated between the
two magnets. The effects of this force are evident in Figure
6(b), where trajectories are not funneled as in Figure 6(a)
but they are distributed around the target docking interface.
This discrepancy is mainly due to the fact that the magnetic
force was not introduced in simulation. Still, the probability
of constraint violation has been kept below 5% as expected,
i.e. only one time over 30 the FSS went outside the constraint
set while completing the maneuver.

Once the OS-SMPC scheme has been validated for the real-

(a) Simulation Results

(b) Experimental Results

Fig. 6. Zoom on the terminal region of both simulation and experimental
results.

time implementability point-of-view, the results were analyzed
also with respect to the following performance parameters:

1) Time-to-dock ttd, defining as the time required to the
chaser FSS to reach and dock the target one, starting
from the initial condition;

2) Control effort fc, an estimate of the fuel consumption
required for the maneuver, which represents also the
efficiency of the control approach from an application
point-of-view. The control effort can be evaluated as

fc =

ttd∑
k=0

‖uk‖1∆t, (26)

where ∆t represents the system sample time.
Figure 7 depicts the control effort for all 60 experiments as
a function of the time-to-dock. As we can notice, in all three
cases the maneuver lasted about 120− 200 s, with an average
control effort between 4 Ns and 5 Ns.

In order to assess the effectiveness of the proposed OS-
SMPC approach, the average control effort for all the ex-
periments can be compared with the control effort obtained
applying other two MPC approaches validated for the same
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Fig. 7. Control effort with respect to the time-to-dock results for 60
experiments.

maneuver and using the same testbed: a Linear-Quadratic MPC
(LQMPC) and a TRMPC. In particular, the performance of
the Tube-based robust MPC controller has been evaluated
and compared with a classical LQMPC scheme, both in
simulations and on the same experimental setup (see [44] for
further details).

TABLE III
COMPARISON OF THE AVERAGE CONTROL EFFORT FOR THREE DIFFERENT

MPC APPROACHES ADOPTED TO CONTROL THE FSS DURING A
RENDEZVOUS MANEUVERS ON THE NPS-POSEIDYN TESTBED: (I)

LQMPC; (II) TRMPC; (III) OS-SMPC.

MPC approach Control Effort [Ns]

LQMPC 4.99

TRMPC 14.24

OS-SMPC 4.69

In Table III, the average control effort of the three MPC
approaches are reported. We notice that the robust MPC
scheme represents the most fuel-consuming approach, with a
fuel demand about three times higher than the classical and
stochastic MPC, which instead are characterized by compa-
rable fuel consumption, in the order of 5 Ns. The fact that
OS-SMPC has much lower fuel consumption than not only
TRMPC but also LQMPC is somehow surprising, but it can be
explained by the much lower conservatisms of the stochastic
approach.

For completeness, the computational cost of all 60 ex-
periments is provided in Figure 8 in terms of average and
maximum cost and it is possible to notice that all of them are
close to 4s, which leaves 1s to be computationally dedicated to
the other processes, considering the MPC sample time equal
to 5s.

V. CONCLUSIONS

An offline sampling-based Stochastic Model Predictive
Control (OS-SMPC) algorithm is proposed for discrete-time

Fig. 8. Average and maximum computational cost of all 60 experiments.

linear systems subject to both parametric uncertainties and ad-
ditive disturbances, and its theoretical properties are assessed.
Real-time implementability of guidance and control strategies
for automated rendezvous and proximity operations between
spacecraft is proven and validated on an experimental testbed.
Parametric uncertainties due to the mass variations during op-
erations, linearization errors, and disturbances due to external
space environment are simultaneously considered. The offline
sampling approach in the control design phase is shown to
reduce the computational cost, which usually constitutes the
main limit for the adoption of SMPC schemes, especially for
low-cost on-board hardware, and to provide a very effective
control in terms of time-to-dock and fuel consumption. These
characteristics are demonstrated both through simulations and
by means of experimental results.

APPENDIX A
QUADRATIC COST MATRIX DEFINITION

Simple algebraic manipulations show that the terms in (6)
can be written as follows

Φ0
`|k(qk) = Acl(q`−1|k)Acl(q`−2|k) · · ·Acl(q0|k),

Φv`|k(qk) =


Acl(q`−1|k) · · ·Acl(q1|k)B(q0|k)

...
B(q`−1|k)
0n×(T−`)m


T

,

Φw`|k(qk) =


Acl(q`−1|k) · · ·Acl(q1|k)Bw(q0|k)

...
Bw(q`−1|k)
0n×(T−`)mw


T

,

Γ` = [0m×`m Im 0m×(T−`−1)m].
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Then, defining the matrix

ΦT (qk)
.
=

Φ0
0|k(qk) Φv0|k(qk) Φw0|k(qk)

...
...

...
Φ0
T |k(qk) ΦvT |k(qk) ΦwT |k(qk)

 ,
and considering Q̄ = IT ⊗Q, R̄ = IT ⊗R, K̄ = IT ⊗K, and
defining Γ = [0mT×n ImT 0mT×mwT ], the two terms, QE
and RE of the explicit cost matrix S̃

S̃ = E {(QE +RE)} , (27)

can be written as:

QE = MTΦTT (qk)

[
Q̄ 0nT×n

0n×nT P

]
ΦT (qk)M

RE = MT [K̄ΦT (qk) + Γ]T R̄[K̄ΦT (qk) + Γ]M

where the matrix M is

M =

 In 0n×mT 0n×nT
0mT×n ImT 0mT×nT

0mwT×n 0mwT×mT wImwT


As discussed in [5], matrix S̃ may be approximated via

random sampling by exploiting classical Monte Carlo or Quasi
Monte Carlo tools, as those presented in e.g. [45].

APPENDIX B
PROOF TO ASYMPTOTIC BOUND

If the candidate solution does not remain feasible, the cost
increase can be bounded through the matrices in Assump-
tion 4. Let VT (xk) = JT (xk, v∗k) be the optimal value of
(16) at time k and consider the optimal value function of the
online optimization program as stochastic Lyapunov function.
Hence, if the candidate solution ṽ remains feasible, we have

E {VT (xk+1) | xk, ṽk+1 feasible} − VT (xk)

≤ E {JT (xk+1, ṽk+1) | xk } − VT (xk)

≤ E

{
T−1∑
l=0

(‖x̃`|k+1‖2Q + ‖ũ`|k+1‖2R) + ‖x̃T |k+1‖2P

}

− E

{
T−1∑
l=0

(‖x∗`|k‖
2
Q + ‖u∗`|k‖

2
R) + ‖x∗T |k‖

2
P

}
= E

{
‖x∗T |k‖

2
Q+KTRK−P + ‖Acl(qk)x∗T |k +Bw(qk)wT |k‖2P

− ‖x∗0|k‖
2
Q − ‖u∗0|k‖

2
R

}
≤ E

{
‖x∗T |k‖

2
Q+KTRK−P + ‖Acl(qk)x∗T |k‖

2
P

+ ‖Bw(qk)wT |k‖2P + 2(Acl(qk)x∗T |k)TP (Bw(qk)wT |k)

− ‖x∗0|k‖
2
Q − ‖u∗0|k‖

2
R } .

According to the definition of the terminal set (Assumption
3), we obtain

E
{
‖x∗T |k‖

2
Q+KTRK−P+Acl(qk)TPAcl(qk)

+ ‖Bw(qk)wT |k‖2P − ‖x∗0|k‖
2
Q − ‖u∗0|k‖

2
R

}
≤ E

{
‖Bw(qk)wT |k‖2P − ‖x∗0|k‖

2
Q − ‖u∗0|k‖

2
R

}
≤ E

{
‖Bw(qk)wT |k‖2P

}
− ‖xk‖2Q − ‖uk‖2R.

On the other hand, if the candidate solution is not feasible,
we get

E
{
VT (xk+1) |xk, ṽT |k+1 not feasible

}
− VT (xk)

≤ max
w∈W

(A(qk),B(qk))∈G

‖A(qk)xk +B(qk)uk +Bw(qk)wk‖2Pu
− ‖xk‖2P`

≤ max
w∈W

(A(qk),B(qk))∈G

(
‖Acl(qk)xk +B(qk)vk‖2Pu

+ ‖Bw(qk)wk‖2Pu

+ 2‖(Acl(qk)xk +B(qk)vk)TPuBw(qk)wk)‖
)
− ‖xk‖2P`

.

Applying Cauchy-Schwarz Inequality first, and then Young
Inequality, we have

max
w∈W

(A(qk),B(qk))∈G

(
‖Acl(qk)xk +B(qk)vk‖2Pu

+ ‖Bw(qk)wk‖2Pu

+ 2‖(P 1/2
u (Acl(qk)xk +B(qk)vk))T (P 1/2

u Bw(qk)wk)‖
)

− ‖xk‖2P`

≤ max
w∈W

(A(qk),B(qk))∈G

(
2‖Acl(qk)xk +B(qk)vk‖2Pu

+ 2‖Bw(qk)wk‖2Pu

)
− ‖xk‖2P`

≤ 2 max
(A(qk),B(qk))∈G

(
‖Acl(qk)xk +B(qk)vk‖2Pu

+ 2max
w∈W
‖Bw(qk)wk‖2Pu

− ‖xk‖2P`

)
.

Let λmin(qk) be a lower bound on the smallest eigenvalue
of

U(qk) =

Q− 2εf
1−εf

(A(qk)
TPuA(qk)− 1

2
P`) − 2εf

1−εf
A(qk)

TPuB(qk)

− 2εf
1−εf

B(qk)
TPuA(qk) R− 2εf

1−εf
B(qk)

TPuB(qk)

 ,

(33)

that is λmin ≤ minqk∈Q ( mini=1,...,n+m λi(U(qk))). Hence,
applying the law of total probability

E
{
VT (xk+1) |xx, ṽT |k+1

}
− V (xk)

≤ (1− εf )
(
E
{
‖Bw(qk)w∗T |k‖

2
P

}
− ‖xk‖2Q − ‖uk‖2R

)
+ εf

(
2 max
(A(qk),B(qk))∈G

‖Acl(qk)xk +B(qk)vk‖2Pu

+ 2max
w∈W
‖Bw(qk)wk‖2Pu

− ‖xk‖2P`

)
≤ − (1− εf )λmin‖xk‖22 + (1− εf )E

{
‖Bw(qk)w∗T |k‖

2
P

}
+ 2εfmax

w∈W
‖Bw(qk)wk‖2Pu

≤ − (1− εf )λmin‖xk‖22 + C.

The final statement follows taking iterated expectations and
noting that V (xk) <∞. �
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tightening and stability in stochastic model predictive control,” IEEE
Transactions on Automatic Control, vol. 62, no. 7, pp. 3165–3177, 2017.

[6] J. Grosso, C. Ocampo-Martı́nez, V. Puig, and B. Joseph, “Chance-
constrained model predictive control for drinking water networks,”
Journal of Process Control, vol. 24, no. 5, pp. 504–516, 2014.
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