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Geometrical Rabi oscillations and Landau-Zener transitions in non-Abelian systems

H. Weisbrich ,1 G. Rastelli ,1,2 and W. Belzig 1,*

1Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
2INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

(Received 11 May 2021; accepted 25 June 2021; published 6 August 2021)

Topological phases of matter became a new standard to classify quantum systems in many cases, yet key
quantities like the quantum geometric tensor providing local information about topological properties are still
experimentally hard to access. In non-Abelian systems this accessibility to geometric properties can be even more
restrictive due to the degeneracy of the states. We propose universal protocols to determine quantum geometric
properties in non-Abelian systems. First, we show that for a weak resonant driving of the local parameters the
coherent Rabi oscillations are related to the quantum geometric tensor. Second, we derive that in a Landau-Zener-
like transition the final probability of an avoided energy crossing is proportional to elements of the non-Abelian
quantum geometric tensor. Our schemes suggest a way to prepare eigenstates of the quantum metric, a task that
is difficult otherwise in a degenerate subspace.
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I. INTRODUCTION

The geometry of quantum states is crucial in many
branches of physics. It scopes the field of the Aharonov-Bohm
effect [1,2], the Berry phase [3,4], and more recently the
concept of topological phases such as topological insulators
[5], topological semimetals [6], and topological supercon-
ductors [7]. The key quantity related to these phenomena is
the quantum geometric tensor (QGT). On one hand, its real
part yields the quantum metric that quantifies the distance
between different quantum states [8]. This general property
can be connected to a wide spectrum of physical phenomena.
For instance, it is essential for understanding superfluidity
in flat bands [9], orbital magnetic susceptibility [10,11], the
anomalous Hall effect [10,12,13], and quantum phase transi-
tions [14,15]. Besides it was used to determine the topological
invariant of a Tensor monopole [16,17], and it also defines the
Euler number, a topological invariant characterizing nontrivial
topology in gapped fermionic systems [18]. On the other hand,
the imaginary part of the QGT yields the Berry curvature. This
curvature is related to the geometric phase accumulated along
a cyclic path yielding the Berry phase [3] or similar in an elec-
tromagnetic gauge potential the Aharonov-Bohm effect [1,2].
Moreover the integration of the Berry curvature over a closed
two-dimensional manifold defines the first Chern number, the
topological invariant for a wide spectrum of phenomena, such
as the quantum Hall effect [19,20] or conducting edge states
in topological insulators [5].

The accessibility to the QGT is thus crucial to analyze
many recently studied phenomena in physics. There are
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several proposals to measure the Abelian geometric proper-
ties, for instance, the quantum metric can be extracted by
quantum quenches [21], by analyzing the current noise [22],
or in photonic systems [23]. Another approach is via periodic
driving to extract the Abelian QGT [24,25]. The latter is also
realized experimentally in a superconducting qubit [26] and a
set of coupled qubits in diamond [27]. Physical phenomena re-
lated to topology and geometry, however, are not restricted to
the nondegenerate (Abelian) case. For example, systems with
degenerate ground states, named non-Abelian, are particularly
interesting as they can exhibit exotic physical phenomena.
For instance, non-Abelian Majorana zero modes in topolog-
ical superconductors promise protected quantum computation
[28–31]. Also in other cases, as in the four-dimensional
(4D) quantum Hall [32–36] effect, in other systems with a
nontrivial second Chern number [37–39], or in holonomic
quantum computation [40,41], non-Abelian geometry plays
an extraordinary role and is essential to understand the un-
derlying mechanism. However extracting the full QGT in the
non-Abelian case stays elusive.

In this work, we report a universal approach to extract the
QGT in non-Abelian systems using coherent Rabi oscillation
by driving the system periodically. We show that for a system
depending on a set of parameters defining the geometry of
the problem this goal can be achieved by either modulating
a single parameter or by a modulation of two parameters.
Our proposal does not require any adiabatic condition and can
be used to prepare eigenstates of the QGT in the degenerate
subspace. We also show that our approach shows that the rates
in a Landau-Zener-like transition are directly determined by
the elements of the QGT.

II. SINGLE PARAMETER MODULATION

We assume a two-band model H0(λ) =∑
σ=± Eσ (λ)

∑N
ν=1 |ψσ

ν (λ)〉 〈ψσ
ν (λ)|, with |ψ±

ν 〉 the states of
the degenerate energy levels E± and degeneracy dimension
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N . Furthermore the Hamiltonian does depend on M external
dimensionless parameter λ = (λ1, ..., λM ). By a modulation
of the external parameter λ j ,

λ j → λ j + 2A

h̄ω
cos(ωt ), (1)

with a small amplitude A/h̄ω � 1 the Hamiltonian can be
expanded to first order in the driving to

H1 = H0(λ) + 2A

h̄ω
cos(ωt )∂λ j H0(λ). (2)

In the rotating frame of the drive and using the rotating wave
approximation (RWA) this results in

HRWA
1 =

N∑
ν=1

∑
σ=±

(Eσ − σ h̄ω/2)
∣∣ψσ

ν

〉 〈
ψσ

ν

∣∣
− A

N∑
ν,μ=1

(|ψ−
ν 〉 〈∂ jψ

−
ν |ψ+

μ 〉 〈ψ+
μ | + H.c.), (3)

as derived in Appendix A. Solving the Schrödinger
equation ih̄∂t |�〉 = HRWA

1 |�〉 in the basis |�〉 =∑N
ν=1

∑
σ=± cσ

ν (t )e−i(Eσ /h̄−σω/2)t |ψσ
ν 〉 we find that (see

Appendix B)

c̈± = −A2

h̄2 Q±
j jc

± ± iδω ċ±, (4)

with c± = (c±
1 , ..., c±

N ), the detuning δω = (E+ − E−)/h̄ − ω

with |δω| � ω, and the non-Abelian QGT,

[Q±
jk]νμ = 〈∂λ j ψ

±
ν |

(
1 −

N∑
α=1

|ψ±
α 〉 〈ψ±

α |
)

|∂λk ψ
±
μ 〉 . (5)

Notice that in Eq. (4) we used the form of a second-order dif-
ferential equation in time in which c+ and c− are decoupled.
In an arbitrary basis the QGT is not diagonal, thus coupling
different states of the degenerate energy levels [see Fig. 1(a)].
However, the QGT can be also diagonalized in the eigenbasis
and we can write |�〉 = ∑

ν,σ=± c̃σ
ν e−i(Eσ /h̄−σω/2)t |ψ̃σ

ν 〉 such
that the diff. equation simplifies to

¨̃c±
ν = −A2

h̄2 [Q̃ j j]νν c̃±
ν ± iδω 1 ˙̃c±

ν , (6)

with the diagonalized QGT Q̃ j j := Ũ ±Q±
j j (Ũ

±)†, and
Ũ ±(|ψ±

1 〉 , ..., |ψ±
N 〉) = (|ψ̃±

1 〉 , ..., |ψ̃±
N 〉). Hence each pair of

eigenstates |ψ̃±
ν 〉 of the QGT oscillates with a Rabi fre-

quency proportional to its eigenvalue of the QGT [Q̃ j j]νν ,
as depicted in Fig. 1(b). This essentially resembles the
Morris-Shore transformation [42,43], which transforms two
degenerate interacting bands into independent interacting
two-state systems by a basis transformation diagonalizing the
perturbation/interaction. In the resonant case δω = 0 the Rabi
frequency between a pair of eigenstates |ψ̃±

ν 〉 can be directly
extracted from Eq. (6) as

�s
ν = A

h̄
[Qj j]

1/2
νν , (7)

solving Eq. (6) and the Schrödinger equation with
c̃+
ν (t ) = −ic̃−

ν (0) sin(�s
νt ) and c̃−

ν (t ) = c̃−
ν (0) cos(�s

νt ) if
we start in the lower energy level. For an arbitrary initial state

Arbitrary Basis

 Eigenstates of the QGT

(a)

(b)

FIG. 1. Schematic of the interaction between the states of the two
energy levels by a modulation of a single external parameter in a
non-Abelian system in an arbitrary basis (a) and in the basis of the
eigenstates of the QGT (b).

the system oscillations between the lower and upper band is a
superposition of several two-state Rabi oscillations, whereas
each Rabi frequency is proportional to a different eigenvalue
of the QGT Q̃ j j . Hence the oscillations between the bands
heavily depend on the initial condition of the system. Only if
the system is initialized in one of the eigenstates of the QGT
a simple two-state Rabi oscillation occurs, whereas for an
arbitrary initial state not being an eigenstate of the QGT the
system will oscillate in a more complex behavior due to the
overlapping oscillations with different frequencies. Then, the
straightforward option is to measure the spectrum of the Rabi
frequencies to extract the QGT in the diagonal basis.

Furthermore one can also exploit the multiharmonic dy-
namics to prepare the system in an eigenstate of the QGT. For
instance, for twofold degenerate energy levels the two pairs
of eigenstates oscillate with different frequency �s

1 and �s
2.

For an arbitrary initial ground state the system will start to
oscillate between the two pairs of eigenstates for as long as
the interaction is active. Hence one chooses a pulse duration
T for the drive, such that T = n(π/�s

1) = (m + 1/2)(π/�s
2)

with n, m being integers. On the one hand, there will be an
even cycle for the oscillation in the first pair of eigenstates,
such that after the duration T the state of this two-state system
will be again in the lower eigenstate. On the other hand there
is an odd cycle for the second pair of eigenstates resulting in
the upper eigenstate after the time T . With this superposition,
by a measurement of the energy after the pulse the state will
be an eigenstate of the QGT either |ψ̃−

1 〉 or |ψ̃+
2 〉 depending on

the outcome of the measurement (see schematically in Fig. 2).
However, the condition T = nπ/�s

1 = (m + 1/2)π/�s
2

can be only satisfied exactly for commensurate frequencies. In
general, this can be only satisfied approximately, thus having
a reduced fidelity of the final state for incommensurate fre-
quencies. In this case, a higher accuracy of the final state can

033122-2



GEOMETRICAL RABI OSCILLATIONS AND … PHYSICAL REVIEW RESEARCH 3, 033122 (2021)

even cycle odd cycle

FIG. 2. Protocol for preparing the system in the eigenstates of the
QGT starting from an arbitrary state in the ground state. The states
evolve for the time T = n(π/�s

1) = (m + 1/2)(π/�s
2) yielding an

even Rabi cycle for the first pair and an odd Rabi cycle for the second
pair due to the different Rabi frequencies �s

1 �= �s
2 for each pair.

be achieved by a longer pulse duration. For example, in case
of �s

2/�
s
1 = π a fidelity of F = | 〈� f |�t 〉 |2 ≈ 97.3% can be

achieved by choosing T = 3π/�s
1 with � f the final state after

the pulse and �t = (|ψ̃−
1 〉 + |ψ̃+

2 〉)/
√

2 the target state (as-
suming that the initial state was |�i〉 = (|ψ̃−

1 〉 + |ψ̃−
2 〉)/

√
2),

whereas a fidelity of F ≈ 99.2% can be expected at the cost
of a longer pulse duration T = 25π/�s

1.
This protocol can be also expanded for N-fold degenerate

bands. Here one can repeat the procedure of a pulse with dura-
tion T followed by a measurement of the energy. By choosing
two sets of eigenstates, e.g., for fourfold degenerate bands the
first two eigenstate pairs in the first set and the other two in the
second set, one can restrict the state after each measurement
to one set or subspace. The pulse duration in each step has
to fulfill T = n1(π/�s

1) ≈ n2(π/�s
2) ≈ ... ≈ nNν

(π/�s
N1

) ≈
(m1 + 1/2)(π/�s

N1+1) ≈ ... ≈ (mN2 + 1/2)(π/�s
N1+N2

) with
N1 the number of eigenstates in the first set and N2 the amount
of eigenstates in the second set. For increasing dimensions N
of the energy levels also the time duration of the pulse would
increase drastically, but in principle the pulse can be applied
similar as in the N = 2 case. Hence after a measurement the
final state is either a state in the first set (when E− is the
outcome) or otherwise from the second set. By repeating this
procedure one finally ends up with two sets only containing a
single pair of eigenstates, where the procedure as discussed in
Fig. 2 can be applied to prepare the system in an eigenstate of
the QGT.

III. TWO-PARAMETER MODULATION

So far we only discussed the case of a single parameter
modulation yielding Rabi oscillations proportional to Q±

j j . For
a two-parameter drive one is also able to extract Q±

jk with
the corresponding symmetric quantum metric tensor gjk =
(Qjk + Q†

jk )/2, and the antisymmetric Berry curvature Fjk =
i(Qjk − Q†

jk ) [44]. In case of a modulation of two parameters
the Hamiltonian to first order in the driving reads

H2 =H0(λ) + 2A

h̄ω
[cos(ωt )∂λ jH0(λ) + cos(ωt + φ)∂λkH0(λ)],

(8)
where we added a phase φ between the two modulations.
Again solving the Schrödinger equation of the RWA of the
Hamiltonian HRWA

2 in the same basis as for a single modula-

tion yields

c̈± = −A2

h̄2 (Q±
j j + Q±

kk + e±iφQ±
jk + e∓iφQ±

k j )c
± ± iδωċ±,

(9)

as derived in Appendix D. For a circular modulation φ =
π/2 one can simplify e±iφQ±

jk + e∓iφQ±
k j = ±F±

jk to the
non-Abelian Berry curvature. Again the system can be di-
agonalized in the perturbation, however this time it is not
related to the eigenbasis of the QGT, as several different con-
tributions appear, each with a different eigenbasis in general.
In the diagonal basis of Q̄±

j j + Q̄±
kk ± F̄±

jk := Ū ±(Q±
j j + Q±

kk ±
F±

jk )(Ū ±)† [45] with Ū ±(|ψ±
1 〉 , ..., |ψ±

N 〉) = (|ψ̄±
1 〉 , ..., |ψ̄±

N 〉)
the equation reads

¨̄c±
ν = −A2

h̄2 [Q̄±
j j + Q̄±

kk ± F̄±
jk ]νν c̄±

ν ± iδω ˙̄c±
ν . (10)

Thus in the resonant case δω = 0 the Rabi frequencies are
related to the eigenvalues of (Q±

j j + Q±
kk ± F±

jk ), where each
pair |ψ̄±

ν 〉 oscillates with its respective frequency,

�π/2
ν = A

h̄
[Q̄±

j j + Q̄±
kk ± F̄±

jk ]1/2
νν , (11)

similar as for the single-parameter modulation.
Besides the same protocol as discussed in Fig. 2 for the

state preparation can be applied here. However, to get access
to the Berry curvature and not only the eigenvalues of the sum
Q̄±

j j + Q̄±
kk ± F̄±

jk , one needs to determine Q̄±
j j (and similar

Q̄±
kk) in the new eigenbasis of the two-parameter modulation.

If these are known the condition A2

h̄2 [Q̄±
j j + Q̄±

kk ± F̄±
jk ]νμ =

δνμ(�π/2
ν )2 can be solved for the Berry curvature F̄±

jk . Since

Q̃±
j j is known from the single modulation in the diagonal

basis, it is sufficient to determine transformation Ũ ±(Ū ±)†

with Q̄ j j = Ū ±(Ũ ±)†Q̃±
j jŨ

±(Ū ±)†.
To illustrate the idea, we discuss how one can determine

this transformation for the simplest case of N = 2. First one
has to prepare the system in an eigenstate of the QGT (as
discussed in Fig. 2); let’s say |ψ̃−

ν 〉 = a−
ν1 |ψ̄−

1 〉 + a−
ν2 |ψ̄−

2 〉
with the complex coefficients a−

νμ defining the transformation
[Ũ −(Ū −)†]νμ = a−

νμ.
We then apply a pulse with the two-parameter modulation

for the time T = n(π/�
π/2
1 ) ≈ (m + 1/2)(π/�

π/2
2 ) such that

the resulting state is a−
ν1 |ψ̄−

1 〉 − ia−
ν2 |ψ̄+

2 〉. By a measurement
of the energy the probabilities are given by |a−

ν1|2 for the
outcome E− and |a−

ν2|2 for E+.
A similar protocol holds for obtaining [Ũ +(Ū +)†]νμ = a+

νμ

starting from |ψ̃+
ν 〉 = a+

ν1 |ψ̄+
1 〉 + a+

ν2 |ψ̄+
2 〉.

However, one has also to determine the phase of a±
νμ to

fully determine the basis transformation, for this one needs
an internal rotation within the degenerate energy level. This
can be achieved, for example, by the Wilzcek-Zee phase [4].
Applying a Hadamard Gate (within the degenerate subspace)
on the state |ψ̃−

ν 〉 = a−
ν1 |ψ̄−

1 〉 + a−
ν2 |ψ̄−

2 〉 results in the state
(a−

ν1 + a−
ν2)/

√
2 |ψ̄−

1 〉 + (a−
ν1 − a−

ν2)/
√

2 |ψ̄−
2 〉. If we then per-

form again a two-parameter modulation pulse as before with
the duration T = n(π/�

π/2
1 ) ≈ (m + 1/2)(π/�

π/2
2 ) the state

ends up as (a−
ν1 + a−

ν2)/
√

2 |ψ̄−
1 〉 − i(a−

ν1 − a−
ν2)/

√
2 |ψ̄+

2 〉.
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FIG. 3. Schematic for a Landau-Zener transition for a pair |ψ̃±
ν 〉

for a single modulation of the external parameter (or similar |ψ̄±
ν 〉

for a two-parameter modulation). Starting from a state far away
from the avoided crossing the effective two-state system is linearly
driven through this crossing proportional to the QGT [Q̃ j j]νν . The
final probability PLZ of remaining in the initial state is thus given
by the eigenvalue of the QGT [Q̃ j j]νν (or [Q̄±

j j + Q̄±
kk + e±iφQ̄±

jk +
e∓iφQ̄±

k j]νν for the two-parameter modulation).

The probabilities of the energy measurement are then given
by 1/2 + |a−

ν1||a−
ν2| cos(ϕν1 − ϕν2) for the outcome E− and

1/2 − |a−
ν1||a−

ν2| cos(ϕν1 − ϕν2) for the outcome E+ with ϕνμ

being the phase of a−
μν = |a−

μν |eiϕμν . With this procedure one
can ultimately determine all the coefficients a±

μν of the trans-
formation by repeating this procedure for each state |ψ̃±

ν 〉.
On the other hand for φ = 0 the terms of Eq. (9) e±iφQ±

jk +
e∓iφQ±

k j = 2g±
jk result in the quantum metric with the respec-

tive Rabi frequencies,

�0
ν = A

h̄
[Q̄±

j j + Q̄±
kk + 2ḡ±

jk]1/2
νν . (12)

Again the same condition as for the Berry curvature can be
used to determine the quantum metric g jk with A2

h̄2 [Q̄±
j j +

Q̄±
kk + 2ḡ±

jk]νμ = δνμ(�0
ν )2.

IV. GEOMETRICAL LANDAU-ZENER TRANSITIONS

Another approach to determine the geometric proper-
ties is driving the system through an avoided crossing (see
Fig. 3), while maintaining the geometrical Rabi oscillations
as discussed above. Essentially this can be described by an
additional time-dependent Zeeman-like field, which is added
to the RWA Hamiltonian such that

HLZ
i = HRWA

i − αt
N∑

ν=1

∑
σ=±

σ
∣∣ψσ

ν

〉 〈
ψσ

ν

∣∣ , (13)

with i = 1 for the single modulation, i = 2 for the two-
parameter modulation, and α describing the (linear) tuning
of the Zeeman-like field. For the Landau-Zener transition
a two-state system starts far away from the avoided cross-
ing at t = −∞ and is tuned through this point at t = 0 to
t = ∞ where the final state of the system is evaluated. For
a two-state system starting in one state the Landau-Zener
probability PLZ gives the probability of remaining in the same
state [46,47]. In our case we have several interacting two-state
systems as discussed in [48], which we drive through the
avoided crossings. However, if the system is prepared in an
eigenstate of the quantum geometric tensor the system acts
effectively as a two-state system interacting between the pair

|ψ̃±
ν 〉 as depicted schematically in Fig. 3. The interaction to

all other states |ψ̃±
μ 〉 with μ �= ν remains zero during the

whole transition through the avoided crossing. Thus the re-
sult of the Landau-Zener transition can be directly applied
to this effective two-state system with the Landau-Zener
probability directly proportional to the geometric perturba-

tion 1 − Pν
LZ = 1 − e−π |V i

ν |2/α ≈ π |V i
ν |2

α
for α � |V i

ν |2 and with

|V 1
ν |2 = A2

h̄2 [Q̃ j j]νν for the single-parameter drive and |V 2
ν |2 =

A2

h̄2 [Q̄±
j j + Q̄±

kk + e±iφQ̄±
jk + e∓iφQ̄±

k j]νν for the two-parameter
drive.

V. DISCUSSION

We presented a new method to extract the quantum ge-
ometric tensor in non-Abelian systems with the help of
geometric Rabi oscillations. In general this is not limited to
specific systems, e.g., in electronic systems a modulation of
the electric field can be applied to modulate the momentum of
the electrons to extract geometric properties.

Another possibility is to use this method in Josephson mat-
ter systems [24,39,49–56], where the superconducting phases
play the role of external parameters defining the geometry of
Andreev bound states. In these systems the superconducting
phases can be controlled by tuning magnetic fluxes, such that
the presented method can be readily applied.

In a similar fashion this can be also applied in topological
Josephson circuits [57,58], where the fluxes in the circuits can
be modulated.

In the vicinity of Weyl points, where the bands are nearly
degenerate, the RWA breaks down and no Rabi oscillations
occur. This issue underlines the critical nature in geometry of
Weyl points in case of the presented work of the geometrical
Rabi oscillations.

In general, systems are not limited to two bands, as pre-
sented in the work here. Assuming different energy spacing
in multiband systems, the method is still applicable, as the
driving frequency selects the respective band transition. For
this the energy difference of the two regarded degenerate
energy levels should be known and well separated from other
transitions in the multiband system. This utility from the al-
ready well-established method of Rabi oscillations is thus a
great tool for exploring quantum geometry and topological
properties in non-Abelian systems.

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with Guido
Burkard and funding provided by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) Grant No.
RA 2810/1 and SFB 1432–Project No. 425217212.

APPENDIX A: SINGLE MODULATION—RWA
HAMILTONIAN

The unperturbed Hamiltonian is H0(λ) =∑
ν,σ=± Eσ (λ) |ψσ

ν (λ)〉 〈ψσ
ν (λ)| with |ψ±

ν 〉 the eigenstate of
the degenerate band with energy E±. The system depends on
a set of external dimensionless parameters λ = (λ1, ..., λM ).
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By a modulation of the external parameter λ j ,

λ j → λ j + 2A

h̄ω
cos(ωt ), (A1)

with a small amplitude A/h̄ω � 1 the Hamiltonian can be
expanded to first order in the driving to H1 = H0(λ) +
2A
h̄ω

cos(ωt )∂λ j H0(λ) with

∂λ j H0(λ) =
∑

ν,σ=±
∂λ j Eσ (λ)

∣∣ψσ
ν (λ)

〉 〈
ψσ

ν (λ)
∣∣

+
∑

ν,σ=±
Eσ (λ)

∣∣∂λ j ψ
σ
ν (λ)

〉 〈
ψσ

ν λ)
∣∣ + H.c. (A2)

By using

|∂λ j ψ
±
ν (λ)〉 〈ψ±

ν (λ)| + H.c.

=
∑

μ,σ=±

∣∣ψσ
μ (λ)

〉 〈
ψσ

μ (λ)
∣∣∂λ j ψ

±
ν (λ)〉 〈ψ±

ν (λ)| + H.c., (A3)

and 〈ψσ
μ (λ)|∂λ j ψ

σ ′
ν (λ)〉 = − 〈∂λ j ψ

σ
μ (λ)|ψσ ′

ν (λ)〉 the perturba-
tion can be simplified to

∂λ j H0(λ) =
∑

ν,σ=±
∂λ j Eσ (λ)

∣∣ψσ
ν (λ)

〉 〈
ψσ

ν (λ)
∣∣

+
∑
ν,μ

(E− − E+) |ψ−
μ 〉 〈∂λ j ψ

−
μ |ψ+

ν 〉 〈ψ+
ν | + H.c.

(A4)

The transformation into the rotating frame U =
exp(i ω

2 t
∑

ν,σ σ |ψσ
ν 〉 〈ψσ

ν |) with HRF
1 = UH1U † + ih̄U̇H1U †

yields

HRF
1 =

∑
ν,σ=±

(
Eσ − σ

h̄ω

2
+ 2A

h̄ω
cos(ωt )∂λ j Eσ

) ∣∣ψσ
ν

〉 〈
ψσ

ν

∣∣
+ A

h̄ω
(E− − E+)

∑
μ,ν

(1 + e−2iωt )

× |ψ−
μ 〉 〈∂λ j ψ

−
μ |ψ+

ν 〉 〈ψ+
ν | + H.c. (A5)

By dropping the rotating terms using the RWA with h̄δω =
E+ − E− − h̄ω � h̄ω and E− − E+/h̄ω = −(ω + δω)/ω ≈

−1 the RWA Hamiltonian HRWA
1 from Eq. (3) in the

manuscript is derived.

APPENDIX B: SINGLE MODULATION—DIFFERENTIAL
EQUATION

Inserting the RWA Hamiltonian into the Schrödinger
equation ih̄∂t |�〉 = HRWA

1 |�〉 in the basis |�〉 =∑
ν,± c±

ν (t )e−i(E±/h̄∓ω/2)t |ψ±
ν 〉 results in

ih̄
∑

ν,σ=±
ċσ
ν e−i(Eσ /h̄−σω/2)t

∣∣ψσ
ν

〉
= −A

∑
μ,ν

c+
ν e−i(E+/h̄−ω/2)t |ψ−

μ 〉 〈∂λ j ψ
−
μ |ψ+

ν 〉

− A
∑
μ,ν

c−
ν e−i(E−/h̄+ω/2)t |ψ+

μ 〉 〈ψ+
μ |∂λ j ψ

−
ν 〉 . (B1)

Thus we have

ih̄ċ+
ν = −Aeiδωt

∑
μ

c−
μ 〈ψ+

ν |∂λ j ψ
−
μ 〉 , (B2)

ih̄ċ−
ν = −Ae−iδωt

∑
μ

c+
μ 〈∂λ j ψ

−
ν |ψ+

μ 〉 . (B3)

By differentiating these equations and inserting the nondiffer-
entiated equation we find that

c̈±
ν =−A2/h̄2

∑
α

c±
α

〈
∂λ j ψ

±
ν

∣∣ ∑
β

|ψ∓
β 〉 〈ψ∓

β |∂λ j ψ
±
α 〉

︸ ︷︷ ︸
[Qj j ]να

±iδω1ċ±
ν .

(B4)

APPENDIX C: TWO-PARAMETER
MODULATION—RWA HAMILTONIAN

For the case of driving two parameters the Hamiltonian can
be expanded again to first order in driving to H2 = H0(λ) +
2A
h̄ω

cos(ωt )∂λ j H0(λ) + 2A
h̄ω

cos(ωt + φ)∂λk H0(λ). The pertur-
bation can be simplified similar as for the single modulation
leading to the same terms as in Eq. (A4) for the respective pa-
rameter. Thus the transformation into the rotating frame U =
exp(i ω

2 t
∑

ν,σ σ |ψσ
ν 〉 〈ψσ

ν |) with HRF
1 = UH1U † + ih̄U̇H1U †

yields

HRF
2 =

∑
ν,σ=±

(
Eσ − σ

h̄ω

2

) ∣∣ψσ
ν

〉 〈
ψσ

ν

∣∣ + 2A

h̄ω

∑
ν,σ=±

(cos(ωt )∂λ j Eσ + cos(ωt + φ)∂λk Eσ )
∣∣ψσ

ν

〉 〈
ψσ

ν

∣∣
− A

∑
μ,ν

(1 + e−2iωt ) |ψ−
μ 〉 〈∂λ j ψ

−
μ |ψ+

ν 〉 〈ψ+
ν | + H.c. − A

∑
μ,ν

(eiφ + e−i(2ωt−φ) ) |ψ−
μ 〉 〈∂λk ψ

−
μ |ψ+

ν 〉 〈ψ+
ν | + H.c., (C1)

where we used E− − E+/h̄ω = −(ω + δ)/ω ≈ −1. By dropping the rotating terms using the RWA the Hamiltonian simplifies
to

HRWA
2 =

∑
ν,±

(
E± ∓ h̄ω

2

)
|ψ±

ν 〉 〈ψ±
ν | − A

∑
μ,ν

|ψ−
μ 〉 〈∂λ j ψ

−
μ |ψ+

ν 〉 〈ψ+
ν | + H.c.

− A
∑
μ,ν

eiφ |ψ−
μ 〉 〈∂λk ψ

−
μ |ψ+

ν 〉 〈ψ+
ν | + H.c. (C2)
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APPENDIX D: TWO-PARAMETER
MODULATION—DERIVATION

OF THE DIFFERENTIAL EQUATION

Inserting the RWA Hamiltonian into the Schrödinger
equation ih̄∂t |�〉 = HRWA

2 |�〉 in the basis |�〉 =∑
ν,± c±

ν (t )e−i(E±/h̄∓ω/2)t |ψ±
ν 〉 results in

ih̄
∑

ν,σ=±
ċσ
ν e−i(Eσ /h̄−σω/2)t

∣∣ψσ
ν

〉
= −A

∑
μ,ν

c+
ν e−i(E+/h̄−ω/2)t |ψ−

μ 〉 〈∂λ j ψ
−
μ |ψ+

ν 〉

− A
∑
μ,ν

c−
ν e−i(E−/h̄+ω/2)t |ψ+

μ 〉 〈ψ+
μ |∂λ j ψ

−
ν 〉

− A
∑
μ,ν

c+
ν e−i(E+/h̄−ω/2)t eiφ |ψ−

μ 〉 〈∂λk ψ
−
μ |ψ+

ν 〉

− A
∑
μ,ν

c−
ν e−i(E−/h̄+ω/2)t e−iφ |ψ+

μ 〉 〈ψ+
μ |∂λk ψ

−
ν 〉 . (D1)

Thus we have

ih̄ċ+
ν = −Aeiδωt

∑
μ

c−
μ

( 〈
ψ+

ν

∣∣∂λ j ψ
−
μ

〉 + e−iφ
〈
ψ+

ν

∣∣∂λk ψ
−
μ

〉 )
,

(D2)

ih̄ċ−
ν = −Ae−iδωt

∑
μ

c+
μ

( 〈
∂λ j ψ

−
ν

∣∣ψ+
μ

〉 + eiφ
〈
∂λk ψ

−
ν

∣∣ψ+
μ 〉 )

.

(D3)

By differentiating these equations and inserting the nondiffer-
entiated equation we find that

c̈±
ν = − A2/h̄2

∑
α

c±
α

〈
∂λ j ψ

±
ν

∣∣∑
β

|ψ∓
β 〉 〈

ψ∓
β

∣∣∂λ j ψ
±
α

〉
︸ ︷︷ ︸

[Qj j ]να

− A2/h̄2
∑

α

c±
α

〈
∂λk ψ

±
ν

∣∣∑
β

|ψ∓
β 〉 〈

ψ∓
β

∣∣∂λk ψ
±
α

〉
︸ ︷︷ ︸

[Qkk ]να

− A2/h̄2e±iφ
∑

α

c±
α

〈
∂λ j ψ

±
ν

∣∣∑
β

|ψ∓
β 〉 〈ψ∓

β

∣∣∂λk ψ
±
α

〉
︸ ︷︷ ︸

[Qjk ]να

− A2/h̄2e∓iφ
∑

α

c±
α

〈
∂λk ψ

±
ν

∣∣∑
β

|ψ∓
β 〉 〈ψ∓

β

∣∣∂λ j ψ
±
α

〉
︸ ︷︷ ︸

[Qk j ]να

± iδω1ċ±
ν , (D4)

as provided in Eq. (9) in the main text.
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