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ABSTRACT

As critical transitional ecosystems, estuaries are facing the increasingly urgent threat of salt wedge intrusion,
which impacts their ecological balance as well as human-dependent activities. Accurately predicting estuary
salinity is essential for water resource management, ecosystem preservation, and for ensuring sustainable
development along coastlines. In this study, we investigated the application of different machine learning and
deep learning models to predict salinity levels within estuarine environments. Leveraging different techniques,
including Random Forest, Least-Squares Boosting, Artificial Neural Network and Long Short-Term Memory
networks, the aim was to enhance the predictive accuracy in order to better understand the complex interplay
of factors influencing estuarine salinity dynamics. The Po River estuary (Po di Goro), which is one of the
main hotspots of salt wedge intrusion, was selected as the study area. Comparative analyses of machine
learning models with the state-of-the-art physics-based Estuary box model (EBM) and Hybrid-EBM models were
conducted to assess model performances. The results highlighted an improvement in the machine learning
performance, with a reduction in the RMSE (from 4.22 psu obtained by physics-based EBM to 2.80 psu
obtained by LSBoost-Season) and an increase in the R? score (from 0.67 obtained by physics-based EBM to
0.85 by LSBoost-Season), computed on the test set. We also explored the impact of different variables and their
contributions to the predictive capabilities of the models. Overall, this study demonstrates the feasibility and
effectiveness of ML-based approaches for estimating salinity levels due to salt wedge intrusion within estuaries.
The insights obtained from this study could significantly support smart management strategies, not only in the
Po River estuary, but also in other location.

1. Introduction

Estuaries are transitional systems that modulate freshwater inputs

of estuaries is essential for water resource management and ecosystem
preservation, and for ensuring sustainability (Ghalambor et al., 2021).
Since estuaries are poorly monitored, there is a rising demand for

into the sea, with ocean saltwater entering the river mouth and merging
with the zero-salinity river streamflow. Estuarine systems are highly
productive environments that provide a multitude of crucial ecosystem
services including the availability of raw materials, cultural services,
coastal erosion protection and the maintenance of fish stocks (Keyes
et al.,, 2021; Barbier et al., 2011; Townsend et al., 2013; Boerema
and Meire, 2017). Among the environmental threats that challenge the
functionality and biodiversity of estuaries, saltwater intrusion is one of
the most serious (Herbert et al., 2015). It increases the salt content in
waters and expands the salt wedge intrusion throughout the river chan-
nels (Wong et al., 2014). Monitoring the environmental health status

the development of modeling tools that can be easily applied across
diverse estuaries for accurately estimating the extent and patterns of
salt wedge intrusion. To address this issue, the CMCC Estuary Box
Model (CMCC EBM model) (Verri et al., 2020) has been specifically
developed and calibrated for the Po di Goro estuary (Verri et al., 2021;
Kurdistani et al., 2022). This physics-based model comprehensively
represents all the fundamental physical processes governing estuarine
dynamics and at the same time it is orography agnostic, thus reducing
the source of uncertainty which may arise when this information is
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unavailable or not well represented. Overall, it stands out as a flexible
and powerful tool linking hydrology and ocean modeling for both
forecast and climate purposes by estimating the net river release at river
mouths and salt-wedge intrusion. The very low computational cost and
the limited data storage required make its application competitive with
the advanced 3D finite element modeling approach. Indeed, the EBM
has recently been exploited to perform centennial climate projections
of the salt wedge-intrusion along the Po di Goro estuary and to judge a
site-specific nature-based solution to counteract the salinization issue
by means of long-term sensitivity experiments (Verri et al., 2024a).
Despite the interesting characteristics of EBM, there is a clear need
to improve the performance of salinity estimation, which has ample
room for improvement. With this objective in mind, it is evident
that Machine Learning (ML) offers enormous opportunities, even by
resorting to traditional models that maintain a reduced computational
cost compared to Deep Learning (DL) strategies.

A recent advancement in the fully physics-based EBM model was
presented in Maglietta et al. (2023c), named Hybrid-EBM. This innova-
tive model integrates ML techniques into the traditional physics-based
model by replacing its parameterization equations that include several
tunable coefficients, resulting in a significant enhancement of the over-
all model performance. However, in recent years, several very effective
methodologies in the field of ML and DL have been developed and
implemented across a range of application domains (Maglietta et al.,
2023b,a; Dimauro et al., 2023b,a; Maglietta et al., 2022). With the con-
tinuous advancements in ML technology, novel solutions can be used to
address the issue of salinization at river mouths. Several studies have
estimated the salinity of estuaries using ML algorithms. For example,
in Saccotelli et al. (2023) the authors presented different SVM models
to predict the estuary salinity at the Po Goro river. In Lu et al. (2021)
they used the Bayesian model averaging method to create an integrated
forecast model to predict the monthly saltwater intrusion at the Pearl
River Delta. In Liu et al. (2015) the authors presented a Random Forest
model to estimate sea surface salinity in the Hong Kong Sea, China, by
integrating in situ and remotely sensed data. Lastly, similar applications
can also be found in Fang et al. (2017), Tran et al. (2022), Qiu and Wan
(2013), Guillou et al. (2023), Qi et al. (2022a), Nguyen et al. (2021),
Rath et al. (2017), Hoai et al. (2022), Tran et al. (2021), Ye et al.
(2020), Mohamad et al. (2018), Lal and Datta (2018), Qi et al. (2022b).
In this study, the salinity conservation equation of the physically-based
EBM was replaced by ML and DL algorithms, namely Random Forest,
Least-Squares Boosting, Artificial Neural Network and Long Short-Term
Memory network algorithms. The ML algorithms thus benefit from
the principles of the salinity conservation equation to identify the key
variables conditioning the target field, but without needing to explicitly
use the conservation equation itself. ML techniques can also produce
more effective and realistic estimates. This is an important finding
because the estuarine salinity is a non-linear combination of multiple
coastal forcings.

DL strategies were also adopted to highlight temporal dependencies
in a forecasting framework. Long Short-Term Memory (LSTM) network
was selected to model sequential data, since it is well suited for time-
series data because of its ability to learn long-term dependencies. LSTM
can predict estuary salinity levels capturing temporal dependencies,
such as daily fluctuations, tidal patterns, and other variations. The goal
was to forecast estuarine salinity levels up to seven days beyond the
input data.

An initial statistical analysis was conducted to gain insights into
yearly and seasonal salinity patterns. Two sets of experiments were then
carried out: firstly, Random Forest, Least-Squares Boosting, Artificial
Neural Network were trained to predict estuary salinity levels, where
the temporal dimension was not explicitly considered. A separate set of
experiments was then undertaken, focusing exclusively on Long Short-
Term Memory models. This strategy used a time-series methodology
to develop a weekly prediction model. Our study also explores the
impact of different variables and their contributions to the predictive
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capabilities of the models. Starting from data collected between 2016
and 2019 at the Po di Goro river mouth, one of the main global hotspots
of salt wedge intrusion (Tarolli et al., 2023), ML and DL models were
trained and validated, and compared with the performances of the
physics-based EBM and Hybrid-EBM.

2. Material and methods
2.1. Study area

The Po River is the Mediterranean Sea’s second-largest freshwater
inflow, coursing through northern Italy before ending in the northern
Adriatic Sea. It maintains an annual flow rate averaging approximately
1500 m? s~! (Boldrin et al., 2005) and accounts for approximately 30%
of the total freshwater input into the Adriatic (Cushman-Roisin et al.,
2002). The Po River delta has nine separate branches; from south to
north: Po di Goro, Po di Gnocca, Po di Tolle, Po di Bastimento, Po di
Scirocco, Po di Bonifazi, Po di Dritta, Po di Tramontana, and Po di Mais-
tra. The mouths of these branches are denoted by the yellow markers
in Fig. 1. The Po di Goro, one of the branches within the Po River delta
system, is responsible for transporting approximately 13% of the overall
runoff from the Po River. It is a salt wedge estuary (Valle-Levinson,
2010). In fact, it functions as a river-dominated estuary, leading into
a micro-tidal sea, with a well-defined salt wedge under conditions of
moderate to low river runoff. In contrast, during exceptionally high
runoff events, salinity levels decrease, and the salt wedge may recede.

2.2. Data collection

Estuarine salinity observations (.S,;) were collected for the study
area of Po di Goro from the Agenzia Regionale per la Prevenzione,
PAmbiente e ’Energia del’Emilia Romagna (Arpae). Arpae provided
a comprehensive dataset of 1201 hourly salinity data collected at
the Manufatto gauge station, located near the river mouth, over the
timeframe selected for the experiments, i.e. 2016 to 2019. These ob-
servations therefore include high frequency sub-tidal processes, e.g. the
semi-diurnal tidal cycle of about 12 h and the “blocking effects” which
may occur within a few hours. For experimental purposes, hourly
observations were averaged daily for comparison with the EBM results
which were averaged over the diurnal tidal cycle. The salinity data are
readily accessible online (Arpae, 2024b). Details of the dataset can be
found in Table 1.

The study uses the following input features: O, ors Qs Siis Socean
and Q4. (see Table 2). At the estuary’s head, the input feature is the
river volume flux (Q,,,.,)- This is derived from data collected by Arpae
at the Pontelagoscuro gauge station, located upstream of the river delta,
considering 13% of the data recorded from this station (Arpae, 2024a;
Verri et al., 2021). The input features at the estuary mouth related to
the ocean inflow are the volume flux (Q;;) and salinity (S;,) entering
from the bottom and corresponding to the lower layer of EBM (Verri
et al., 2020, 2021). In addition, the depth averaged ocean salinity
(Sycean) is also considered, which entails computing the average of the
ocean salinity measured at different depths along the water column.
Oy, Sy and S,..,, were derived from a Copernicus Marine Product,
the CMEMS Mediterranean Sea Physical Reanalysis (Escudier et al.,
2020, 2021; Nigam et al., 2021). CMEMS data were organized on
a grid with a horizontal resolution of 1/24° (ca. 4.5 km), with 141
unevenly spaced vertical levels up to a depth of about 6000 m and
a daily frequency. Lastly, the tidal impact on the net volume flux at
the river mouth (Q,;4, ) was estimated using the OTPS (Ocean Tidal
Prediction Software) barotropic model (Egbert and Erofeeva, 2002).
This was necessary because the CMEMS product under consideration
does not include tidal signals.
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Fig. 1. The map of the Po delta system (Google Earth image) along with its the river mouths, namely, Po di Maistra, Po della Pila (which splits into Po di Tramontana, Po di
Dritta, Po di Scirocco, Po di Bonifazi and Po di Bastimento), Po di Tolle, Po di Gnocca, and Po di Goro (yellow markers). The red path is the Po di Goro branch selected as the
test case. The location of the Manufatto gauge station, which is close to the Goro mouth but in a secondary channel, is shown in the inset. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
Source: Image from Verri et al. (2021).

Table 1

Basic description and statistical information of the in situ observations of river mouth salinity (S,,). Min, Max, Avg, and Std dev represent the

minimum, maximum, average, standard deviation values, respectively.

In situ observations Num. of observations Period Frequency Unit Min Max Avg Std dev
S 1201 2016-2019 hourly psu 0.1 29.5 13.89 7.17
Table 2
Sources of input features used for the river mouth salinity (S,;) regression model.
Forcing Source Input Unit
Runoff forcing Arpae (Arpae, 2024a) Qiver m? s7!
3 -1
Ocean forcing CMEMS Reanalyses (Escudier et al., 2020, 2021; Nigam et al., 2021) Qu mes
Sits Socean psu
Tidal forcing OTPS model (Egbert and Erofeeva, 2002) Qiiger m® s7!

2.3. Machine learning algorithms

2.3.1. Random Forest (RF)

Random Forest (RF) (Breiman, 2001; Maglietta et al., 2023b, 2018)
is an ensemble learning method which, when used for regression tasks,
combines multiple decorrelated decision trees to make predictions
for continuous numerical values. It works by growing multiple deci-
sion trees, each trained on a randomly selected subset of the data
and features. Predictions from each tree are averaged and provide
the final output for the model. To build this model the fitrensemble
function was used (The MathWorks Inc., 2023a). The optimizable
hyperparameters for RF are the number of ensemble learning cycles
(NumLearningCycles'), the minimum leaf size (MinLeafSize'), the max-
imum number of splits (MaxNumSplits') and number of predictors to
sample (NumVariablesToSample!).

2.3.2. Least-Squares Boosting (LSBoost)

The Least-Squares Boosting (LSBoost) algorithm (Friedman, 2001;
Breiman, 2001; Hastie et al., 2009; Maglietta et al., 2023b) is a vari-
ant of the generic Gradient Boosting algorithm (Friedman, 2001), in

1 See MATLAB documentation for details.

which the least-squares (LS) strategy is applied. Through a weighted
combination of the outputs produced by a set of weak learners, LSBoost
defines a function that is able to estimate the target feature. More
specifically, at each step, the algorithm fits a new learner to the
difference between the observed response and the aggregated predic-
tion of all learners grown previously. LSBoost minimizes the squared
error loss through gradient descent: W. All the new learners
are fitted to y; — nf(x;), where i = 1,...,m is the ith observation,
with m equal to the total number of observations, y; is the observed
response, 1f(x;) is the aggregated prediction from all weak learners
grown thus far for observation x; and 5 is the learning rate. This
model was built using the fitrensemble function (The MathWorks Inc.,
2023a). The optimizable hyperparameters for LSBoost are the number
of ensemble learning cycles (NumLearningCycles'), the minimum leaf
size (MinLeafSize'), the maximum number of splits (MaxNumSplits'),
the number of predictors to sample (NumVariablesToSample') and the
learning rate (LearnRate').

2.3.3. Artificial Neural Networks (NNs)

Artificial Neural Network (NNs) (Goodfellow et al., 2016) are a class
of networks consisting of three basic layers (input, hidden and output)
of computational units, usually interconnected in a feed-forward way.
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This means that each neuron in one layer has direct connections only to
the neurons of the subsequent layer; each neuron in the hidden and out-
put layers, connected by weights and biases, uses a nonlinear activation
function. Two main processes characterize a neural network: forward
propagation of the input and back propagation of the errors. During the
forward propagation phase, the inputs are propagated from the input
layer, throughout all the hidden layers, to the output layer. Then during
the back propagation phase, the errors computed on the outputs of
the neural network are back propagated, layer by layer, to the input
layer, so that each of the neural network’s weights is updated. To build
this model the fitrnet function was used (The MathWorks Inc., 2023b).
In this function a limited-memory Broyden-Fletcher—Goldfarb-Shanno
quasi-Newton algorithm (LBFGS) (Nocedal and Wright, 2006) is used
as loss function minimization technique to minimize the mean squared
error (MSE). The optimizable hyperparameters for NN are the number
and size of each hidden layer (LayerSizes'), the activation function
(Activations'), the regularization term strength (Lambda'), the initial-
ization strategy for the layer biases (LayerBiasesInitializer') and the
initialization strategy for the layer weights (LayerWeightsInitializer').

2.3.4. Long Short-Term Memory Networks (LSTMs)

LSTMs (Hochreiter and Schmidhuber, 1997) are a special type of
Recurrent Neural Network (RNN) designed to overcome the vanishing
gradient problem and to learn long-term dependencies between time
steps in time-series and sequence data. The core idea in LSTM is to
introduce a cell state C,, which contains information learned from the
previous time steps. Using a structure called gate, the LSTM has the
ability to remove or add information from the cell state. Firstly, the
forget gate f, determines the information to be discarded from the
cell state. Then, the input gate i,, implemented through a sigmoid
layer, identifies which values to update in the cell state. A tanh layer
generates a vector of new candidate values that might be incorporated
into the cell state. The cell state will thus be updated. The output gate
o;, which is also a sigmoid layer, determines the information to be
emitted from the cell state. Finally, the hidden state h, is updated by
processing the cell state through a tanh layer and multiplying it by the
output gate. This updated hidden state carries information forward to
subsequent steps and contributes to the final prediction.

2.4. Experimental setup

2.4.1. Experimental setup for ML algorithms

RF, LSBoost and NN were implemented in MATLAB (The Math-
Works Inc., 2023c) using the Statistics and Machine Learning Tool-
box (The MathWorks Inc., 2023d). For the ML algorithms, automated
hyperparameter optimization and the cross-validation technique were
employed. The schema of the methodology adopted to train the ML
models is shown in Fig. 2. Firstly, the input dataset is divided into a
training set, comprising 80% of the input examples, and a test set, with
the remaining 20% examples. The training set is used for the automatic
optimization of hyperparameters, performed by the Bayesian optimiza-
tion method (Bull, 2011; Gelbart et al., 2014; Snoek et al., 2012). This
method employs a surrogate for the objective function, which is consid-
erably easier to optimize than the objective function itself. The process
involves identifying the next set of hyperparameters for evaluating
the objective function, and it does so by selecting hyperparameters
that result in superior performance for the surrogate function. The k-
fold cross validation technique was also used, which splits training
data into k subsets, or folds, of equal size (Refaeilzadeh et al., 2016;
Rodriguez et al., 2010). During each iteration, k-1 folds serve as the
training dataset, with the remaining fold used for validation. This
process is repeated k times to ensure that each instance undergoes
validation exactly once. The estimated errors from each iteration are
then averaged across the k folds, resulting in a comprehensive measure
of the model’s performance. In this study, we used a 5-fold cross-
validation strategy. We thus identified the hyperparameter settings that
produced the best model performance. Finally, we applied the model,
trained with these optimal hyperparameters, to the test dataset and
presented the associated performance metrics.
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2.4.2. Experimental setup for LSTM

The LSTM network was employed to forecast salinity at river mouth
since it is designed to model sequential data. By training the model
using data from previous days, LSTM strategy developed here forecasts
estuarine salinity for up to seven subsequent days. The forecasted
values are not used as inputs for the subsequent forecasting, in order
to simplify the model architecture and training process. In fact, models
only rely on past observations to make predictions. This approach may
be more stable and easier to train, especially for simpler forecasting
tasks or when the relationship between past and future values is
relatively straightforward. The sequence of daily estuarine salinity was
converted into a sequence of input/output pairs, in order to train the
network with a supervised learning procedure. A total of 20% of the
available data was reserved for testing the trained network. Of the
remaining 80%, an additional 20% was set aside as the validation set,
while the remaining data were used to train the network. A Bayesian
optimization method (Bull, 2011; Gelbart et al.,, 2014; Snoek et al.,
2012) was employed to fine-tune network hyperparameters including
the number of LSTM layers and the number of units in the LSTM layer,
the dropout factor and the learning rate. A batch size of 16 was used.
The network was trained by minimizing the mean squared error (MSE)
for 100 epochs with the Adam optimizer (Kingma and Ba, 2017). The
LSTM architecture was designed using the Keras module (Chollet et al.,
2015) with a Tensorflow backend (Abadi et al., 2016).

2.5. Evaluation metrics

Performances were assessed using a combination of quantitative and
visual metrics. Quantitative performance was measured through the
Root Mean Square Error (RM SE), the Mean Absolute Error (M AE)
and the coefficient of determination (R2) (Witten et al., 2011). The
mathematical expressions for these metrics can be found in Egs. (1)-(3):

m S U2
RMSE = Zim Gi=w)? @
m
mag = Zi= il |:1" — il o)
mo 52
R=1- —Z";‘ i =31 @)
Z,-=1 (y,» - y)Z

where y; is the ith observed value, y; is the ith predicted value, y
is the mean of the observed values and m is the dataset size. An-
other evaluation metric employed was the Percentage Within Bound
(PWB) (Chitturi et al., 2021), which represents the percentage of test
examples whose predicted values are within a given percentage error
bound. The error bound can vary (for example it can be equal to 10%,
20% or 30%), and is selected by the researcher, i.e., PWB10 refers to
the percentage of test observations whose predicted values are within
10% of their observed values. Model performances are also evaluated
using visual performance metrics, such as scatter plots of observed and
predicted values.

3. Results
3.1. Annual and seasonal salinity patterns

A preliminary statistical analysis was conducted to gain deeper
insights into the annual and seasonal patterns of the observed salinity.
The Kruskal-Wallis test (Kruskal and Wallis, 1952) was used to deter-
mine whether there were statistically significant differences between
the medians of different groups. The Kruskal-Wallis test uses ranks of
the data, rather than numerical values, to compute the test statistics.
The null hypothesis (H,,) states that there is no significant difference
between the medians of the groups being compared. In other words,
all groups come from the same population. The alternative hypothesis
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Fig. 2. Flow chart of the experimental process used to train and test the ML models to predict the estuarine salinity (S,,).

(H,) suggests that at least one group’s median is significantly different
from the others. In addition, Dunn’s post-hoc test (Dunn, 1964), was
also performed to make pairwise comparisons between groups and to
determine which groups were significantly different from each other.
The null hypothesis (H,) for a pairwise comparison between group
mean ranks i and j states that there is no significant difference between
the means: m; = m s while, the alternative hypothesis (H,) states that
there is a difference between the means: m; # m;. The significance level
of both tests was set to 0.01.

3.1.1. Annual salinity patterns

Salinity data were grouped by year and the number of observations
for each group is reported in Supplementary Table 1. The boxplots in
Fig. 3-a show summary statistics for the observed salinity .S,,, grouped
by year. Data collected in 2016, 2017 and 2019 seem to have very
similar pattern, while a very different pattern is shown by the data
collected in 2018. To confirm this hypothesis a Kruskal-Wallis test was
performed to determine whether there were any statistically significant
differences between the medians of different groups. Supplementary
Table 2 shows the results of this statistical test. The returned p-value
(< 0.01) indicates that the test rejects the null hypothesis at the 1%
significance level. Thus, at least one group’s median was significantly
different from the others. Dunn’s test was thus performed to determine
which groups were significantly different from each other. The results
provided in Supplementary Table 3 and Fig. 4-a confirm that the data
collected in 2016 and 2017 were not significantly different from each
other, while all the other groups were significantly different from each
other.

3.1.2. Seasonal salinity patterns

The salinity data were grouped by season and the number of ob-
servations for each group and are reported in Supplementary Table
1. Boxplots in Fig. 3-b shows summary statistics for the observed
salinity S,;, grouped by season. Data collected in each season seem to
have a very different pattern. To confirm this hypothesis a Kruskal-
Wallis test has been performed to determine whether there were any
statistically significant differences between the medians of different
groups. Results of this statistical test is provided in Supplementary

Table 4. The returned p-value (< 0.01) indicates that the test rejects
the null hypothesis at the 1% significance level. Thus, at least one
group’s median is significantly different from the others Dunn’s test was
then used to determine which groups were significantly different from
each other. The results reported in Supplementary Table 5 and Fig. 4-b
confirm that the data collected in each season are significantly different
from each other.

3.2. Estuary salinity evaluation with machine learning and deep learning
algorithms

3.2.1. Machine learning algorithms for estuary salinity estimate combining
multiple forcings

ML models, namely RF, LSBoost, and NN, were trained using the
following input features, as detailed in Section 2.2: Q,;.ers Qriger> Qus
Syceans Sy~ Additionally, based on the insights provided in Section 3.1.2,
the feature Season was included among the other input features, and
the models were retrained to assess the predictive power of Season. The
performances of the ML models were therefore compared to the fully-
physics EBM and the Hybrid-EBM model performance. A total of 80%
of the data were used to train the models (963 observations), while the
remaining 20% (238 observations) were employed to test the models.
Supplementary Table 6 presents the optimal hyperparameters used to
build the ML models, both with and without the embedded feature
Season. Training performances are detailed in Supplementary Table
7. The test performances of the ML models (both with and without
the Season embedded), compared to those of the EBM and Hybrid-
EBM models, are reported in Table 3 and Fig. 5. All three ML models
trained without the Season as the input feature show very similar
results and perform better than the fully-physics and hybrid models,
in terms of each metric. The top-performing ML model without the
Season embedding was RF, with an RMSE equals to 3.07 psu, compared
with the 4.22 psu and 3.41 psu obtained by the EBM and Hybrid-EBM-
LSBoost models, respectively. The MAE decreased from 3.27 psu to
2.34 psu, while the R? score increased from 0.67 to 0.82. However, all
three ML models featuring the Season embedding outperformed those
without it and significantly outperformed both the fully-physics EBM
and Hybrid-EBM models. In more detail, when Season embedding was
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Salinity observations grouped by: (a) year, (b) season.

Table 3

Test performances of ML models for the salinity S, prediction, trained with and without the feature Season embedded. Three
ML algorithms are used: RF, LSBoost and NN. The performance metrics consist of Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) in psu and coefficient of determination (R?). Bold characters are used to highlight the best model

performance.

Test performance

Model No-Season Season
RMSE (psu) MAE (psu) R? RMSE (psu) MAE (psu) R?

EBM 4.22 3.27 0.67 - - -
Hybrid-EBM-RF 3.46 2.64 0.78 - - -
Hybrid-EBM-LSBoost 3.41 2.63 0.78 - - -
RF 3.07 2.34 0.82 2.85 2.17 0.85
LSBoost 3.15 2.38 0.81 2.80 2.15 0.85
NN 3.17 2.41 0.81 2.88 2.23 0.84

employed, LSBoost demonstrated the best performance, achieving an
RMSE of 2.80 psu, MAE of 2.15 psu, and an R? score of 0.85.

These results were also confirmed by looking at the PWB table
(see Table 4), in which, for most of the fixed error bound, ML model
performances, with and without the Season embedding, outperformed
the results obtained with the fully-physics and hybrid models. In partic-
ular, with a fixed threshold equal to 10%, RF with Season embedding
obtained 39.92% of the test data with a lower prediction error than this
threshold, compared with the 25.63% obtained with the EBM model
and 34.45% obtained with the Hybrid-EBM-LSBoost. Then, with a fixed
threshold of 20%, RF with Season embedding shows that 65.97% of the
test data show a lower prediction error than this threshold, compared to
47.90% and 55.04% with EBM and Hybrid-EBM-LSBoost, respectively.
Lastly, with a fixed threshold of 30%, LSBoost with Season embedding
shows that 76.89% of the test data show a lower prediction error than

30%; for EBM 64.29% of the test data have a prediction error of less
than 30%, while for the hybrid models about 69% of the test data have
a prediction error lower than 30%. Therefore, ML models, particularly
those with a Season embedding, ensured a remarkable increase in the
overall performance.

Further conclusions can be drawn by assessing the ability of the
models to manage both low (S, < 5 psu) and high (S,; > 20 psu) salin-
ity events, considering the following: EBM, Hybrid-EBM-LSBoost, RF-
No-Season and LSBoost-Season (see Table 5). For low salinity events,
LSBoost-Season demonstrated significant improvements across nearly
all fixed thresholds, particularly for PWB10, PWB20 and PWB30. Con-
cerning high salinity events, moderate improvements were observed for
PWB10, PWB20, and PWB30 with the inclusion of the Season embed-
ding, while more significant improvements were obtained in PWB1 and
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Fig. 5. Plots of the observed salinity .S,, versus the predicted S, values for the test dataset. The physics and hybrid models are: (a) EBM, (b) Hybrid-EBM-RF, (c) Hybrid-EBM-LSBoost;
ML models trained without the Season embedded as input feature are: (d) RF-no-Season, (e) LSBoost-no-Season, and (f) NN-no-Season. The ML models trained with the Season
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deviation compared to the perfect prediction. Units in psu.

Table 4

PWB table reports the percentage of test examples for which the predicted salinity (S,) falls within a
specified percentage error bound. Bold characters are used to highlight the best model performance.

% of test samples

Model PWB1 PWB5 PWB10 PWB20 PWB30
EBM 3.78 12.61 25.63 47.90 64.29
Hybrid-EBM-RF 2.10 21.43 34.45 54.62 69.33

No.Season Hybrid-EBM-LSBoost 3.78 17.23 31.93 55.04 69.75
RF 6.72 18.49 37.39 60.08 73.11
LSBoost 4.20 20.17 36.97 58.82 73.95
NN 4.62 18.91 34.87 57.14 75.63
RF 3.78 20.59 39.92 65.97 76.47

Season LSBoost 4.62 18.07 38.66 65.55 76.89
NN 3.36 19.75 36.16 64.29 76.47

PWB5 using RF-No-Season. However, both ML models with and without Table 5

the Season embedding exhibited superior predictive capabilities for
both low and high salinity events compared to those of the fully-physics
and hybrid models.

3.2.2. Evaluation of feature importance

Feature importance was computed for RF and LSBoost models, both
with and without the Season embedding, to understand what variables
significantly influence the predictive capabilities of the models and
how they contribute to salinity prediction accuracy (see Supplementary
Figure 1 and Fig. 6). Table 6 shows the performance of LSBoost trained
with different combinations of the input features. The most significant
feature for salinity prediction was identified in Q,,,,. In fact, its ex-
clusion during training (LSBoost#1) led to the worst performance. The
second most important feature is Season. As discussed in Section 3.2.1
LSBoost#6 (trained including Season) ensured the best performance of
the model, confirming the importance of Season embedding. Seasonal
changes significantly affect estuarine systems through variations in
rainfall and evaporation, which could lead to an increase or decrease
in the freshwater discharge. Specific seasons are often associated with

PWB table reports the percentage of test examples for which the predicted salinity falls
within a specified percentage error bound. Bold characters are used to highlight the
best model performance.

% test samples S, < 5 psu

Model PWB1 PWB5 PWB10 PWB20 PWB30
EBM 0 0 2.33 9.30 16.28
Hybrid-EBM-LSBoost 0 6.98 9.30 16.28 20.93
RF-No-Season 0 2.33 4.65 11.63 16.28
LSBoost-Season 2.33 4.65 11.63 27.91 35.56
% test samples S, > 20 psu

EBM 3.64 9.09 14.55 50.91 87.27
Hybrid-EBM-LSBoost 5.45 14.55 36.36 72.73 89.09
RF-No-Season 12.73 29.09 45.45 78.18 90.91
LSBoost-Season 7.27 23.64 50.91 80.00 92.73

more abundant precipitation levels, leading to more freshwater input
into estuaries. This process increases the river flow and either pushes
back or dilutes the saltwater wedge, thereby limiting its intrusion into
the estuary. In contrast, higher temperatures, land-ice contraction and
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Table 6

Test performances of LSBoost models for salinity S,, prediction, trained with different input features. The performance metrics consist of Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) in psu along with the coefficient of determination (R?). Bold characters are used

to highlight the best model performance.

Test performance

Model Input features Removed feature RMSE (psu) MAE (psu) R?

LSBoost#1 Qs Sits Soceans Qrides> Season O, iver 5.97 4.84 0.33
LSBoost#2 Qivers Q> Sis Qriges» Season S scoan 3.32 2.55 0.79
LSBoost#3 Qivers Sits Soceans Qiidess Season oy 3.15 2.44 0.81
LSBoost#4 Qivers Quis Soceans Qiides» Season Sy 3.11 2.46 0.82
LSBoost#5 Qrivers it Siis Soceans Season Quiaer 2.99 2.33 0.83
LSBoost#6 (LSBoost-Season) Qrivers Quts Sits Soceans Quideys> Season - 2.80 2.15 0.85

rainfall scarcity can lead to an increase in evaporation and a decrease
in river runoff (Verri et al., 2024b), thus favoring the intrusion of
saltier seawater along rivers and shifting the river release toward higher
salinity levels (Bellafiore et al., 2021; Conroy et al., 2020). The third
most important feature was .S,,,,,. Thus, excluding it led to the second
worst performance (LSBoost#2), since it is fundamental in regulating
the dynamics of saltwater intrusion. Additionally, fluctuations in sub-
seasonal tidal cycles (i.e. the spring and neap tides) may play a key
role in the movement and mixing of water masses within estuaries. The
exclusion of Q;, S, and Q,;,,, appeared to provide very similar results,
as reported by LSBoost#3, LSBoost#4 and LSBoost#5. In summary,
as confirmed by LSBoost#6, the seasonal fluctuations in rainfall, river
flow, temperature and evapoconcentration processes as well as the
tidally driven patterns at daily to sub-seasonal scales, collectively shape
the dynamics of salt wedge intrusion in estuaries. Understanding these
seasonal variations holds immense importance in comprehending and
accurately predicting changes in salinity levels.

3.2.3. Deep learning algorithms for estuary salinity prediction

LSTM was used to establish the most effective forecasting schema
for predicting daily salinity (S,;) from 1-step ahead to 7-steps ahead.
Three distinct schemas were developed based on the employed features:
one using only S,; (LSTM-Sul), another using only Q,, ., (LSTM-Qriver),
and finally, a schema incorporating all the following features (LSTM-
AlD: Q,ipers Origers Quis Soceans @and Sy;. For each schema, the analysis
considered input time steps ranging from 1 (one day) to 7 (one week)
previous days to establish the number of preceding daily input steps
required for implementing 1-step ahead forecasting. After determining
the optimal number of previous input time steps for each schema,
the models and their best configurations are selected to evaluate their
performance for 7-step ahead forecasting.

The training and test performances are presented in Supplementary
Tables 8 and 9, and Supplementary Figures 2 and 7 for the 1-step ahead
models, across the three different schemas and seven distinct configu-
rations of input time steps. The test performances are summarized in

Fig. 7. The LSTM-Sul model demonstrates the best performance for a
1-step ahead prediction using three previous days as input (n;, = 3),
resulting in an RMSE of 2.67 psu, an MAE of 2.01 psu, and an R>
score of 0.87. At the same time, the LSTM-Qriver achieved the best
performance using four previous days as input (n;, = 4), resulting in
an RMSE of 3.07 psu, MAE of 2.31 psu, and an R? score of 0.83. The
LSTM-All model obtained the best performance using only one previous
day as input (n;, = 1), with an RMSE of 3.19 psu, an MAE of 2.39, and
an R? score of 0.82.

Three input time steps were therefore fixed (n;, = 3) for LSTM-Sul,
four input time steps (n;, = 4) for LSTM-Qriver, and one input time
step (n;, = 1) for LSTM-AIL Based on these configurations, three LSTM
models were selected to carry out 7-step ahead predictions of daily
salinity. Supplementary Table 10 presents the optimal hyperparameters
used to build the three LSTM models for 7-step ahead predictions.
The training performances are detailed in Supplementary Table 11.
The results on the test set are summarized in Fig. 8, Fig. 9, and
detailed in Supplementary Table 12, and Supplementary Figures 8-10.
As expected, all three LSTM models presented the same trend, showing
a decrease in model performance with each consecutive step ahead. In
terms of overall performance, all three models showed similar results.
However, LSTM-Qriver slightly outperformed the other models, with
an average RMSE of 4.19 psu, MAE of 3.11 psu, and an R* score of
0.69. Similarly, LSTM-AIl exhibited the second-best performance, with
an average RMSE of 4.25 psu, MAE of 3.27 psu, and an R? score of
0.68. LSTM-Sul demonstrated a slightly weaker performance, with an
average RMSE of 4.67 psu, MAE of 3.44 psu, and an R? score of 0.61.

For the 1-step ahead predictions, the best performances were
achieved by LSTM-Sul with an RMSE and MAE of 2.85 psu and 2.19
psu, respectively, along with an R? score of 0.86. It outperformed
both LSTM-Qriver and LSTM-All at the same step ahead. However,
for all subsequent steps ahead, LSTM-Sul performed worse than LSTM-
Qriver and LSTM-All, as indicated by its higher RMSE and MAE, and
lower R? scores. When comparing LSTM-Qriver and LSTM-All, the
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and (b)Mean Absolute Error (MAE) in psu, and (c) coefficient of determination (R?).

results showed no significant differences in terms of performance. They
exhibited very similar behaviors in predicting from 1-step ahead up to
5-steps ahead, with an average RMSE ranging from approximately 3
psu to 4.50 psu, an MAE ranging from 2.50 psu to 3.50 psu, and R?
scores ranging from approximately 0.85 to 0.60. Lastly, LSTM-Qriver
performed better for 6-steps ahead and 7-steps ahead, with the lowest
RMSE and MAE, and highest R? scores, compared to LSTM-AIL These
results are also confirmed in Fig. 9, which shows scatter diagrams of
the results obtained from 1-step ahead to 7-step ahead predictions. The
results, show that, in general, the LSTM-Qriver and LSTM-All models
exhibit the best performances. The best results were obtained in the 1-
step ahead prediction by LSTM-Sul, with an R? score higher than 0.85.
LSTM-Qriver and LSTM-AIl also performed well, with R? scores higher
than 0.60 for predictions from 2-steps ahead up to 5-steps ahead.

4. Discussion and conclusions

This study presents the design of a tool that predicts salinity levels
at the estuarine river mouth, employing ML and DL techniques. All the
ML algorithms demonstrated good predictive capabilities for estuarine
salinity, of which the best performance was shown by LSBoost. The
comprehensive statistical analysis, which was conducted to extract
information regarding yearly and seasonal salinity patterns, confirms
statistically significant differences between the salinity levels collected
in the four seasons, and highlights that the significantly highest salinity
levels were recorded in the summer. This is in line with other studies in
the literature and it is mainly due to the evapoconcentration processes
during the dry summer season, which has also been observed in other
coastal-lagoon low-inflow estuaries (Cardoso-Mohedano et al., 2018;
Nascimento et al., 2021; Mastrocicco et al., 2020). The results also
suggest including seasonal information among the variable inputs used

S, as input. Performance metrics consist of (a) Root Mean Square Error (RMSE)

to train ML models, which showed better performances than physics-
based and hybrid models. The most significant features, evaluated
by the LSBoost algorithm for salinity prediction, thus include river
flow and seasonal period, confirming results discussed in recent pa-
pers (Verri et al., 2024b; Bellafiore et al., 2021; Conroy et al., 2020).
Finally, the study moves from the idea of predicting salinity levels
without considering temporal dependencies in the data, to the concept
of salinity forecasting by using DL, which considers temporal dependen-
cies. LSTM models trained with different feature combinations showed
different performances, with the LSTM-Qriver model achieving the best
overall result, thus confirming the significant role that Q,;,,,. plays in
the salt wedge intrusion phenomenon. All LSTM models exhibited a
decrease in performance with an increase in the number of prediction
steps, indicating a greater difficulty in long-term prediction. The results
show that both ML and DL models can be used to improve estuarine
salinity predictions, providing crucial information for water resource
management and coastal ecosystem conservation.

There are numerous opportunities offered by ML and DL models
for predicting and forecasting salinity levels, albeit accompanied by
certain limitations. In fact, ML-based approaches have been shown to
be promising in recognizing complex patterns in data and offer high
flexibility, making them easily adaptable to different data types and
problem domains. They can scale efficiently to handle large datasets,
capture non-linear relationships between variables, and generalize well
to unseen data. In general, DL models are black box models because
of their lack both of transparency and explicit interpretability. On
the other hand, physics-based approaches rely on equations, laws and
principles that govern the behavior of physical systems, providing
a deep understanding of the underlying mechanisms. They can also
be easily interpretable and understood based on physical principles.
Physics-based models are generally based on certain assumptions and
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may fail to capture complex nonlinearities or unknown phenomena if
they are not explicitly included in the model. The physics-based model
considered as a baseline in this study suffers from a low generalization
ability and requires customization to specific study areas. Moreover,
it requires different equations, which can be challenging to learn due
to the limited number of observations. ML-based approaches offer a
solution by learning the mapping between variables and salinity values
directly, bypassing the need for intricate equations and potentially
improving prediction accuracy.

An important limitation of this type of study lies in the relatively
limited availability of data. In particular, this study relies on data
collected between 2016 and 2019 at the Po di Goro River mouth. In-
corporating a longer historical dataset to capture long-term trends and
rare events would be beneficial. Moreover, collecting and integrating
data from multiple estuaries with diverse characteristics would enhance
the models’ generalization, helping to develop models that are robust
across different environmental settings. In line with the suggestions
presented in the recent literature (Kratzert et al., 2024), the longer-
term strategic objective of the study is to build an artificial intelligence
system trained on a large number of basins in the Mediterranean
region and hopefully beyond. Further directions should involve the
development of specific strategies for handling missing values in input
data, which could be used to compensate for the scarcity of available
salinity data.

In addition, the spatial resolution of the Copernicus Marine Environ-
ment Monitoring Service (CMEMS) data, here used, is approximately
4.5 km. Utilizing higher spatial resolution datasets would better cap-
ture the fine-scale variations and high-frequency dynamics affecting
estuarine salinity.

The present study forecasts estuarine salinity levels up to seven
days beyond the input data and longer forecasting horizons were not
explored, which might be a future challenge.

Finally, the variables here considered can be further expanded to en-
compass a more detailed description of the environment. Integrating ex-
ternal factors related to anthropogenic influences and meteorological-
oceanographic features into the modeling framework to account for
their impact on estuarine salinity could present a significant opportu-
nity. For example, future plans will further develop EBM integrated

10

with ML and DL based strategies, including equations and/or algo-
rithms for estuarine nutrient budgets to support water quality assess-
ments near river mouths.

The operative purpose of our work is a preliminary investigation
and presentation of the landscape of ML and DL techniques on the Po
River. The aim of this paper is therefore to provide an initial overview
of the problem we are addressing, laying the groundwork for a broader
discussion in the hopefully not too distant future.

Computer Code Availability

Name of the code/library: CMCC-ML-Estuary-Salinity-Estimation

Contact: leonardo.saccotelli@cmcc.it

Year first available: 2024

Hardware requirements: Any Intel or AMD x86-64 processor with
two or more cores, RAM 8 GB (Minimum)

Program language: MATLAB, Python

Software required: MATLAB 2023b, Python 3.10.12, and Jupyter
Server

Program size: 145 MB

The source codes are available for downloading here:

https://github.com/CMCC-Foundation/CMCC-Hybrid-EstuaryBoxM
odel/tree/ML-EBM-PoGoro
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