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This work introduces a novel isogeometric method for addressing steady, saturated groundwater flow as a free-

boundary problem. The innovation lies in adopting a double spline parameterization technique for accurately 
representing both the porous medium and the fully saturated zone. To linearise the governing equation, we 
differentiate them with respect to the coefficients of the geometric parameterization. This process results in a 
quasi-Newton method. Several benchmark numerical tests demonstrate the applicability and effectiveness of the 
proposed technique.

1. Introduction

Isogeometric Analysis (IGA), firstly introduced in [6,13], is an evolution of classical finite element method (FEM). IGA uses splines, Non-Uniform 
Rational B-splines (NURBS), and other possible generalizations, both for the parameterization of the computational domain, as typically done in 
computer aided design (CAD), see [20], and for the representation of the unknown field of the differential problem of interest. One of the advantages 
of IGA is that, thanks to a possibly exact (or in any case highly accurate) representation of the computational domain, errors due to the approximation 
of the geometry can be eliminated (or significantly limited). IGA also benefits from the approximation properties of splines, whose high-continuity 
yields higher accuracy when compared to standard FEM, see [5,10].

In what follows, we are interested in devising a numerical method for the solution of a steady, saturated groundwater flow problem. Groundwater 
flow refers to the filtration of water beneath ground surface. This movement is influenced by various factors such as topography, geology, porosity 
and on the hydraulic conductivity 𝑲 , which is related to the properties of solid matrix (i.e., the permeability 𝜅) and of fluid phase (i.e., the 
kinematic viscosity 𝜈), see [3]. The study of groundwater flow is crucial in hydrogeology because it is involved in many important processes, such 
as erosion, stability of slopes, waterlogging, and the movement of contaminants through the ground. For these reasons, an accurate determination 
of groundwater flow is essential for designing structures and managing water resources. For a deeper description of the topic we refer to [2,12].

IGA has been already successfully applied to the study of groundwater flow. In particular, in [19,26,27] the authors present isogeometric methods 
for transient groundwater flow in unsaturated porous media, which means that voids may be filled by a mixture of two or more fluid phases. In 
this case, the balance equation for the mixture should be solved to obtain the flow field. Richards’ equation represents a simplified version of the 
balance equation that provides approximate description of the water seepage in the unsaturated zone, assuming negligible pressure gradients in the 
gas phase and nearly isothermal conditions, see [21]. In the analysis of some classes of free surface flow problems the interface may undergo large 
and rapid deformations causing fluid splitting/merging which require proper numerical schemes to be handled, see [22–24]. On the other hand, in 
the case of saturated porous media, topological changes such as fissuring and merger of the free surface do not play a role as the phreatic surface 
can be considered an impervious, sharp regular interface, the uppermost geometrical flow boundary, dividing a fully saturated from a fully dry 
zone. Once this assumption is made, the form of the equations can vary with respect to whether compressibility effects are considered or not, and 
with respect to the flow law used. For instance, when both solid matrix and water are assumed to be incompressible and the flow obeys Darcy’s 
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Fig. 1. Earth dam example.

Fig. 2. Example of parameterization for the wet region.

law, the steady-state flow of water for a homogeneous, isotropic and saturated soil is described by the well-known Laplace and Poisson equations 
in the absence or presence of sources and sinks, respectively. Along the phreatic surface that, according to this approach, constitutes a geometrical 
boundary of the flow domain, two boundary conditions have to be satisfied: the pressure head must be atmospheric and the velocity of the free 
surface must be equal to the discharge (or recharge) velocity of the fluid normal to the surface, divided by the effective porosity. The shape of the 
phreatic surface is itself an unknown of the problem, to be found during the solution. This class of problems, containing an unknown geometrical 
limit, constitute a distinct category of mathematical problems, known as free boundary problems. Numerical methods for free boundary problems, 
based on classical Finite Difference, Finite Volume, or Finite Element Methods, can be found in [1,4,9,11,14,17,29]. Isogeometric analysis of free 
boundary problems arising in groundwater flow has been considered in more recent works, such as [15,18,30,31].

In this work, we propose a new isogeometric method for the steady, saturated groundwater flow formulated as a free-boundary problem. The 
novelty of our approach is to exploit a double spline parameterization of the computational domain in order to exactly describe both the porous 
medium and the fully saturated zone. In particular, we first consider a spline parameterization of the whole porous medium. Then, we compose it 
with a spline map that describes the saturated portion of the physical domain. This second parameterization represents one of the unknowns of the 
problem, together with the water flux. Following shape calculus techniques, as described for example in [8,28], in order to linearize the governing 
equations with respect to the geometry, we differentiate them with respect to the coefficients of the parameterization, also known as control points, 
of the wet domain. In this way, we obtain a quasi-Newton method. Eventually, a set of numerical tests in 2D and 3D clearly shows the effectiveness 
of the proposed formulation.

The structure of the paper is as follows. Section 2 briefly introduces the differential free boundary problem, governing groundwater flow 
in saturated porous media, and its variational formulation. In Section 3 we recall fundamental concepts and notations related to B-splines and 
Isogeometric Analysis. Section 4 describes in details the isogeometric formulation of the problem and the derivation of the proposed method for 
solving it. In Section 5 the method is validated on several numerical benchmarks. Finally, some conclusions are outlined in Section 6.

2. Model problem

As a model problem, we consider the unconfined water flow with seepage through a porous medium, as depicted in Fig. 1. Given a domain 
𝐷 ⊂ ℝ𝑑 , 𝑑 = 2, 3, representing a porous portion of the ground, we assume that the wet part Ω ⊂ 𝐷 is parametrized by a function 𝑮 ∶ [0, 1]𝑑 → 𝐷, 
namely Ω = 𝑮(Ω̂), where we have defined Ω̂ ∶= [0, 1]𝑑 , see Fig. 2 for an example. The coordinates on Ω̂ are 𝜻 = (𝜁1, … , 𝜁𝑑 ) and those on 𝐷
are 𝒙 = (𝑥1, … , 𝑥𝑑 ). The function ℎ ∶ Ω→ℝ is the piezometric head, representing the fluid energy density, and satisfies the following system of 
equations, derived from the Darcy law and mass conservation,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div𝑲∇ℎ = 𝑓 on Ω

ℎ(𝒙) = 𝑥𝑑 on Γ𝐹

𝑲∇ℎ ⋅ 𝒏 = 𝒓 ⋅ 𝒏 on Γ𝐹

ℎ = 𝓁 on Γ𝐷

𝑲∇ℎ ⋅ 𝒏 = 0 on Γ𝑁

(2.1)

where

• 𝑲 ∈𝐿∞(𝐷, ℝ𝑑×𝑑 ) describes the hydraulic conductivity of the ground;

• 𝑓 ∈𝐿∞(𝐷) represents the water source;

• 𝒏 is the unit normal vector to 𝑮(𝜁1, … , 𝜁𝑑−1, 1);
• 𝒓 ∈𝐿∞(ℝ𝑑 , ℝ𝑑 ), also known as recharge, is the density of water flux accounting for the percolation of rain and evaporation;
105
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• 𝓁 is a prescribed water level in the reservoirs;

• Γ𝐷 is the part of the boundary in contact with reservoirs or rivers;

• Γ𝑁 is the impervious layer below the aquifer;

• Γ𝐹 ∶= {𝒙 =𝑮(𝜁1, … , 𝜁𝑑−1, 1) ∈ℝ𝑑} is the free boundary.

Remark 1. In order to allow for seepage, if 𝐿 ∶ Γ𝐷 → ℝ represents the piezometric head of the reservoirs in contact with Γ𝐷, then the prescribed 
water level 𝓁 should be

𝓁(𝒙) ∶= max{𝐿(𝒙), 𝑥𝑑}.

2.1. Variational formulation

A possible weak formulation for (2.1) reads as follows.

Find (𝑮, ℎ) ∈
(
[𝐻1(Ω̂)]𝑑 ,𝐻1(Ω)

)
such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

∇𝑣𝑲∇ℎ𝑇 = ∫
Ω

𝑓𝑣+ ∫
Γ𝐹

(𝒓 ⋅ 𝒏)𝑣, ∀𝑣 ∈𝐻1
0,Γ𝐷

(Ω)

∫
Γ𝐷

(ℎ− 𝓁)𝑤 = 0, ∀𝑤 ∈𝐿2(Γ𝐷)

∫
Γ𝐹

(ℎ− 𝑥𝑑 )𝜑 = 0, ∀𝜑 ∈𝐿2(Γ𝐹 )

(2.2)

Defining ̂ℎ = ℎ◦𝑮, 𝑤̂=𝑤◦𝑮, 𝑲̂ =𝑲◦𝑮, ̂𝒓 = 𝒓◦𝑮 and 𝓁 = 𝓁◦𝑮, we can pullback the equations on Ω̂ and obtain the following problem.

Find (𝑮, ̂ℎ) ∈
(
[𝐻1(Ω̂)]𝑑 ,𝐻1(Ω̂)

)
such that:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫̂
Ω

(∇𝑣)𝑱−1
𝐺
𝑲̂𝑱−𝑇

𝐺
∇ℎ̂𝑇 det 𝑱𝐺 = ∫̂

Ω

𝑓𝑣det 𝑱𝐺 + ∫̂
Γ𝐹

(̂𝒓 ⋅ 𝒏)𝑣det 𝑱 Γ̂𝐹
, ∀𝑣 ∈𝐻1

0,Γ̂𝐷

(Ω̂)

∫̂
Γ𝐷

(ℎ̂− 𝓁)𝑤̂det 𝑱 Γ̂𝐷
= 0, ∀𝑤̂ ∈𝐿2(Γ̂𝐷)

∫̂
Γ𝐹

(ℎ̂− 𝑥𝑑 )𝜑̂det 𝑱 Γ̂𝐹
= 0, ∀𝜑̂ ∈𝐿2(Γ̂𝐹 )

(2.3)

where

• Γ̂𝐷 ∶=𝑮−1(Γ𝐷) are the lateral boundary of the parametric domain;

• Γ̂𝐹 ∶=𝑮−1(Γ𝐹 ) is the top boundary of the parametric domain;

• 𝑱𝐺 is the Jacobian matrix of 𝑮;

• 𝑱 Γ̂𝐷
is the surface Jacobian matrix of 𝑮 on Γ̂𝐷 ;

• 𝑱 Γ̂𝐹
is the surface Jacobian matrix of 𝑮 on Γ̂𝐹 .

3. Preliminaries on isogeometric analysis

3.1. B-splines

Given two positive integers 𝑝 and 𝑚, consider an open knot vector Ξ ∶= {𝜉1, … , 𝜉𝑚+𝑝+1} such that

𝜉1 =…= 𝜉𝑝+1 < 𝜉𝑝+2 ≤… ≤ 𝜉𝑚 < 𝜉𝑚+1 =…= 𝜉𝑚+𝑝+1,

where interior repeated knots are allowed with maximum multiplicity 𝑝. Without loss of generality, we assume 𝜉1 = 0 and 𝜉𝑚+𝑝+1 = 1. From the knot 
vector Ξ, B-spline functions of degree 𝑝 are defined following the well-known Cox-De Boor recursive formula: we start with piecewise constants 
(𝑝 = 0):

𝑏̂𝑖,0(𝜁) =
{

1 if 𝜉𝑖 ≤ 𝜁 < 𝜉𝑖+1,
0 otherwise,

and for 𝑝 ≥ 1 the B-spline functions are defined by the recursion

𝑏̂𝑖,𝑝(𝜁) =
𝜁 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
𝑏̂𝑖,𝑝−1(𝜁) +

𝜉𝑖+𝑝+1 − 𝜁

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑏̂𝑖+1,𝑝−1(𝜁),

where 0∕0 = 0. The univariate spline space is defined as

̂𝜏 = ̂𝜏 ([0,1]) ∶= span{𝑏̂𝑖,𝑝}𝑚 ,

𝑖=1
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Fig. 3. Scheme of the double parametrization.

where 𝜏 denotes the maximal mesh-size, that is

𝜏 ∶= max
1≤𝑖≤𝑚+𝑝+1

{|𝜉𝑘,𝑖+1 − 𝜉𝑘,𝑖|}.
For brevity, the degree 𝑝 is not always reported in the notation. For more details of B-splines properties see [6,7].

Multivariate B-splines are defined from univariate B-splines by tensorization. Let 𝑑 be the space dimension, we consider 𝑑 open knot vectors 
Ξ𝑘 = {𝜉𝑘,1,… , 𝜉𝑘,𝑚𝑘+𝑝𝑘+1}, for 𝑘 = 1, … , 𝑑, and a set of multi-indices 𝐈 ∶= {𝐢 = (𝑖1,… , 𝑖𝑑 ) ∶ 1 ≤ 𝑖𝑘 ≤𝑚𝑘}. For each multi-index 𝐢 = (𝑖1, … , 𝑖𝑑 ), we 
introduce the 𝑑-variate B-spline,

𝐵𝐢(𝜁) ∶= 𝑏̂[Ξ𝑖1 ,𝑝1
](𝜁1)… 𝑏̂[Ξ𝑖𝑑 ,𝑝𝑑

](𝜁𝑑 ).

The corresponding spline space is defined as

̂𝜏 = ̂𝜏 ([0,1]𝑑 ) ∶= span
{
𝐵𝐢 ∶ 𝐢 ∈ 𝐈

}
,

where 𝜏 is the maximal mesh-size in all knot vectors.

3.2. Isogeometric spaces

Let us consider a single patch domain Ω ⊂ℝ𝑑 , given by a 𝑑-dimensional spline parameterization 𝑮, that is

Ω=𝑮(Ω̂), with 𝑮(𝜻) =
∑
𝐢
𝑪 𝐢𝐵𝐢(𝜻),

where 𝑪 𝐢 are the control points and 𝐵𝐢 are tensor-product B-spline basis functions defined on the parametric patch Ω̂ ∶= (0, 1)𝑑 . Following the 
isoparametric paradigm, the isogeometric basis functions 𝐵𝐢 are defined as 𝐵𝐢 =𝐵𝐢◦𝑮

−1. Thus, the isogeometric space on Ω is defined as

𝜏 = 𝜏 (Ω) ∶= span
{
𝐵𝐢 ∶=𝐵𝐢◦𝑮

−1 ∶ 𝐢 ∈ 𝐈
}

.

By introducing a co-lexicographical reordering of the basis functions, with a minor abuse of notation we will also write in what follows

𝜏 = span
{
𝐵𝐢 ∶ 𝐢 ∈ 𝐈

}
= span

{
𝐵𝑖

}𝑁dof

𝑖=1 .

4. Discrete formulation

Assume that the terrain 𝐷 is described by a parametrization 𝑮2 ∶ [0, 1]𝑑 → ℝ𝑑 that is either provided by CAD or obtained by approximating 
measured terrain data. To obtain an isogeometric discretization of (2.2), we look for a parametrization 𝑮 of the wet domain having the form 
𝑮 =𝑮2◦𝑮1. Here, 𝑮2 ∶ Ω̂→ 𝐷 is the fixed parametrization of the physical domain 𝐷, while 𝑮1 ∶ Ω̂→ Ω̂ is an unknown map that parametrizes a 
subset of Ω̂. In this way, 𝑮1(Ω̂) turns out to be the preimage under 𝑮2 of the wet portion of 𝐷, as shown in Fig. 3.

Further we take 𝑮1 to preserve the first 𝑑 − 1 components (Fig. 4) so that the preimage under 𝑮2 of the phreatic surface Γ𝐹 is the graph of a 
function, that is: there exists a continuous function 𝜑 ∶ [0, 1]𝑑−1 → (0, 1] such that

𝑮−1
2 (Γ𝐹 ) =𝑮1([0,1]𝑑−1 × {1}) =

{
(𝜻 , 𝜑(𝜻)) ∶ 𝜻 ∈ [0,1]𝑑−1

}
.

More precisely, we consider 𝑮1 ∈ 𝜏𝑔
, where 𝜏𝑔

is defined as follows:

𝜏𝑔
∶=

⎧⎪⎨⎪⎩(𝜁1,… , 𝜁𝑑 )⟼
⎛⎜⎜⎝𝜁1,… , 𝜁𝑑−1, 𝜁𝑑

𝑁𝑔∑
𝑖=1

𝛼𝑖𝐵
𝑔
𝑖
(𝜁1,… , 𝜁𝑑−1)

⎞⎟⎟⎠ ∶ 𝜶 ∈ℝ𝑁𝑔 ,𝐵
𝑔
𝑖
∈ 𝑝

𝜏𝑔
([0,1]𝑑−1)

⎫⎪⎬⎪⎭ ,

for some spline space 𝑝
𝜏𝑔
([0, 1]𝑑−1). By considering another spline space for the piezometric head ℎ, namely

𝜏 ∶= 𝑝
𝜏 ([0,1]𝑑 ) = span

{
𝐵ℎ

𝑖 | 𝑖 = 1,… ,𝑁ℎ

}
,

ℎ ℎ
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Fig. 4. Example of parametrization of the wet region with 𝑝 = 3. Red circles represent the control points of 𝑮1.

a discrete version of the weak formulation (2.3) can be expressed as follows.

Find (𝑮1, ̂ℎ𝜏 ) ∈
(𝜏𝑔

,𝜏ℎ

)
such that:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫̂
Ω

(∇𝑣)𝑱−1
𝐺
𝑲̂𝑱−𝑇

𝐺
∇ℎ̂𝑇

𝜏 det 𝑱𝐺 = ∫̂
Ω

𝑓𝑣det 𝑱𝐺 + ∫̂
Γ𝐹

(̂𝒓 ⋅ 𝒏)𝑣det 𝑱 Γ̂𝐹
, ∀𝑣 ∈ 𝜏ℎ

∩𝐻1
0,Γ̂𝐷

(Ω̂)

∫̂
Γ𝐷

(ℎ̂𝜏 − 𝓁)𝑤̂det 𝑱 Γ̂𝐷
= 0, ∀𝑤̂ ∈ 𝑝

𝜏ℎ
(Γ̂𝐷)

∫̂
Γ𝐹

(ℎ̂𝜏 − 𝑥𝑑 )𝜑̂det 𝑱 Γ̂𝐹
= 0, ∀𝜑̂ ∈ 𝑝

𝜏𝑔
(Γ̂𝐹 ).

(4.1)

It’s important to note that the third equation in (4.1) also depends on the derivative of the pullback of the Lebesgue measure on the physical domain 
det 𝑱 Γ̂𝐹

. Minimizing the error on this equation can lead to paradoxical results where the error is minimized by reducing volumes or surface areas. 
For this reason, since det 𝑱 Γ̂𝐹

> 0, we can neglect it and obtain the following alternative formulation.

Find (𝑮1, ̂ℎ𝜏 ) ∈
(𝜏𝑔

,𝜏ℎ

)
such that:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫̂
Ω

(∇𝑣)𝑱−1
𝐺
𝑲̂𝑱−𝑇

𝐺
∇ℎ̂𝑇

𝜏 det 𝑱𝐺 = ∫̂
Ω

𝑓𝑣det 𝑱𝐺 + ∫̂
Γ𝐹

(̂𝒓 ⋅ 𝒏)𝑣det 𝑱 Γ̂𝐹
, ∀𝑣 ∈ 𝜏ℎ

∩𝐻1
0,Γ̂𝐷

(Ω̂)

∫̂
Γ𝐷

(ℎ̂𝜏 − 𝓁)𝑤̂det 𝑱 Γ̂𝐷
= 0, ∀𝑤̂ ∈ 𝑝

𝜏ℎ
(Γ̂𝐷)

∫̂
Γ𝐹

(ℎ̂𝜏 − 𝑥𝑑 )𝜑̂ = 0, ∀𝜑̂ ∈ 𝑝
𝜏𝑔
(Γ̂𝐹 ).

(4.2)

Remark 2. This choice of the discretization restricts our analysis to those wet regions 𝑮(Ω̂) that are homeomorphic to Ω̂. This implies that, for 
example, no internal dry regions are allowed.

4.1. Quasi-Newton method

In order to illustrate a numerical method for solving (4.2), let us define

𝑭 =
(
𝑭 1,𝑭 2,𝑭 3

)
∶
(𝜏𝑔

×𝜏ℎ

)
→ℝ𝑁𝑔+𝑁ℎ ,

with

𝑭 1,𝑖(𝜶, ℎ̂𝜏 ) ∶= ∫̂
Ω

(∇𝐵ℎ
𝑖 )𝑱

−1
𝐺
𝑲̂𝑱−𝑇

𝐺
∇ℎ̂𝑇

𝜏 det 𝑱𝐺 − ∫̂
Ω

𝑓𝐵ℎ
𝑖 det 𝑱𝐺 + ∫̂

Γ𝐹

(̂𝒓 ⋅ 𝒏)𝐵ℎ
𝑖 det 𝑱 Γ̂𝐹

,

𝑭 2,𝑗 (𝜶, ℎ̂𝜏 ) ∶= ∫̂
Γ𝐷

(ℎ̂𝜏 − 𝓁)𝐵ℎ
𝑗 det 𝑱 Γ̂𝐷

,

𝑭 3,𝑘(𝜶, ℎ̂𝜏 ) ∶= ∫̂
Γ𝐹

(ℎ̂𝜏 − 𝑥𝑑 )𝐵
𝑔
𝑘
,

where the dependence on 𝜶 arises from the presence of the Jacobian matrix 𝑱𝐺 and the composition of 𝑲 , 𝑓 , 𝒓, 𝒏, 𝓁, 𝑥𝑑 with 𝑮.

Solving (4.2) is equivalent to solve

𝑭 (𝜶, ℎ̂𝜏 ) = 𝟎. (4.3)

Since the dependence of 𝑭 on 𝛼𝑖 is non-linear, we propose a quasi-Newton method for solving (4.3). A step of Newton method for 𝑭 = 𝟎 starting 
from (𝜶(0), ̂ℎ(0)

𝜏 ) is
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(𝜶(𝑖+1), ℎ̂(𝑖+1)
𝜏 ) = (𝜶(𝑖), ℎ̂(𝑖)

𝜏 ) − ∇𝑭 (𝜶(𝑖), ℎ̂(𝑖)
𝜏 )−1𝑭 (𝜶(𝑖), ℎ̂(𝑖)

𝜏 ). (4.4)

The computation of ∇𝑭 is computationally expensive and it can be avoided by using a quasi-Newton scheme. Indeed, for a fixed 𝜶, equation (4.3)

is linear with respect to ̂ℎ𝜏 and it reads: find ̂ℎ𝜏 ∈ 𝜏 such that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫̂
Ω

(∇𝑣)𝑱−1
𝐺
𝑲̂𝑱−𝑇

𝐺
∇ℎ̂𝑇

𝜏 det 𝑱𝐺 = ∫̂
Ω

𝑓𝑣det 𝑱𝐺 + ∫̂
Γ𝐹

(̂𝒓 ⋅ 𝒏)𝑣det 𝑱 Γ̂𝐹
, ∀𝑣 ∈ 𝜏ℎ

∩𝐻1
0,Γ̂𝐷

(Ω̂)

∫̂
Γ𝐷

(ℎ̂𝜏 − 𝓁)𝑤̂det 𝑱 Γ̂𝐷
= 0, ∀𝑤̂ ∈ 𝑝

𝜏ℎ
(Γ̂𝐷).

(4.5)

This suggests to restrict the problem on the parametric space 𝜏𝑔
×𝜏ℎ

to the manifold

 ∶= {(ℎ̂𝜏 ,𝜶) ∈ 𝜏𝑔
×𝜏ℎ

∶ ℎ̂𝜏 solves (4.5)}.

Starting from a point in (𝜶(𝑖), ̂ℎ(𝑖)
𝜏 ) ∈ the quasi-Newton step is defined as solving

𝜶(𝑖+1) = 𝜶(𝑖) − ∇𝜶𝑭 3(𝜶(𝑖), ℎ̂(𝑖)
𝜏 )−1𝑭 3(𝜶(𝑖), ℎ̂(𝑖)

𝜏 )

and then obtaining a point in  by solving (4.5) with 𝑮(𝑖+1) to obtain ℎ̂(𝑖+1)
𝜏 . The stopping criterion we propose is based on the 𝐿∞-norm of the 

Newton method step for 𝑭 3. The proposed quasi-Newton method for solving (4.3) can be summarized as in Algorithm 1.

Algorithm 1 Quasi-Newton method.

Choose an initial guess 𝜶(0) and a tolerance 𝜖
repeat

Given 𝜶(𝑛) , find ̂ℎ(𝑛)
𝜏

such that 
(
𝑭 1(𝜶(𝑛), ℎ̂(𝑛)

𝜏
),𝑭 2(𝜶(𝑛), ℎ̂(𝑛)

𝜏
)
)
= 𝟎

Compute 𝜶(𝑛+1) as

𝜶(𝑛+1) = 𝜶(𝑛) − ∇𝜶𝑭 3(𝜶(𝑛), ℎ̂(𝑛)
𝜏
)−1𝑭 3(𝜶(𝑛), ℎ̂(𝑛)

𝜏
)

until ‖∇𝜶𝑭 3(𝜶(𝑛+1), ̂ℎ(𝑛+1)
𝜏

)−1𝑭 3(𝜶(𝑛+1), ̂ℎ(𝑛+1)
𝜏

)‖∞ ≤ 𝜖

Denoting 𝑥𝑑 (𝜻) = (𝑥𝑑◦𝐺)(𝜻), it follows that

𝜕𝜶𝑚
𝑥𝑑 =∇𝑥𝑑∇𝑮2𝜕𝜶𝑚

𝑮1(𝜻)

= 𝒆𝑇
𝑑
∇𝑮2 ⋅

(
𝟎,𝜻𝑑𝐵

𝑔
𝑚(𝜻1,… ,𝜻𝑑−1)

)𝑇

= 𝒆𝑇
𝑑
∇𝑮2𝒆𝑑𝜻𝑑𝐵

𝑔
𝑚(𝜻1,… ,𝜻𝑑−1).

Keeping that in mind, we observe that ∇𝜶𝑭 3 is a weighted mass matrix defined on 𝑝
𝜏𝑔
([0, 1]𝑑−1). In fact, it holds:

𝜕𝜶𝑚
𝑭 3,𝑘(𝜶, 𝑦) = 𝜕𝜶𝑚 ∫̂

Γ𝐹

(𝑦− 𝑥𝑑 )𝐵
𝑔
𝑘
= ∫̂
Γ𝐹

−𝜕𝜶𝑚
(𝑥𝑑 )𝐵

𝑔
𝑘
= ∫̂
Γ𝐹

−𝒆𝑇
𝑑
∇𝑮2𝒆𝑑𝐵

𝑔
𝑚𝐵

𝑔
𝑘
.

The iteration described above does not work in general. To understand why it is instructive to consider the simplified case when 𝑮2 is the 
identity and the last component of 𝑮1(⋅, 1) is in the same spline space as ℎ̂𝜏 |Γ̂𝐹

. In this case the update of 𝑮1 equals (ℎ̂𝜏 − 𝑥𝑑 )|Γ̂𝐹
and, since the 

restriction (ℎ̂𝜏 − 𝑥𝑑 )|𝜕Γ̂𝐹
vanishes because of the Dirichlet conditions, the value of 𝑮1 on 𝜕Γ̂𝐹 is fixed at the first iteration. That is: it is impossible 

to deduce information about the real solution where wrong information has been forced at the current step.

The problem can be solved in different ways. An approach is to change the geometry update for the degrees of freedom that do not vanish on 
𝜕Γ̂𝐹 . This is done in [15] where the ‘locking” effect is avoided by updating 𝑮1 on 𝜕Γ̂𝐹 based on the normal flow condition on the free boundary.

Here we choose a different solution: the space 𝑝
𝜏ℎ

in the neighborhood of 𝜕Γ̂𝐹 is enriched by 𝜏-refinement so that the weighted 𝐿2-projection 
is not exact close to 𝜕Γ̂𝐹 . This approach is justified by the fact that the solution ℎ̂|Γ̂𝐹

on an inexact geometry behaves as fractional power of the 
distance from 𝜕Γ̂𝐹 . By increasing the resolution for ℎ the projection will then average ℎ and move 𝜕Γ𝐹 in the right direction.

In order to speed up the convergence of Algorithm 1, we propose a progressive refinement of the spline spaces 𝑝
𝜏𝑔

and 𝑝
𝜏ℎ

, until we reach a 
desired value for the mesh size 𝜏min. The accelerated version of the algorithm is summarized in Algorithm 2.

Remark 3. The computational efficiency of both Algorithms 1 and 2 can be significantly enhanced through the utilization of appropriate, efficient 
solvers, based on preconditioned version of Conjugate Gradient Method or other Krylov subspace methods. Specifically, the determination of ℎ̂(𝑛)

𝜏 , 
which involves the solution of the Laplace boundary value problem (4.5), can be substantially expedited by leveraging the preconditioners outlined 
in [25]. For what concerns the computation of the geometry update 𝜶(𝑛+1), the linear system associated to the weighted isogeometric mass matrix 
∇𝜶𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ) can be preconditioned following the methodology delineated in [16]. Finally, for reducing the computational cost required for 
assembling the matrix ∇𝜶𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ), one can rely on Broyden or Anderson accelerations.
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Algorithm 2 Accelerated Quasi-Newton method.

Choose initial spline spaces 𝑝
𝜏𝑔

, 𝑝
𝜏ℎ

, an initial guess 𝜶(0) and a target mesh-size 𝜏min
repeat

repeat

Given 𝜶(𝑛) , find ̂ℎ(𝑛)
𝜏

such that 
(
𝑭 1(𝜶(𝑛), ℎ̂(𝑛)

𝜏
),𝑭 2(𝜶(𝑛), ℎ̂(𝑛)

𝜏
)
)
= 𝟎

Compute 𝜶(𝑛+1) as

𝜶(𝑛+1) = 𝜶(𝑛) − ∇𝜶𝑭 3(𝜶(𝑛), ℎ̂(𝑛)
𝜏
)−1𝑭 3(𝜶(𝑛), ℎ̂(𝑛)

𝜏
)

until ‖∇𝜶𝑭 3(𝜶(𝑛+1), ̂ℎ(𝑛+1)
𝜏

)−1𝑭 3(𝜶(𝑛+1), ̂ℎ(𝑛+1)
𝜏

)‖∞ ≤ 𝜏
𝑝+1
𝑔

Refine 𝑝
𝜏𝑔

and 𝑝
𝜏ℎ

until 𝜏𝑔 ≤ 𝜏min

Fig. 5. Homogeneous rectangular dam.

Table 1

Number of required iterations and errors on the boundary conditions for the homogeneous 
rectangular dam.

𝜏𝑔 = 2−1 𝜏𝑔 = 2−2 𝜏𝑔 = 2−3 𝜏𝑔 = 2−4 𝜏𝑔 = 2−5 𝜏𝑔 = 2−6

𝑁iter 3 5 2 3 8 8‖𝐾∇ℎ ⋅ 𝒏‖𝐿2 (Γ𝐹 ) 2.34 6.00 ⋅ 10−2 2.80 ⋅ 10−2 2.55 ⋅ 10−2 3.99 ⋅ 10−3 1.11 ⋅ 10−3‖ℎ− 𝑥𝑑‖𝐿∞(Γ𝐹 ) 1.31 1.26 ⋅ 10−1 6.54 ⋅ 10−2 2.33 ⋅ 10−2 6.64 ⋅ 10−3 1.71 ⋅ 10−3

5. Numerical results

In this section, we present a comprehensive analysis that demonstrates the accuracy and reliability of our proposed method in effectively handling 
various unconfined water flow problems, including both two-dimensional and three-dimensional cases. At this stage of investigation we disregard 
those aspects related to slope stability. To simplify our tests, we consider no recharge by setting 𝒓= 𝟎, we set the base of the dam as the impervious 
boundary Γ𝑁 and we only consider isotropic hydraulic conductivity 𝑲 =𝐾𝕀, where 𝐾 ∈𝐿∞(𝐷, ℝ) and 𝕀 ∈ℝ𝑑×𝑑 denotes the identity matrix.

Throughout our experiments, we employ 𝐶1-continuous quadratic splines and report the errors in the 𝐿2-norm and 𝐿∞-norm, respectively, for 
the Neumann and Dirichlet boundary conditions on Γ𝐹 at the final iteration of each refinement step.

For bi-dimensional problems, we provide visualizations of the piezometric head and the flux in the wet region, obtained at the final iteration of 
each refinement step. On the other hand, for the three-dimensional examples, we present the phreatic surface achieved at the final iteration of each 
refinement step. Furthermore, for the finest solution, we showcase the piezometric head and the flux in selected bi-dimensional sections of the wet 
region.

5.1. 2D homogeneous rectangular dam

As a first example, we examine the same two-dimensional rectangular dam considered in [15], see Fig. 5. To replicate the exact solution reported 
in [15], we utilize a homogeneous hydraulic conductivity parameter 𝐾 = 1 and apply water level conditions of 𝓁 = 10 on the left vertical side 
and 𝓁 = 2 on the right vertical side. The convergence of the wet region can be observed in Fig. 6 where it becomes evident that the wet region 
reaches stability rapidly as we refine the spline spaces. Additionally, Table 1 showcases the reduction in errors for both the Neumann and Dirichlet 
boundary conditions as we reduce the mesh size. This analysis demonstrates that our model’s behavior aligns with the findings of [15] and validates 
the accuracy of our approach in solving the problem at hand. Finally, in Fig. 7 we report the convergence history of the 𝐿∞-norm of the residual 
𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ).
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Fig. 6. Piezometric head and flux for the homogeneous rectangular dam at the final iteration for each mesh-size 𝜏𝑔 .

Fig. 7. 𝐿∞-norm of the residual plotted against the iterations for the homogeneous rectangular dam.

Table 2

Number of required iterations and errors on the boundary conditions for the homogeneous trape-

zoidal dam.

𝜏𝑔 = 2−1 𝜏𝑔 = 2−2 𝜏𝑔 = 2−3 𝜏𝑔 = 2−4 𝜏𝑔 = 2−5 𝜏𝑔 = 2−6

𝑁iter 2 4 5 8 9 9‖𝐾∇ℎ ⋅ 𝒏‖𝐿2 (Γ𝐹 ) 6.25 ⋅ 10−1 5.24 ⋅ 10−2 4.26 ⋅ 10−3 2.40 ⋅ 10−4 5.80 ⋅ 10−4 6.35 ⋅ 10−4‖ℎ− 𝑥𝑑‖𝐿∞(Γ𝐹 ) 3.89 ⋅ 10−1 1.72 ⋅ 10−1 5.65 ⋅ 10−2 1.36 ⋅ 10−2 3.58 ⋅ 10−3 8.29 ⋅ 10−4

5.2. 2D homogeneous trapezoidal dam

The second example focuses on the same two-dimensional trapezoidal dam examined in [15], see Fig. 8. Also in this case, to reproduce the exact 
solution reported in [15], we use a homogeneous hydraulic conductivity parameter of 𝐾 = 1 and impose water level conditions of 𝓁 = 5 on the left 
vertical side and 𝓁 = 1 on the right vertical side. Similarly to the previous example, the wet region rapidly converges to a solution comparable to 
the one obtained in [15], see Fig. 9. Moreover, in Table 2 we observe that the finest solution achieves very small errors. Finally, in Fig. 10 we report 
the convergence history of the 𝐿∞-norm of the residual 𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ).
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Fig. 8. Homogeneous trapezoidal dam.

Fig. 9. Piezometric head and flux for the trapezoidal dam at the final iteration for each mesh-size 𝜏𝑔 .

Fig. 10. 𝐿∞-norm of the residual plotted against the iterations for the homogeneous trapezoidal dam.

5.3. 2D non homogeneous rectangular dam

The last two-dimensional example addresses the same problem of non-homogeneous hydraulic conductivity as considered in [4], see Fig. 11. 
Specifically, we set
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Fig. 11. Non-homogeneous rectangular dam.

Fig. 12. Piezometric head and flux for the non-homogeneous rectangular dam at the final iteration for each mesh-size 𝜏𝑔 .

Table 3

Number of required iterations and errors on the boundary conditions for the non-homogeneous 
rectangular dam.

𝜏𝑔 = 2−1 𝜏𝑔 = 2−2 𝜏𝑔 = 2−3 𝜏𝑔 = 2−4 𝜏𝑔 = 2−5 𝜏𝑔 = 2−6

𝑁iter 1 2 6 8 16 22‖𝐾∇ℎ ⋅ 𝒏‖𝐿2 (Γ𝐹 ) 3.41 ⋅ 101 2.89 1.45 3.85 ⋅ 10−1 1.64 ⋅ 10−1 5.27 ⋅ 10−2‖ℎ− 𝑥𝑑‖𝐿∞(Γ𝐹 ) 1.85 ⋅ 10−1 3.38 ⋅ 10−1 6.08 ⋅ 10−2 1.70 ⋅ 10−2 4.40 ⋅ 10−3 1.66 ⋅ 10−3

𝐾(𝑥1, 𝑥2) =

{
𝐾1 = 1, for 𝑥1 ∈ [0, 52 ),
𝐾2 = 10, for 𝑥1 ∈ [ 52 ,5],

and impose water level conditions of 𝓁 = 10 on the left vertical side and 𝓁 = 2 on the right vertical side. Although this example required slightly 
more iterations than the one presented in Section 5.1, Fig. 12 illustrates that our method produces a solution almost identical to the one shown 
in [4]. This is further supported by the low errors reported in Table 3. Finally, in Fig. 13 we report the convergence history of the 𝐿∞-norm of the 
residual 𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ).
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Fig. 13. 𝐿∞-norm of the residual plotted against the iterations for the non-homogeneous rectangular dam.

Fig. 14. Non-homogeneous rectangular cuboid shaped dam.

5.4. 3D dam with discontinuous hydraulic conductivity

As an example of a three-dimensional problem, we consider a rectangular cuboid, as shown in Fig. 14, with non-homogeneous hydraulic 
conductivity. Specifically, to align with the same framework used in [4], we set

𝐾(𝑥1, 𝑥2, 𝑥3) =

{
𝐾1 = 1, for 𝑥1 ∈ [0, 72 ] ∪ [ 252 ,16], 𝑥2 ∈ [8,16],
𝐾2 = 10, otherwise.

The imposed water levels are 𝓁 = 24 on the vertical side 𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ℝ3 ∶ 𝑥1 = 0 and 𝓁 = 16 on the opposite side 𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ℝ3 ∶ 𝑥1 = 16. 
The phreatic surface depicted in Fig. 15 bears a striking resemblance to the one presented in [4]. Additionally, Table 4 exhibits errors that steadily 
decrease as we refine the spline spaces. The favorable behavior of our method is also evident in Figs. 17 and 18, where we have depicted the 
piezometric head and the flux for several sections of the wet region. Finally, in Fig. 16 we report the convergence history of the 𝐿∞-norm of the 
residual 𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ).

5.5. 3D homogeneous NURBS parametrized dam

Finally, let us consider the last example, which involves a NURBS-parametrized three-dimensional dam with homogeneous hydraulic conductiv-

ity, as illustrated in Fig. 19. For this scenario, we impose specific water level conditions of 𝓁 = 1.9 on the external arched lateral side and 𝓁 = 0.5 on 
the internal one. Although we lack a reference solution for comparison, the remarkably small errors reported in Table 5, along with the well-defined 
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Fig. 15. Phreatic surface for the rectangular cuboid shaped dam at the final iteration for each mesh-size 𝜏𝑔 .

Table 4

Number of required iterations and errors on the boundary conditions for the non-homogeneous 
rectangular cuboid shaped dam.

𝜏𝑔 = 2−1 𝜏𝑔 = 2−2 𝜏𝑔 = 2−3 𝜏𝑔 = 2−4 𝜏𝑔 = 2−5 𝜏𝑔 = 2−6

𝑁iter 1 1 2 8 8 8‖𝐾∇ℎ ⋅ 𝒏‖𝐿2 (Γ𝐹 ) 1.33 ⋅ 102 8.06 ⋅ 101 7.95 ⋅ 101 1.06 ⋅ 101 1.24 ⋅ 10−1 9.32 ⋅ 10−2‖ℎ− 𝑥𝑑‖𝐿∞(Γ𝐹 ) 4.52 ⋅ 10−1 4.07 ⋅ 10−1 3.61 ⋅ 10−1 7.77 ⋅ 10−2 2.81 ⋅ 10−2 2.66 ⋅ 10−3

Fig. 16. 𝐿∞-norm of the residual plotted against the iterations for the non-homogeneous rectangular cuboid shaped dam.

phreatic surface shown in Fig. 20, and the piezometric head and flux depicted in Fig. 22, all provide compelling evidence that our method yields a 
physically consistent solution. Finally, in Fig. 21 we report the convergence history of the 𝐿∞-norm of the residual 𝑭 3(𝜶(𝑛), ̂ℎ(𝑛)

𝜏 ).

6. Conclusions

In this work we have introduced a shape optimization based isogeometric method for the determination of the steady groundwater flow in satu-

rated porous media. The applicability and effectiveness of the proposed method are demonstrated through several benchmark problems, including 
highly non-homogeneous hydraulic conductivity. For both the 2D and 3D cases, our quasi-Newton iterations produce solution comparable to those 
in the literature. Finally, for what concern the computational cost, we underline that the algorithm proposed can be performed efficiently exploiting 
suitable linear solvers specifically designed for isogeometric analysis.
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Fig. 17. Piezometric head and flux for the rectangular cuboid shaped dam at different domain sections for the final iteration on the finest discretization.

Fig. 18. Piezometric head and flux at the base of the dam (left) and on the phreatic surface (right) for the rectangular cuboid shaped dam for the final iteration on 
the finest discretization.

Table 5

Number of required iterations and errors on the boundary conditions for the homogeneous 
NURBS parametrized dam.

𝜏𝑔 = 2−1 𝜏𝑔 = 2−2 𝜏𝑔 = 2−3 𝜏𝑔 = 2−4 𝜏𝑔 = 2−5 𝜏𝑔 = 2−6

𝑁iter 2 4 3 9 11 15‖𝐾∇ℎ ⋅ 𝒏‖𝐿2 (Γ𝐹 ) 1.20 5.99 ⋅ 10−2 1.43 ⋅ 10−2 1.23 ⋅ 10−3 2.87 ⋅ 10−4 7.69 ⋅ 10−5‖ℎ− 𝑥𝑑‖𝐿∞(Γ𝐹 ) 2.53 ⋅ 10−1 1.25 ⋅ 10−1 3.21 ⋅ 10−2 7.59 ⋅ 10−3 2.02 ⋅ 10−3 6.45 ⋅ 10−4

Data availability

No data was used for the research described in the article.
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Fig. 19. Homogeneous NURBS parametrized dam.

Fig. 20. Phreatic surface for the NURBS dam at the final iteration for each mesh-size 𝜏𝑔 .
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Fig. 21. 𝐿∞-norm of the residual plotted against the iterations for the homogeneous NURBS parametrized dam.

Fig. 22. Piezometric head and flux for the NURBS dam at different sections of the wet region (depicted with red dashed lines in Fig. 19) for the final iteration on 
the finest discretization.
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