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Abstract

We introduce a new variant of Nodal Virtual Element spaces that mimics the
“Serendipity Finite Element Methods” (whose most popular example is the 8-
node quadrilateral) and allows to reduce (often in a significant way) the number
of internal degrees of freedom. When applied to the faces of a three-dimensional
decomposition, this allows a reduction in the number of face degrees of free-
dom: an improvement that cannot be achieved by a simple static condensation.
On triangular and tetrahedral decompositions the new elements (contrary to
the original VEMs) reduce exactly to the classical Lagrange FEM. On quadri-
laterals and hexahedra the new elements are quite similar (and have the same
amount of degrees of freedom) to the Serendipity Finite Elements, but are much
more robust with respect to element distortions. On more general polytopes the
Serendipity VEMs are the natural (and simple) generalization of the simplicial
case.

1. Introduction

The original Virtual Element Methods, as introduced in [6], show a surpris-
ing robustness with respect to the variety of shapes allowed for the geometry
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of elements, and compared to Finite Elements allow a much easier construction
of C1 elements (and actually also C2 or more). These aspects raised the inter-
est of several groups working on various applications (as for instance topology
optimization in elasticity problems [14], fractured materials [10], plate bending
problems [12], or the Cahn-Hilliard equation [2]).

An interesting feature is surely the possibility of joining classical Finite Ele-
ments (on rectangles or quadrilaterals) in some part of the domain, and VEMs
in some other part, as the two methods share the same trial functions and de-
grees of freedom on edges. But as far as the internal degrees of freedom are
concerned, on simple geometries, as on triangles, VEMs are more expensive
than the traditional Finite Elements: for a given accuracy k, VEMs on triangles
use (together with polynomials of degree k on every edge) a number of internal
degrees of freedom equal to k(k − 1)/2, instead of the (k − 1)(k − 2)/2 used by
Finite Elements. This would also imply that the possibility of combining FEM
and VEM is not immediate in three dimensions even when the common face is
a triangle.

On quadrilaterals, VEMs have again k(k− 1)/2 internal degrees of freedom,
that now should be compared to the (k − 1)2 internal degrees of freedom of
Qk-Finite Flements, or to the (k − 2)(k − 3)/2 internal d.o.f.s of Serendipity
FEM (on quadrilaterals).

However, on non-affine quadrilaterals the Serendipity Finite Elements suffer
a severe deterioration of accuracy: see e.g. [4] or the more recent [3], [15]. See
also [5] for a general survey on the various Finite Element choices. On the
contrary, VEMs have in their robustness with respect to distortion one of their
most relevant advantages.

On the other hand, the biggest advantage of classical FEM (over Virtual
Elements and similar methods) is surely the fact that the values of trial or test
functions of FEMs can be easily computed at any point, while VEMs are easily
computed only along the edges. The common remedy, for VEMs, is to use (for
computing point values and for similar information), instead of the true trial
and test functions, their L2-projection on some polynomial space of degree, say,
r. For the original VEMs in [6] we could take only r = k − 2 (with an obvious
lack of accuracy) or use other, non orthogonal, projectors (a procedure that
needed a theoretical justification). However, for their advanced versions, as in
[1], we could reach r = k still using k(k−1)/2 internal degrees of freedom. This
however, on simple elements like triangles or tetrahedra, was still higher than
the FEM counterpart.

Here we propose a variant of VEMs that mimics, in some sense, the Serendip-
ity approach of FEMs. The new variant coincides exactly, on triangles, with
traditional Finite Elements, and on quadrilaterals can (in some sense) keep all
the good aspects of Finite Elements without most drawbacks. In particular, on
parallelograms we use (k − 2)(k − 3)/2 degrees of freedom (as for Serendipity
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FEMs) and we can easily compute the L2-projection on Pk, but we can also keep
the same accuracy when the element is strongly distorted. The only degeneracy
that is not fully allowed is when the quadrilateral element becomes a triangle
(as in the second element of Figure 6 below). But in that case (even in the limit,
when the quadrilateral is exactly a triangle), we can keep optimal accuracy just
by using (k − 1)(k − 2)/2 degrees of freedom (the same amount that we would
use on a triangle).

Moreover, the edge degrees of freedom are exactly the same as for finite
elements, so that in 2 dimensions we can combine the two methods (using each
in a different part of the domain). The same is now true also in three dimensions,
if the matching VEM-FEM is done on triangular faces, and even the matching
through quadrilateral faces could be easily arranged (for instance with a slightly
nonconforming matching).

Our construction is a mixture of Serendipity ideas and of the ones coming
from enhanced elements of [1]. Roughly speaking, instead of keeping (among
the degrees of freedom) the moments up to the order k − 2 (as in the original
VEMs), we go down to k − 3, and we use the boundary d.o.f.s and the internal
moments up to k − 3 to compute a rough projector from the VEM space onto
Pk. Then we use such a rough projector to define the moments of degree up to
k as a byproduct.

Throughout the paper we will use the following notation.

For k ≥ 0 and d ≥ 1 integer we denote by Pk,d the set of polynomials of
degree ≤ k in d variables. Often, the dimension d will be omitted when it is
reasonably clear form the context. With a (rather common) abuse of language
we also set P−1 ≡ {0}. Whenever convenient, for a generic geometric object Ø
in d dimensions we will denote by Pk,d(Ø) the restriction to Ø of Pk,d.

Following [7] we denote by πk,d the dimension of Pk,d (that is, for instance,
(k+ 1)(k+ 2)/2 in two variables and (k+ 1)(k+ 2)(k+ 3)/6 in three variables).

An outline of the paper is as follows. In Section 2 we recall the original VEMs
in 2 dimensions, and we compare them with classical Lagrange Finite Elements
on triangles, and with classical Qk and Serendipity Finite Elements on parallelo-
grams and quadrilaterals. In Section 3 we introduce our new Serendipity Virtual
Elements in 2 dimensions, and we extend them to the three dimensional case
in Section 4. Numerical examples involving the convection-diffusion-reaction
equation are presented in Section 5.
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2. Original Nodal VEMs

2.1. Original nodal Elements in 2 dimensions

Here below we recall the original “nodal Virtual Element” as reported in
[6, 9] for the two dimensional case, and in [1] for the three-dimensional one. As
common, we will concentrate on the description of the finite dimensional spaces
within a single element (polygon) E. The assembling of the spaces on the whole
computational domain will then be done with the same procedure followed for
H1-conforming Finite Elements.

As is already well known, Virtual Elements allow an enormous generality in
the geometry of the elements to be used in the decomposition of the computa-
tional domain, and the precise limits of this generality are, in some cases, still
to be understood. For simplicity, here we will consider the typical assumption
(see for instance [6]): there exists a fixed number ρ0 > 0, independent of the
decomposition, such that for every element E (with diameter hE) we have that:
i) E is star-shaped with respect of all the points of a ball of radius ρ0 hE , and
ii) every edge e of E has length |e| ≥ ρ0 hE . Actually, more general assumptions
could be allowed in the definition of our VEM spaces, but this goes beyond the
scope of the present paper (again, see for instance [6]). Figure 1 will show some
examples of polygons that are indeed acceptable for our constructions.

10 edges8 edges 8 edges 7 edges 

Figure 1: Element shapes allowed in our construction

For k integer ≥ 1 we define

Vk(E) = {ϕ ∈ C0(E) : ϕ|e ∈ Pk(e) for all edge e, and ∆ϕ ∈ Pk−2(E)}. (2.1)

The degrees of freedom in Vk(E) are taken as

• the values of ϕ at the vertices, (2.2)

•
∫
e

ϕ q ds for all q ∈ Pk−2(e) ∀ edge e, (2.3)

•
∫
E

ϕ q dE for all q ∈ Pk−2(E). (2.4)

It is immediate to verify that the degrees of freedom (2.2)-(2.4) are unisolvent
(see [6]). For convenience of the reader we recall the proof. The number of
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degrees of freedom in (2.2)-(2.4) is obviously equal to the dimension of the space
Vk(E) in (2.1): for a polygon of Ne edges, they are both equal to kNe (number
of boundary d.o.f.s) plus πk−2,2 (dimension of Pk−2 in two variables). Assume
now that for a given ϕ ∈ Vk(E) we have that all (2.2)-(2.4) are identically zero.
Then clearly ϕ would be zero on the boundary (from (2.2)-(2.3)) and then using
(2.4) we would have

∫
E
|∇ϕ|2 dE = −

∫
E
ϕ∆ϕdE = 0 since ∆ϕ is a polynomial

of degree k − 2. This ends the proof.

The spaces Vk(E) are, in some sense, the basic ones in the VEM theory,
similarly to, say, Lagrange finite elements on triangles for the FEM theory.
However, compared with FEM (on triangles and on quadrilaterals) they show
some differences, already in the number of internal degrees of freedom.

Comparing these (original) VEMs with the classical Finite Elements, when-
ever possible (meaning, here, for triangular or quadrilateral elements) we find
that on the boundary of the elements we have (or we can easily take) the same
degrees of freedom. In the interior, however, this is not the case. In particular,
on triangles, Virtual Elements have more degrees of freedom than the corre-
sponding Finite Elements, and more precisely: the number of internal degrees
of freedom for Virtual Elements of degree k is equal to πk−2,2 while that of
the corresponding Finite Elements is πk−3,2 (see Figure 2). For quadrilaterals,
instead, the number of internal nodes for Finite Elements is equal to the dimen-
sion of Qk−2 (which is (k−1)2), while for Virtual Elements the internal degrees
of freedom equal the dimension of Pk−2 (that is k(k − 1)/2). See Figure 3.

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Figure 2: Triangles: Classical FEM and Original VEM

Remark 1. As we already mentioned, for the present 2-dimensional case the
restriction to each edge of Finite Elements and of Virtual Elements is the same
(both being polynomials of degree ≤ k in one dimension), so that we could actu-
ally allow a combined use of traditional Finite Elements (in some parts of the
computational domain) and of Virtual Elements (in other parts).

Remark 2. In addition to the previous remark, we observe that for Virtual
Elements we could very easily consider cases in which different degrees are used
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VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Figure 3: Quads: Classical Qk-FEM and Original VEM

(say, in (2.3)) for different edges of the same polygon. In this case we note that:
i) the order of accuracy on every polygon will be reduced to the lowest among
the orders of the single edges, and ii) in the global setting, to ensure conformity,
the degrees of freedom on an edge shared by two polygons must obviously be the
same. This generalization could be, for instance, useful to develop hp Virtual
Elements in a very natural way.

Needless to say, the number of degrees of freedom for a given accuracy is
not, by far, the whole story. One has to see what should be done with them;
but this goes beyond the aims of the present paper.

2.2. More general nodal VEMs

For integers k ≥ 1 and k∆ ≥ −1 we define

Vk,k∆
(E) = {ϕ ∈ C0(E) : ϕ|e ∈ Pk(e)∀ edge e, and ∆ϕ ∈ Pk∆

(E)}. (2.5)

The degrees of freedom in Vk,k∆
(E) are taken as

• the values of ϕ at the vertices, (2.6)

•
∫
e

ϕ q ds for all q ∈ Pk−2(e), (2.7)

•
∫
E

ϕ q dE for all q ∈ Pk∆
(E). (2.8)

Clearly, the previous case (2.1) corresponds to the choice k∆ = k − 2.

The extension of the previous unisolvence proof to the more general case
of the degrees of freedom (2.6)-(2.8) is an exercise. We also point out that,
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for k∆ ≥ 0 the degrees of freedom (2.8) allow for the computation of the L2-
orthogonal projection operator Π0

k∆
, from Vk,k∆(E) to Pk∆(E). As we shall see,

the possibility to compute this operator with an algorithm that uses only the
degrees of freedom is one of the crucial steps in Virtual Element Methods.

We remark that the space Vk,k∆(E) clearly contains the space of polynomials
Ps(E) for all s ≤ min{k, k∆ + 2}, but Π0

r can be computed (out of the degrees
of freedom), only for r ≤ k∆.

It is also clear that a smaller k∆ will correspond to a smaller number of
degrees of freedom. However, as we have seen, for k∆ < k − 2 the space Vk,k∆

will fail to contain all polynomials of Pk.

On the other hand, the choice k∆ = k would allow an immediate compu-
tation of the moments up to the order k, and hence the computation of the
L2-projection operator Π0

k that, as we said, is extremely useful. But for k∆ = k
the degrees of freedom (2.8) would be very expensive.

Nevertheless, looking at Figure 2, we feel that there should be something
better that can be done. To explain it, we start with some simple observations
on polynomials that vanish on the boundary of a polygon.

2.3. Polynomials that vanish on ∂E

We start by noting that: If a polynomial pk(x, y) of degree ≤ k vanishes
identically on a segment (of positive length) that belongs to the straight line with
equation, say, ax+ by+ c = 0, then pk can be written as pk = (ax+ by+ c) qk−1

with qk−1 a polynomial of degree ≤ k− 1. The property is very well known, but
if one needs more details we refer, for instance, to Lemma 3.1.10 of [11].

As a consequence, a polynomial that vanishes identically on ∂E will contain,
in its expression, the product of all the different straight lines that contain at
least one edge of ∂E. Note that even if several edges belong to the same line,
(see for instance the fourth case in Figure 1) the equation of the line will always
appear once (and not as many times as there are edges). For instance, looking
again at the fourth case of Figure 1, we have ten edges but we have to count
only five lines.

In general, given a polygon E, we will denote by ηE the number of distinct
straight lines that contain at least one edge of E. This is an important notation,
that deserves to be better highlighted:

ηE = minimum number of straight lines needed to cover all ∂E. (2.9)

Having said that, we note that for every k < ηE we obviously have

∀pk ∈ Pk,2 {pk = 0 on ∂E} =⇒ {pk ≡ 0}. (2.10)
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With this, and noting that for every polygon E we always have ηE ≥ 3,
it is not difficult to see that, for instance, a polynomial of degree k ≤ 2 is
uniquely identified by its values at the boundary of any polygonal element E.
As a consequence, knowing the boundary value of a polynomial of degree ≤ 2 we
know the whole polynomial, and hence we know its mean value (and, if needed,
its moments of any degree). Why should we need internal degrees of freedom?

More generally, for k ≥ 3 on triangles it is easy to see (looking for instance
at the classical Finite Elements, see again Figure 2) that a polynomial of degree
≤ k is uniquely identified by its boundary values and by its moments of degree
≤ k − 3, and we shouldn’t need the moments of degree k − 2. And on a more
general polygon E, with ηE > 3, the boundary values should count even more.
So why should we need the moments of degree k − 2?

A solution to this unsatisfactory situation could be found in a reduction of
the VEM space similar to what is done in Finite Elements for quadrilaterals,
with the introduction of the Serendipity elements.

3. Serendipity Virtual Elements in 2 dimensions

To fix ideas, and to keep things as simple as possible, we start from the
space Vk,k(E), although, as it will be clearer later on, other choices of the type
Vk,k∆

(E) are possible. We recall that if E has Ne edges, then the dimension of
the space will be NE := kNe + πk,2.

3.1. The property S

Now let us assume that we have chosen a positive integer S with πk,2 ≤ S ≤
NE , and that the degrees of freedom in (2.6)-(2.8) are ordered as δ1, δ2, ... δNE

in such a way that the first S of them, that is

δ1, δ2, ... δS (3.1)

have the following property:

(S ) ∀pk ∈ Pk,2(E) {δ1(pk) = δ2(pk) = ... = δS(pk) = 0} ⇒ {pk ≡ 0}. (3.2)

As it will become clearer in a while, the S chosen degrees of freedom will be
the ones kept and used in the final system (the other ones being left, in each
element, as “dummies”).

As a consequence, in order to save the conformity of the whole space (defined
on the whole computational domain) it will be always convenient to keep, among
the first S degrees of freedom, all the boundary ones (2.6)-(2.7). For simplicity,
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we will consider only the case in which this has been done, and we then assume
that:

The d.o.f.s δ1, δ2, ... δS contain all the boundary ones (2.6)-(2.7). (3.3)

In a certain number of cases the boundary degrees of freedom will be suf-
ficient to give the property S , but in other cases it will be necessary to add
some internal degrees of freedom from (2.8). The number of these additional
degrees of freedom will end up being equal to the number of internal degrees of
freedom that will be kept in our Serendipity Virtual Elements. Hence it is clear
that property S in (3.2) has a crucial relevance, and deserves a more detailed
analysis.

3.2. Sufficient conditions for property S

To start with, together with ηE it will also be convenient to introduce the
basic bubble bE (or simply b), that is, the function given by the product of the
equations of the ηE different straight lines that contain all the edges of E.

Using assumption (3.3) we note that a polynomial pk ∈ Pk that satisfies

δ1(pk) = δ2(pk) = ... = δS(pk) = 0 (3.4)

will be identically zero on all edges of ∂E, and in particular its expression will
contain the bubble bE as a factor. We also recall that the degree of bE is equal
to ηE . Then, in particular, we have that a polynomial pk that satisfies (3.4)
will necessarily have the form pk = bEqk−ηE with qk−ηE a polynomial of degree
k − ηE . We will consider, separately, several cases.

• Case k < ηE

From the above discussion we deduce in particular the following result.

Proposition 3.1. For k < ηE assumption (3.3) implies that property S is
always satisfied.

We then split the analysis of the case k ≥ ηE in two cases.

• Case k ≥ ηE and E convex

For values of k ≥ ηE , together with the boundary degrees of freedom, we
would need in general some additional internal ones. In particular we have the
following result.

Proposition 3.2. Assume that k ≥ ηE, that E is convex, and that assumption
(3.3) is satisfied. Assume moreover that the degrees of freedom δ1, δ2, ... δS
include all the moments of order ≤ k − ηE in E as well. Then property S is
satisfied.

9



Proof. We first note that if E is convex then bE will not change sign inside E.
Hence, if pk vanishes on ∂E (and hence pk = bEq

∗
k−ηE ) and if moreover∫

E

pk q dE = 0 ∀q ∈ Pk−ηE , (3.5)

then it is enough to take q = q∗k−ηE in (3.5) to deduce that

0 =

∫
E

pk q
∗
k−ηE dE =

∫
E

bE (q∗k−ηE )2 dE and therefore pk = 0. (3.6)

From the two above propositions we see in particular that: for k = 2 we will
never need internal moments (for any shape of E) and property S will always
hold; for k = 3 we will need the mean value only when ηE = 3, and no internal
d.o.f.s for a bigger ηE ; for k = 4 we will need all the moments up to the degree
1 for ηE = 3, but only the mean value when ηE = 4 and E is convex . And so
on.

• Case k ≥ ηE and E non convex

The case of non-convex polygons, for k ≥ ηE , is more tricky. For instance
if E is a non convex quadrilateral (as the third case in Figure 6), then bE will
indeed change sign in E, and the argument in (3.6) will not apply. However,
indicating by w2 the second degree polynomial made by the product of the
equations of the two “re-entrant” edges, it is easy to check that the product
bEw2 does not change sign inside E (as the equations of the re-entrant edges
will be taken twice). The same will obviously be true for more general polygons,
whenever we have only two re-entrant edges (as, for instance the fourth element
in Figure 1). Actually what counts is the number of re-entrant lines, as in
the third example of Figure 1. For the sake of simplicity, however, we restrict
ourselves to the case of two re-entrant edges, and present the following result.

Proposition 3.3. Assume that k ≥ ηE, that assumption (3.3) is satisfied, and
that E has only two “re-entrant edges”. Let w2 be the second degree polynomial
made by the product of the equations of the two “re-entrant” edges. Assume
moreover that the degrees of freedom δ1, δ2, ... δS include also all the moments∫

E

pk q w2 dE ∀q ∈ Pk−ηE . (3.7)

Then property S is satisfied.

Proof. We remark first that if E has two re-entrant corners then ηE ≥ 4, and
therefore k − ηE + 2 (the degree of the test function q w2 in (3.7)) is ≤ k − 2,
so that the degrees of freedom in (3.7) are still part of the degrees of freedom
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(2.4) in Vk(E). Then, let pk be a polynomial of degree ≤ k vanishing on ∂E
and such that ∫

E

pk q w2 dE = 0 ∀q ∈ Pk−ηE . (3.8)

We first deduce, as before, that pk = bηEq
∗
k−ηE for some q∗k−ηE ∈ Pk−ηE . Then

we take q = q∗k−ηE in (3.8) to get

0 =

∫
E

pk w2 q
∗
k−ηE dE =

∫
E

bE w2 (q∗k−ηE )2 dE, (3.9)

that implies again pk = 0 since bE w2 does not change sign in E.

So far we discussed (long enough) the cases in which assumption S holds
true, or it does not. It is now time to see some of its consequences.

3.3. The operator ΠSk

As we shall see in a little while, given a set of degrees of freedom δ1, δ2, ... δS
(subset of (2.6)-(2.8)) that satisfy property S (see (3.2)), it will always be
possible to construct an operator ΠSk from Vk,k(E) to Pk(E) with the following
properties:

• ΠSk is computable using only the d.o.f. δ1, ..., δS , (3.10)

and
• ΠSk qk = qk for all qk ∈ Pk. (3.11)

3.4. The reduced (Serendipity) VEM spaces

Once the operator ΠSk has been defined, we can use it to construct our
Serendipity VEM spaces. The basic idea can be summarized as follows.

• we work in Vk,k(E),

• for each ϕ ∈ Vk,k(E) we use the first S degrees of freedom to construct
ΠSkϕ,

• then we use δr(Π
S
kϕ), for S < r ≤ NE to define the values of the remaining

NE − S degrees of freedom in Vk,k(E) .
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In other words, given ϕ ∈ Vk,k(E) we construct another element (say, ϕ̃)
such that

δr(ϕ̃) = δr(ϕ) for (1 ≤ r ≤ S), (3.12)

and
δr(ϕ̃) = δr(Π

S
kϕ) for (S + 1 ≤ r ≤ NE). (3.13)

Clearly, the elements ϕ ∈ Vk,k(E) such that ϕ̃ = ϕ form the space

V Sk (E) = {ϕ ∈ Vk,k(E) s. t. δr(ϕ) = δr(Π
S
kϕ) ∀r = S + 1, ..., NE}, (3.14)

that we identify as our reduced (Serendipity) Virtual Element Space. It is im-
mediate to see that the space V Sk (E) has the following properties:

• the dimension of V Sk (E) is S,

• δ1, ..., δS is a unisolvent set of degrees of freedom for V Sk (E),

• Pk,2(E) ⊆ V Sk (E),

• the L2-projection Π0
k is computable from the d.o.f. of V Sk (E).

It is also immediate to see that for triangles the new spaces V Sk (E) have
now the same number of degrees of freedom as the classical Lagrange Finite
Elements, and are, actually, the same spaces, since Pk,2(E) and V Sk (E) have the
same dimension. See Figure 4.

VEMS k=3

FEM k=2FEM k=1 FEM k=3

VEMS k=1 VEMS k=2

Figure 4: Triangles: Classical FEM and Serendipity VEM

Serendipity Finite Elements on quadrilaterals are in general defined on squares
and on their affine images (that is, on parallelograms), while their extension to
more general quadrilaterals (via isoparametric mappings) suffers, in general, a
loss of accuracy (see e.g. [4]).
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For parallelograms, our Serendipity Virtual Elements have the same num-
ber of degrees of freedom as the Serendipity Finite Elements: for a general k
both use the boundary degrees of freedom plus the internal moments of degree
≤ k − 4, although, in general, with a different space.

For more general quadrilaterals Serendipity Virtual Elements and Serendip-
ity Finite Elements have again the same number of degrees of freedom (see
Figure 5, and, for instance, papers [3] or [13]), although Finite Elements allow
much less general distortions, and even for small deviations from parallelograms
show a lack of accuracy that disappears only if the mesh (progressively, as the
mesh-size h goes to zero) tends to be made of parallelograms (see [4]). On

VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Figure 5: Quads: S-FEM (Arnold-Awanou) and S-VEM

the other hand, Virtual Elements are extremely robust, and can survive several
types of severe distortion. The only degeneration that must be avoided, in the
present context, occurs, clearly, when two edges fit in the same straight line (as,
for instance, in the second example of Figure 6). But even when the element
degenerates to a triangle we could still survive in a cheap-and-easy way, just by
using also the internal moments of degree up to k− 3. Clearly, for stability rea-
sons, when two edges are almost on the same straight line it would still be wise
to use also the moments of degree k−3. Hence we can say that for quadrilateral
elements we have the same number of degrees of freedom that Serendipity Finite
Elements use on affine elements, but our construction works in much more gen-
eral cases, using a different space that is more robust to distortions. In Figure
6 we show some example of allowed distortions. In the first case depicted, only
moments of degree up to k−4 need to be included, while in the second case also
the moments of degree k− 3 are needed. In the third case we can use moments
of degree up to k − 4 with the quadratic multiplicative factor defined in (3.7).

Finally it is still worth mentioning that Serendipity VEM can also be defined
(and perform very well) on much more general polygons where Serendipity
Finite Elements (as well as classical Finite Elements) do not exist.
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YES YES YES

Figure 6: Allowed distortions for quadrilaterals

3.5. Construction of ΠSk

There is just one item that we have to detail in order to complete the descrip-
tion of the nodal Serendipity Virtual Elements on polygons: the construction of
the operator ΠSk starting from a set of degrees of freedom that satisfy property
S . For this, we assume that, for a given k, we are given a set δ1, δ2, ... δS of
degrees of freedom having the property S , and we define the operator D

D : Vk,k(E)→ RS defined by Dϕ := (δ1(ϕ), ..., δS(ϕ)). (3.15)

Needless to say, the operator D will have the properties:

• D can be computed using only the d.o.f δ1, ..., δS , (3.16)

• D q = 0⇒ q = 0 for all q ∈ Pk. (3.17)

Property (3.16) is trivial, and property (3.17) is inherited by (3.2).

We observe that, for coding purposes, the operator D corresponds to take
the first S rows of the matrix D given in [9], formula (3.17).

We are now going to use D to construct ΠSk as follows: for every ϕ ∈ Vk,k(E)
we can define ΠSk ϕ ∈ Pk through

(D(ΠSkϕ− ϕ),Dq)RS = 0 ∀q ∈ Pk, (3.18)

where (· , ·)RS is the Euclidean scalar product in RS (or, if more convenient, any
positive definite symmetric bilinear form on RS). Property (3.17) ensures that
the matrix

(Dp,Dq)RS p, q ∈ Pk (3.19)

is nonsingular, so that for every right-hand side (Dϕ,Dq)RS the linear system
(3.18) in the unknown ΠSk ϕ will have a unique solution. It is an easy exercise to
check that the operator ΠSk , as defined in (3.18), satisfies the required properties
(3.10)-(3.11).
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3.6. Different options

We first point out that, in our presentation, the reason why we delayed
the construction of the operator ΠSk is the presence, in its construction, of an
excessive freedom. Indeed, there are zillions of possible choices for the basic
degrees of freedom to be used (in the construction of the operator D) and
zillions of possible choices for the symmetric and positive definite bilinear form
to be used (if convenient) in place of the Euclidean scalar product (· , ·)RS in RS .
In principle, the presence of many choices could allow a strategy toward a final
space with suitable properties (we shall see an example later on). But in many
cases the presence of too many options is more a drawback than an advantage.

We did not consider so far the scaling and stability problems. As pointed
out in several occasions (actually, almost everywhere) in the VEM literature,
it is (much) wiser to use degrees of freedom that scale in the same way. Oth-
erwise (for instance) the choice of the Euclidean scalar product should not be
recommended, since degrees of freedom that scale differently should be treated
in different ways.

It should be said, however, that the situation is not as bad as it could seem.
Indeed, once we took care of choosing degrees of freedom that scale in the same
way, the methods show a remarkable robustness, and the use of the Euclidean
scalar product, or of the Euclidean scalar product multiplied or divided by 10,
or of other similar bilinear forms, would end up in equally good final schemes.

3.7. The lazy choice and the stingy choice

We have seen that, for an order of accuracy k, and for a polygon (for
simplicity, convex) whose edges belong to ηE different straight lines, in our
serendipity spaces only internal moments up to the degree k − ηE can be used.
We also pointed out that, however, for stability reasons one should also take
care of the cases where two (or more) edges belong almost to the same straight
line, and consider them as actually belonging to the same straight line. This
would decrease the number ηE for the polygon, and increase the number k−ηE
of moments to be used. An additional difficulty, with this choice, would then be
to decide the precise meaning of the above term “almost”, for instance in terms
of the angle between the two (almost coincident) straight lines that contain the
two (or more) edges under scrutiny.

In light of the above discussion (and always for a given fixed order of accuracy
k) we see that, in the actual implementation of a code in which many different
shapes of polygonal elements are expected, one faces a very important choice. A
first possibility (let us call it, the stingy choice) would be: to fix a minimum
angle θ0 > 0 and then, for every polygon E, to count the number ηE(θ0) of
different straight lines that contain all the edges of E, by considering “different
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from each other” two straight lines only when the smaller angle between them
is bigger than θ0. Then, use moments up to the order k − ηE(θ0) as degrees of
freedom inside E. Another possibility (let us call it, the lazy choice) would
be to use always internal moments of degree up to k− 3, since our assumptions
imply that ηE(θ0) is always ≥ 3 for θ0 small enough compared to ρ0 (say, for
ρ0 ≥ tan(θ0/2)). Needless to say, many strategies in between are possible, and
the choice among all of them would depend on the type of code one is writing,
and on the use one wants to make of it. We shall come back to this problem
when dealing with the three-dimensional case.

4. Serendipity Virtual Elements in 3 dimensions

Let us consider now the case of three-dimensional VEM. Again, for the sake
of simplicity, we will make some simple assumptions on the geometry of our
elements. In particular we will consider the typical assumption (see for instance
[1]): there exists a fixed number ρ0 > 0, independent of the decomposition,
such that for every polyhedron P (with diameter hP) we have that: i) P is star-
shaped with respect of all the points of a ball of radius ρ0 hP, ii) every edge e of
P has length |e| ≥ ρ0 hP, and iii) every face f is star-shaped with respect of all
the points of a ball of radius ρ0 hP. Here too, more general assumptions could
be allowed but again this goes beyond the scope of the present paper. See for
instance [1].

As we did for the two-dimensional case, we shall concentrate on the choice
of the spaces on a single polyhedron P.

Moreover, still to keep things as simple as possible, we assume that, in the
terminology of Subsection 3.7 , we follow for every face the lazy choice.

4.1. Polynomials that vanish on ∂P

We point out that, for the faces of a three-dimensional decomposition, the
difference between the two choices (stingy and lazy) would be decidedly more
dramatic than in two dimensions. Indeed, for 2D-decompositions the degrees of
freedom internal to the elements could always be eliminated (easily and cheaply)
by static condensation. But in three dimensions the degrees of freedom inter-
nal to faces cannot be (easily and cheaply) eliminated by static condensation,
and in general they still appear in the final (global) stiffness matrix. The differ-
ence would become more and more expensive for higher choices of the accuracy
k. To make an example, for k = 8 on an hexagonal face f (with ηf = 6) the
lazy choice would require the use of all the moments of degree up to 8− 3 (that
is, 21 d.o.f.) while the stingy choice would require only the moments of degree
up to 8 − 6 (that is, 6 d.o.f.). Hence, the systematic use of the lazy choice on
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all faces (as done here) is more a way of keeping the presentation simple rather
than a suggestion on what to do in a practical code. Indeed, for higher order of
accuracy and for decompositions in which many faces have (each) many edges,
we would not recommend the lazy choice, which could be much more expen-
sive. We think, however, that once the basic idea is understood it will be quite
immediate for the users to see how and when to shift from the lazy choice to
more cheap ones.

We then take an integer k ≥ 1 and we consider for every face f (that for
simplicity we assume to be convex) the Serendipity space V Sk (f) (as we said, to
fix ideas, with the lazy choice).

Then for k∆ ≥ −1 we define the space

Vk,k∆
(P) := {ϕ ∈ C0(P) such that

ϕ|f ∈ V Sk (f) ∀ face f in ∂P, and ∆ϕ ∈ Pk∆(P)} (4.1)

with the degrees of freedom

• the values of ϕ at the vertices, (4.2)

•
∫
e

ϕ q ds ∀ edge e for all q ∈ Pk−2(e), (4.3)

•
∫
f

ϕ q df ∀ face f for all q ∈ Pk−3(f). (4.4)

•
∫

P

ϕ q dP for all q ∈ Pk∆
(P). (4.5)

We point out that the degrees of freedom (4.4) follow from our decision to always
take the lazy choice on every face and from the simplified assumption of convex
faces. For non convex faces we should adapt the nature of the degrees of freedom
(although, in general, not the number), as discussed in Subsection 3.2.

4.2. D, ΠSk , and the Serendipity spaces

At this point we could restart mutatis mutandis the reduction procedure
that we followed for the two-dimensional case. The two cases (2-dimensional
and 3-dimensional) are very similar, and therefore we will summarize the 3-
dimensional one very shortly.

We start by taking k∆ = k in (4.1) as we did at the beginning of Section
3. Let NP be the number of degrees of freedom of Vk,k(P). We order them in
such a way that the boundary ones (4.2)-(4.4) come first (and, typically, the
internal moments are ordered from lowest to highest degree). Then we choose
an integer S such that the first S degrees of freedom are: the boundary ones,
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and the internal moments of degree up to k − ηP, where now, in general, ηP is
the number of distinct planes that contain all the faces of P. Here too, we could
make the lazy choice of taking always ηP = 4.

We note that our degrees of freedom will satisfy the property (that we still
call S ):

(S ) ∀pk ∈ Pk,3(P), {δ1(pk) = δ2(pk) = ... = δS(pk) = 0} ⇒ {pk ≡ 0}, (4.6)

and therefore we can use them to construct, following the same path that we
took in Subsection 3.5, a projection operator ΠSk such that :

• ΠSk is computable using only the d.o.f. δ1, ..., δS , (4.7)

and
• ΠSk qk = qk for all qk ∈ Pk. (4.8)

Once we have the operator ΠSk we can define the Serendipity Virtual Element
space V Sk (P) as

V Sk (P) = {ϕ ∈ Vk,k(P) s. t. δr(ϕ) = δr(Π
S
kϕ) ∀r = S + 1, ..., NP}. (4.9)

As degrees of freedom for the space V Sk (P), defined in (4.9), we take

• the values of ϕ at the vertices, (4.10)

•
∫
e

ϕ q ds ∀ edge e for all q ∈ Pk−2(e), (4.11)

•
∫
f

ϕ q df ∀ face f for all q ∈ Pk−3(f), (4.12)

•
∫

P

ϕ q dP for all q ∈ Pk−ηP
(P), (4.13)

and we point out that in (4.12) we could use, for each face f , the moments only
up to the degree k − ηf if we chose a more stingy strategy. Just to make a
toy-example, on a regular dodecahedron (12 pentagonal faces, with a total of
20 vertexes and 30 edges) for k = 4 we would have, with the most stingy choice
(on faces and inside), only one d.o.f. per vertex and three additional degrees of
freedom per edge (for a total of 110 degrees of freedom: the absolute minimum,
if you want a P4 conforming element). The original VEMs would have required
12×π2,2 +1×π2,3 = 82 additional degrees of freedom (6 for each of the 12 faces
, and 10 for the interior of the polyhedron). Adopting the lazy choice, instead,
we would add (to the 110 ones on vertices and edges) 3 degrees of freedom per
face and one inside (for a total of 37 additional d.o.f.s).

Remark 3. The extension of the present idea to construct a Serendipity version
of H(div) and H(curl)-conforming vector valued spaces (as the ones in [7]) can
be done in a reasonably easy way, and is the object of a paper in preparation (by
the same authors).
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4.3. Different degrees of freedom

An obvious generalization of our procedure (among several others) would be
(for simplicity: in two dimensions) to substitute part of the original degrees of
freedom (2.2)-(2.4) with some equivalent ones. For instance, for k ≥ 2 one can
use, instead of the moments (2.3), the values of ϕ at k − 1 nodes inside each
edge (a typical convenient choice would be given by the k − 1 Gauss-Lobatto
nodes inside the edge).

Another example has been suggested already in Proposition 3.3: for non
convex polygons, we could use suitable polynomial weights in the degrees of
freedom, including the equations (among those defining the edges) that change
sign inside E .

But more imaginative variants could come out being convenient in some
circumstances. In particular, it is not necessary that the functionals in (3.1)
(the ones used to construct D and then ΠSk ), are a subset of the original degrees
of freedom: we only need to select S linear functionals, and then, if convenient,
use in (3.1) a different set of d.o.f.s that can be deduced from the chosen ones.

For instance, one could keep the nodal values (2.2) and the moments (2.3)
as degrees of freedom (for obvious conformity reasons), but then use in (3.1), in
place of (2.2) and (2.3):

• the mean value of ϕ over ∂E (4.14)

and (after ordering the vertices V1, ..., VN , VN+1 ≡ V1 in the, say, counterclock-
wise order) the integrals

• Ij,k :=

∫ Vj+1

Vj

∂ϕ

∂t
qk−1 ds for j = 1, 2, ..., N and qk−1 ∈ Pk−1 (4.15)

(under the obvious condition that
∑
j Ij,1 ≡ ϕ(VN+1) − ϕ(V1) = 0). Clearly,

as we said, the boundary degrees of freedom would remain (2.2)-(2.3), but the
new ones (that is, (4.14) and (4.15)) could be employed (possibly together with
other data) to define D and then to construct ΠSk . A choice like this might be
interesting when combining Serendipity VEM spaces of various nature (like, say,
the nodal ones here and the edge-ones mentioned in Remark 3 above).

5. Numerical experiments

As pointed out before, the Serendipity variant of the Virtual Element Method
raises several problems of computational nature, like for instance the definition
of ηE in the case of almost-degenerate polygons, or the choice of the scalar
product in the definition of the projector ΠSk .
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In this paper we will limit ourselves to the presentation of very simple nu-
merical experiments showing that the method works as expected for an elliptic
equation in two cases: quadrilateral elements and a more general Voronoi mesh
made of convex polygons. In both cases we have taken k = 2, 3, 4. The error
shown is always the relative L2 error; the H1 error behaves similarly.

Figure 7: Trapezoidal mesh Figure 8: Voronoi mesh

We set Ω =]0, 1[2 and consider the elliptic problem{
÷(−κ∇p+ bp) + γ p = f in Ω

p = g on ∂Ω.
(5.1)

The variational form of problem (5.1) is given by∫
Ω

κ∇p · ∇q dx−
∫

Ω

p(b · ∇q) dx+

∫
Ω

γp q dx =

∫
Ω

f q (5.2)

and, as shown in [8], its Virtual Element approximation consists in replacing in
each element

p with Π0
k−1ph and ∇p with Π0

k−1∇ph. (5.3)

The difference with respect to [8] is that here the L2 projections are computed
using the operator ΠSk instead of Π∇k for the missing moments. The stabilization
term is defined in terms of the L2-projection.

5.1. Quadrilateral meshes

In the quadrilateral case we have considered the trapezoidal mesh studied
in [4] for which the authors have proved that the classical serendipity finite ele-
ments do not converge with the optimal rates. We have compared our serendip-
ity VEM with the classical serendipity finite elements Sk and with the standard
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Qk elements. The sequence is composed of four meshes with 8 × 8, 16 × 16,
32×32 and 64×64 trapezoids respectively. In Fig. 7 the 16×16 mesh is shown.

We have considered the Poisson problem, i.e. we have taken in (5.1)

κ =

(
1 0
0 1

)
, b = (0, 0), γ = 0, (5.4)

with the right hand side f and the Dirichlet data g defined in such a way that
the exact solution is the fifth-degree polynomial

pex(x, y) := x3 + 5y2 − 10y3 + y4 + x5 + x4y. (5.5)

In Figs 9, 10 and 11 we show the relative L2 error for the three methods. We
observe that the serendipity VEM (“stingy”) behaves like the Qk element but
with much fewer degrees of freedom.
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Figure 9: k = 2, L2 error for the trapezoidal meshes. Note the non-optimal convergence rate
for the classical serendipity finite element method Sk compared with the serendipity VEM
(“stingy”); both have the same number of degrees of freedom.

5.2. Polygonal meshes

The polygonal meshes are made of 25, 100, 400 and 1600 polygons and have
been obtained starting with a random Voronoi mesh and then regularized by
means of Lloyd iterations. The 100 polygon mesh is shown in Fig. 8.

The equation that we solve is the same used for the numerical experiments
in [8]. We take

κ =

(
y2 + 1 −xy
−xy x2 + 1

)
, b = (x, y), γ = x2 + y3, (5.6)

21



10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1

4

mean diameter

r
e
la
t
iv
e
L
2
e
r
r
o
r

stingy
serendipity
iso−Q

k

degrees of freedom
# el. stingy Sk Qk

16 105 105 169
64 369 369 625
256 1377 1377 2401
1024 5313 5313 9409

Figure 10: k = 3, L2 error for the trapezoidal meshes.

and right hand side f and Dirichlet boundary condition g defined in such a way
that the exact solution is

pex(x, y) := x2y + sin(2πx) sin(2πy) + 2. (5.7)

In Figs 12, 13 and 14 we show the L2 error for the “stingy” and the “lazy”
strategies, and we compare them to the original VEM. Note that we have always
taken ηE equal to the number of edges of the polygon E.

In all cases we observe that the errors are very similar even if the number of
degrees of freedom is considerably different.

6. Conclusions

Virtual Element Methods generalize Finite Elements from simple geomet-
ric shapes (triangles, tetrahedrons, quadrilaterals, hexahedrons, etc.) to much
more general shapes, including several types of “degenerations”. However, when
restricted to simple geometries they do not reproduce the traditional FEM, not
even in the number of degrees of freedom. For simplexes (in 2 or 3 dimensions),
FEMs of order k have a number of internal degrees of freedom that is equal to
πk−d−1,d (the dimension of the space of polynomials of degree ≤ k − d− 1 in d
dimensions), while the number of internal d.o.f. of traditional VEMs is equal to
πk−d,d. On quadrilaterals and hexahedrons traditional FEMs have k−d,d inter-
nal nodes (the dimension of the space of polynomials of degree ≤ k − d in each
variable in d dimensions) while VEMs do better with only πk−d,d. Serendipity
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Figure 11: k = 4, L2 error for the trapezoidal meshes

FEMs, however, can go down to πk−d−3,d, but they suffer dramatic losses of
accuracy when the elements are not parallelograms. Something quite similar
also happens for hexahedrons.

Here we introduced a new family of VEMs that mimicks (in some sense) the
Serendipity idea of FEM. These new elements reduce in a significant way the
number of internal degrees of freedom of traditional VEMs, without losing the
good features of being able to deal with very general shapes and distortions.

On triangles, the new VEMs coincide now with Finite Elements, so that
we don’t gain anything apart from the conceptual satisfaction of equaling the
“competitors” (in a friendly sense) where and when they are at their best.

On quads, however, the new VEMs can match the number of degrees of
freedom of Serendipity FEM with much more generality in the geometry, and
could therefore become a competitor even for rather simple element shapes (as
it is clearly shown by the numerical experiments of the previous section). On
top of that, they allow extremely general geometries that are totally out of reach
for Finite Elements.

We point out that in three dimensions our discussion applies as well to
the degrees of freedom that are internal to the faces, that therefore cannot be
eliminated by a simple static condensation.
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Figure 12: k = 2, L2 error for the Lloyd meshes
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