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Abstract This paper presents a novel intelligent system for the automatic
visual inspection of vessels consisting of three processing levels: (a) data col-
lection: acquisition of images using a magnetic climber robot equipped with
a low-cost monocular camera for hull inspection; (b) feature extraction: all
the images were characterized by 12 features made by color moments in each
channel of HSV space; (c) classification: a novel tool, based on an ensemble
of classifiers, was used to classify sub-images as rust or non-rust. This paper
provides a helpful roadmap to guide future research on detection of rusting of
metals using image processing.

Keywords Image processing · segmentation · classification

1 INTRODUCTION

Vessels represents one of the most common ways of transport around the world.
Their maintenance entails visual inspection of the hull, since the structural
failure due to the deterioration of metallic parts of vessels, mostly observ-
able in the form of rust, is the major cause of shipwrecks and catastrophic
events for the environment. Regular surveys of vessels are mandatory to make
sure that these are maintained according to the technical standards defined
by the so-called classification societies, non-governmental organizations that
establishes technical rules for the construction and maintenance of ships and
offshore structures. Nowadays human surveyors visually estimate structural
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damage, pitting and corrosion of vessels getting within arm’s reach of the part
under observation using temporary staging, lift and movable platform installed
around the vessel. Clearly this procedure carries a high risk for the surveyor
and the result depends on observer experience. Moreover, due to the size of
vessels the inspection process becomes tedious and long task, and the total
cost of a full vessel inspection could become very high depending on the time
along which the ship is inoperable. For these reasons, developing novel tools
to enhance the ship surveying process is strategic.

The development of a fleet of robots to make ship inspections safer and more
cost-efficient was the objective of the MINOAS project (Marine Inspection
rObotic Assistant System) [1]. In this context, the Magnetic Autonomous
Robotic Crawler (MARC, see Figure 1) was proposed as part of an automated
or semi-automated inspection system [2]. MARC is provided with magnetic
tracks, which make it able to crawl along vertical slopes, such as the vessel
hull, carrying a number of sensors to perform inspection tasks. In [3] MARC
was demonstrated to be successful in performing thickness measurements using
an electrical robotic arm and an ultra-sound probe.

In [4] an image-processing model for rust detection using digital images of
metal has been presented. The acquisition required cameras and sensors to take
a representative picture of the surface of metallic pieces. A simple Bayesian
classifier using mean descriptor was used to classify oxide-containing from
oxide-free regions. Real images were used in order to measuring the perfor-
mances of the rust detector model in real industrial situations with limited
acquisition conditions; simulated images with Perling Noise were used for ex-
posing the detector to extreme conditions of corrosion.

In this work MARC has been used for visual close-up surveys of vessel hulls
using an on-board low-cost monocular camera and our main objective was
to develop a novel intelligent system that enables new levels of performance
in rust detection using images acquired by the on-board camera. Pictures
from real materials under extreme corrosion conditions have been used in this
study (see Figure 2). Firstly, the effectiveness of existing learning algorithms,
popular in main application domains, was analyzed and evaluated for the rust
detection, compared with the Bayesian classifiers used in [4]. In particular,
Support Vector Machine (SVM) [5], [6], Random Forest (RF) [7], [8], Fisher
and Quadratic Discriminant Analysis (DA) [9], [10] and K-Nearest Neighbor
(K-NN) classifiers [11], [12] were used to classify images according to color
moments, i.e. mean, variance, skewness and kurtosis for each HSV channel. We
estimated statistical measures (accuracy, sensitivity, specificity, positive error,
negative error, Positive Predictive Value (PPV), Negative Predictive Value
(NPV)) of the performance of all the classifiers through the cross validation
strategy. The best result, in terms of accuracy, was obtained by SVM followed
by RF, while Bayesian classifier was the most sensitive algorithm. For all the
algorithms, similar positive and negative errors of classification were obtained
using the four color moments to represent images, instead of the color mean
as proposed in [4].
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Fig. 1 The Magnetic Autonomous Robotic Crawler (MARC).

One of the most attractive areas of research in machine learning has been to
study methods for constructing classifier ensemble which is a set of base clas-
sifiers whose individual predictions are combined in some way to classify new
examples. The main discovery is that ensembles are often much more accurate
than the individual classifiers that make them up [13]. Along these lines we
propose a novel and highly accurate tool, Parallel multIple Classifier system
for Accurate Rust Detection (PICARD), designed to detect materials subject
to corrosion and rust, using images acquired by the MARC on-board camera.
The PICARD is an ensemble of SVM, Bayesian classifier and RF, conceived for
parallel and distributed computing to maintain low the computational cost.
The individual classifiers were designed independently, trained on the same
data, and their outputs were combined using major voting strategy. Ensem-
bles of classifiers are nowadays widely used and outperform single classifiers
in several applications, i.e. land cover change detection, hyperspectral data
classification, IRIS data classification, hand-written digit recognition, medical
decision support, and the fraud detection [14], [15], [16], [17]. The success of the
ensembles depends on large extent on the proper selection of diverse classifiers
for incorporation [18]. However, the diversity for classification task, largely
discussed by Kuncheva and Withaker in [19], is not yet quite well defined and
a better understanding of diversity could be expected to lead to higher ensem-
ble accuracy [18], [20], [21]. In the current literature there are many studies on
MCS and diversity of the classifiers, and, to the best of our knowledge, none
of them was applied to the rust detection. In this study, SVM, Bayesian clas-
sifier and RF showed optimal combinations for the non-symmetric diversity,
confirming that these measures, grouped together, exhibit a slightly higher cor-
relation with the ensemble accuracy as previously hypothesized in [19]. The
performance of PICARD, with a prediction accuracy of 96.1%, was superior
to those of the standard classifiers for rust detection.
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Fig. 2 Experimental setup: MARC climbing a ship hold wall during a typical inspection
operation. Note that the rope visible in the pictures is just a safety measure, i.e. it would
not support the vehicle under normal working condition.

2 Materials and Methods

2.1 The Robotic Inspection System MARC

The proposed inspection system features a Magnetic Autonomous Robotic
Crawler (MARC) [2] (see Figure 1). MARC is provided with magnetic tracks,
which make it able to crawl along vertical slopes, while carrying various sensors
for autonomous navigation and data gathering, including a monocular camera.
The latter consists of a low-cost Mediacom USB digital webcamera mounted
on a tilt support at a height of approximately 20-25 cm from the inspected
surface, with a tilt angle ranging between 50-70 deg. Figure 2 shows MARC
during a typical inspection operation in a shipyard in Varna, Bulgaria. The
rope visible in the pictures is just a safety measure, i.e., it would not support
the vehicle under normal working conditions. The experiments consisted in
MARC’s following a vertical stiffener frame, while climbing a bulkhead. Images
were acquired by the on-board camera at a resolution of 320 x 240 pixels and
a frame rate of 10 Hz and were processed offline.
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2.2 Data set description and Features

From the images acquired by MARC on-board camera, a subset of 23 salient
frames were selected as the most visibly informative in terms of rust content.
In this subset, 16 × 16 pixels sub-images or blocks, assigned to rust and non-
rust classes, were extracted. The block size resulted as trade-off between the
consideration that larger size be not suitable to distinguish wether or not
the surface is rusted and smaller size increases the computational cost. We
assembled a data set containing 113 blocks, of which 61 were rust samples and
52 non-rust samples.
Color moments (Mean, Variance, Skewness and Kurtosis) have been calculated
in each channel of the HSV sub-images by the following equations:
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1

N
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N
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where xn is the frequency for each pixel value and n = 1, 2, ..., N refers to
imaging quantization. The mean (eq. 1) indicates where the individual color
generally lies in the HSV color space. The second moment (eq. 2) incorporates
the information on the spread or scale of the color distribution. Non corroded
surfaces are often homogeneous and they imply low variance. The third mo-
ment (eq. 3) measures the asymmetry of the data around the sample mean
and indicates when the HSV values lie toward maximum or minimum in the
scale. The fourth moment (eq. 4) measures the flatness or peakedness of the
color distribution [22].

2.3 Proposed classification approach PICARD

In this section the proposed classification scheme is discussed. Generating an
ensemble of classifiers, called Multiple Classifier System (MCS), is one of the
most promising directions in pattern recognition which gained a lot of interest
in the recent years. MCS is a set of pattern classifiers whose individual deci-
sions are integrated, according to a certain combination approaches, to classify
new examples. MCS are viewed as one effective way to improve classification
performances [18]. Why do we need ensemble of classifiers? The answer lies
in the Condorcet’s jury theorem which refers to a jury of voters who need to
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make a decision regarding a binary outcome. If each voter has a probability p
of being correct and the probability of a majority of voters being correct is L
then:

– p > 0.5 implies L > p
– Also L approaches 1, for all p > 0.5 as the number of voters approaches

infinity.

This theorem has two major limitations: the assumption that the votes are
independent; and that there are only two possible outcomes. Nevertheless, if
these two preconditions are met, then adding more voters whose judgments are
better than a random vote increases the probability of the majority decision
to be correct.
The success of the MCS depends on large extent on the proper selection of
diverse classifiers for incorporation [18], in the sense that the classifiers in the
ensemble should make different errors on unseen data. The diversity for clas-
sification task is not quite well defined and a better understanding of diversity
could be expected to lead to higher ensemble accuracy [18], [20], [21]. In the
classification problems, there have been several attempts to define diversity
measures which can be categorized into two groups: pairwise and non-pairwise
measures. The first are computed for each pair of classifiers in the ensemble and
then averaged. The non-pairwise measures either use the concept of entropy
or correlation of individual outputs with the averaged output of the ensemble
or are based of the ”difficulty” of the data points. Assuming the classifier out-
put equals to 1 (correct decision) if the example is correctly recognized by the
learner, and 0 (incorrect decision), otherwise, the measures of diversity should
be symmetrical with respect to swapping 0 and 1 [19], [23]. In [19] Kuncheva
and Withaker showed that, although it was difficult to established if there is a
measure that is best for proposes of developing committees that maximize ac-
curacy, the non-symmetrical measures exhibited a slightly higher correlation
with the team accuracy and tended to be grouped together. As suggested,
in this work we evaluated three non-pairwise and non-symmetrical diversity
measures for constructing ensemble: Measure of difficulty, Generalised diver-
sity, Coincident failure diversity. The problem of measuring the team diversity
and how to use it for effectively building better classifier ensemble is out of the
scope of this work. Table 1 shows a summary of the three diversity measures,
including their types and literature source. For complete definition of these
diversity measures see [19].
Moreover, there are different methods to combine the outputs of the voters and
make the final decision in an ensemble of classifiers. The proposed classification
tool, PICARD (see figure 3), used the parallel combination where multiple
classifiers are independently designed without any mutual interaction and their
outputs are combined according to majority vote strategy to make the final
decision. Majority vote is the most popular ensemble approach where each
classifier votes for specific class and has equal importance in the ensemble, then
the class collecting the majority votes is the one predicted by the ensemble. The
parallel approach is a way to reduce computational cost of the processing. The
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Table 1 Summary of the non-pairwise and non-symmetrical diversity measures of classifier
ensemble. The measures assume values in the range [0,1]. The + means that diversity is
greater when the measure is larger, and the - means that diversity is greater when the
measure is smaller.

Name range of values +/− Reference
Measure of difficulty [0, 1] − [24]
Generalised diversity [0, 1] + [25]
Coincident failure diversity [0, 1] + [25]
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Fig. 3 One round of the cross validation technique employed to evaluate the performances
of the PICARD algorithm for rust detection

performances of the PICARD were estimated using cross validation strategy,
each round of which involved partitioning a sample of data into complementary
subsets, training and test sets, building the classifier on the first set, and
validating the model on the second set. To reduce variability multiple rounds
of cross-validation were performed using different partitions, and the validation
results were averaged over rounds.
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2.4 Evaluation of Experimental Performance

Statistical measures of the performance of a binary classifier, used in this work,
are accuracy, sensitivity, specificity, positive error, negative error, Positive Pre-
dictive Value (PPV), Negative Predictive Value (NPV). These metrics can be
easily derived by the confusion matrix as follows:

accuracy = (TP+TN )/(TP+FN+FP+TN) The percentage of predictions that are correct.

sensitivity = TP/(TP+FN) The percentage of positive labeled instances that were predicted as positive.

specificity = TN/(FP+TN) The percentage of negative labeled instances that were predicted as negative.

positive error = FN/(TP+FN) The percentage of positive labeled instances that were predicted as negative.

negative error = FP/(TN+FP) The percentage of negative labeled instances that were predicted as positive.

PPV = TP/(TP+FP) The percentage of positive predictions that are correct.

NPV = TN/(FN+TN) The percentage of negative predictions that are correct.

where TP is the number of True Positive, i.e. the actual positive data that are
correctly classified, FP is the number of False Positive, i.e. negative data clas-
sified as positive, TN is the number of True Negative, i.e. the actual negative
data that are correctly classified, and FN is the number of False Negative, i.e.
positive data classified as negative. The intuitive meaning of each measure is
also reported.

3 Results and Discussion

All of the experiments have been effected on a Workstation HP Z820 equipped
with 2 CPU Intel Xeon and eight cores E5-2650, RAM 64Gb-2x1000Gb. All
data were analyzed in MatLab (MathWorks, Natick, MA).
A cross validation technique was used in order to estimate how accurately a
predictive model will perform in practice on new examples. As suggested in
[4],[8],[26], 2/3 of data were used for the training set and 1/3 for the test set
each set containing the same ratio of rusted and non-rusted samples, and the
evaluation metrics were estimated performing 1500 rounds of cross validation.
Six algorithms, widely employed in many areas of pattern classification, were
used for rust detection: SVM, Bayesian classifier, RF, Fisher and Quadratic
DA, K-NN classifiers. Internal cross validation on training set was used to im-
plement the parameters tuning for SVM and RF in a wide range of parameter
values, with the goal of optimizing measures of the algorithm’s performance
on an independent data set. The regularization parameter of the SVM clas-
sifier was tuned in the range [0.01, 5000] with linear kernel function, and the
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optimal value was equal to 0.1; parameter tuning of RF was performed using
a number of trees in the range [1, 10000] and the optimal number resulted
to be 1000. Figure 4 shows the misclassification rate of the six classifiers and
the summary of the experimental results on the rust data set is shown in ta-
ble 2. The best performance, in term of accuracy, was that of SVM classifier
(accuracy = 0.954), followed by RF classifier (accuracy= 0.939). Among the
six classifiers, Bayesian classifier has the highest percentage of positive labeled
instances (rust samples) that were predicted as positive (rust) (sensitivity =
0.984), however it has a percentage of negative labeled instances (no-rust sam-
ples) that were predicted as negative (no-rust) (specificity = 0.829) much lower
than SVM and RF.

Table 2 Statistical measures of the performances of PICARD, SVM, Bayesian classifier,
RF, Quadratic DA, Fisher DA and k-NN classifier. The analysis was performed on the rust
data set using 1500 CV and the regularization parameter of SVM equals to 0.01 and number
of trees of RF equals to 1000.

Indicator PICARD SVM Bayesian classifier RF Quadratic DA Fisher DA k-NN
accuracy 0.961 0.954 0.907 0.939 0.925 0.921 0.627
sensitivity 0.989 0.968 0.984 0.947 0.966 0.944 0.627
specificity 0.932 0.940 0.829 0.930 0.884 0.899 0.628
positive error 0.011 0.032 0.016 0.053 0.034 0.056 0.373
negative error 0.068 0.059 0.171 0.070 0.116 0.101 0.372
PPV 0.936 0.942 0.852 0.932 0.893 0.903 0.628
NPV 0.988 0.967 0.981 0.946 0.963 0.941 0.627

In [4] the authors proposed a system, based on Bayesian classifier, to identify
rusted and non-rusted areas, using mean descriptor from the HSV image, with
the aim of reducing the computational cost and maximizing the usability of
the proposed methodology in fast placed industrial settings. To be consistent
with real conditions of image acquisitions, the behavior of the proposed system
has been studied under the influence of the variance of Additive White Gaus-
sian Noise (AWGN) (summary of the results shown in table 3). The authors
concluded that the best performing system was the one without noise added.
In fact, as the sensitivity increases with the added noise, so does the negative
error, therefore the specificity decreases. This behavior yielded an increase of
the classification errors since the detector classified all the regions into the rust
class, including the non-rust areas. We evaluated the performance of SVM and
Bayesian classifier using the only mean descriptor. The SVM parameter was
newly tuned in the range [0.01, 5000], obtaining the optimal value C = 0.9.
The performance indicators of SVM and Bayesian classifiers are shown in table
3. We obtained sensitivities (0.969 for SVM and 0.973 for Bayesian classifier)
similar to those of table 2 (0.968 for SVM and 0.984 for Bayesian classifier),
while much lower specificities (0.776 for both SVM and Bayesian classifier)
were obtained compared with those of table 2 (0.940 for SVM and 0.829 for
Bayesian classifier). Experimental results suggested that using the four color
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descriptors (mean, variance, skewness and kurtosis) significantly improve clas-
sification accuracy and specificity. Note that in our experiments extremely
rusted surfaces are available, so we can validate algorithms performance us-
ing images acquired by the MARC on-board camera, without introducing any
kind of simulation and added noise.

Table 3 Performance indicators for SVM and Bayesian classifiers trained using the only
mean descriptor on the rust data set. Last four columns report the performance indicators
of the system proposed in [4] in different cases of AWGN.

Indicator SVM Bayesian classifiers Noise-free in [4] r=0.001 in [4] r=0.002 in [4] r=0.005 in [4]
accuracy 0.872 0.875 - - - -
sensitivity 0.969 0.973 0.979 0.969 0.978 1
specificity 0.776 0.776 0.982 0.971 0.914 0.152
positive error 0.031 0.020 0.021 0.030 0.021 0
negative error 0.224 0.224 0.017 0.028 0.085 0.848
PPV 0.812 0.813 0.982 0.971 0.919 0.541
NPV 0.962 0.967 0.978 0.969 0.976 1

The empirical evidences suggested that a careful combination of classifiers
should potentially compensate for the individual classification error and thus
achieve better robustness and performance. We used a novel tool, PICARD,
that is a parallel combination of SVM, Bayesian classifiers and RF, using the
majority voting strategy for the fusion of the classifiers predictions. The selec-
tion of these three classifiers from the six base voters were done using three
diversity measures (see table 1 and 4): Measure of difficulty, Generalised diver-
sity, Coincident failure diversity. These measures should not be a replacement
for the estimate of the team accuracy but should be stem from the intu-
itive concept of diversity. Starting from the six classifiers, all teams of three
classifiers were generated, forming 20 classifier ensembles, and the diversity
measures were computed for these ensembles. The team composed by SVM,
Bayesian classifier and RF showed optimal values for the three diversity mea-
sures. In fact the Measure of difficulty, varying in the interval [0.0045, 0.0726],
was equal to 0.0045 for the SVM, Bayesian classifier and RF ensemble, very
near to the optimal value of 0. Both the Generalised diversity and Coincident
failure diversity assumed values from 0.5 to 1, and for the selected team they
were equal to 1. The higher are the their values, the greater is the diversity.
The summary of the experimental results of PICARD are shown in the first
column of the table 2. PICARD achieved an accuracy of 0.961 better than that
of individual SVM, Bayesian classifier and RF. Moreover, PICARD showed a
positive error of 0.011 lower than the minimum positive error of 0.016 obtained
by Bayesian classifier, and much lower than that achieved by both SVM (pos-
itive error = 0.032) and RF (positive error = 0.053). The PICARD negative
error of 0.068 was much lower than the one of the Bayesian classifier (negative
error = 0.171) and very similar to the SVM (negative error = 0.059) and RF
(negative error = 0.070) negative errors.
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Table 4 Summary of the non-pairwise and non-symmetrical measures of diversity for SVM,
Bayesian classifier and RF.

Name value
Measure of difficulty 0.0045
Generalised diversity 1
Coincident failure diversity 1

Finally the proposed PICARD was applied to detect rust areas of new im-
ages acquire by MARC on-board camera. Working with large images, normal
image processing techniques can sometimes break down. To overcome this lim-
itation, the new image has been processed incrementally, that is reading and
classifying one region of the image at time, where the region was defined as
a block of size 5 × 5, and then assembling the results into an output BW im-
age (mask). The classification of each block was performed by the PICARD,
using the 1500 machines previously trained in the cross validation procedure,
using the major voting strategy for combining the predictions. Rust detection
successfully obtained on four novel images by PICARD is shown in 5.

4 Conclusions

In this paper a vision-based robotic system has been used for inspection of
ship hulls and a novel intelligent system for rust detection, PICARD, has
been developed and tested on images acquired by the on-board camera. Using
diversity measures as guidance for the selection of multiple classifiers combina-
tion, the optimum was an ensemble of SVM, Bayesian classifier and RF. The
experimental results showed that a decision support system based on PICARD
achieved very high accuracy and overall satisfactory performance if compared
with those of existing and popular learning algorithms. The developed tool is
general and can be applied for the quality assessment of metallic pieces and
iron machines.

Based on our analysis, we identified that the incorporation of diversity among
the classifiers can help to obtain better classification by the team. A thorough
analysis of all the diversity measures and of the relationship between diversity
and ensemble accuracy are out of the scope of this work. However we experi-
mentally highlighted the effectiveness of the non-pairwise and non-symmetrical
measures of diversity for constructing ensembles with good generalization per-
formance, also validating our system on novel full images acquired by the
MARC on-board camera.

A limitation of our approach is the number of classifiers in the ensemble,
in fact increasing this number usually increases the computational coast and
decreases their comprehensibility, and in general it depends on the computer’s
architecture available for parallel learning.
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Fig. 5 Rust areas automatically detected by the PICARD on new test images.

Future objective of this work will be to develop classification framework, based
on PICARD, for online detection of corrosion areas during completely auto-
matic marine vessel inspection by robotic systems.
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