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Abstract. A key step of the diagnosis of Idiopathic Pulmonary Fibrosis
(IPF) is the examination of high-resolution computed tomography im-
ages (HRCT). IPF exhibits a typical radiological pattern, named Usual
Interstitial Pneumoniae (UIP) pattern, which can be detected in non-
invasive HRCT investigations, thus avoiding surgical lung biopsy. Unfor-
tunately, the visual recognition and quantification of UIP pattern can be
challenging even for experienced radiologists due to the poor inter and
intra-reader agreement.
This study aimed to develop a tool for the semantic segmentation and the
quantification of UIP pattern in patients with IPF using a deep-learning
method based on a Convolutional Neural Network (CNN), called UIP-
net. The proposed CNN, based on an encoder-decoder architecture, takes
as input a thoracic HRCT image and outputs a binary mask for the auto-
matic discrimination between UIP pattern and healthy lung parenchyma.
To train and evaluate the CNN, a dataset of 5000 images, derived by
20 CT scans of different patients, was used. The network performance
yielded 96.7% BF-score and 85.9% sensitivity. Once trained and tested,
the UIP-net was used to obtain the segmentations of other 60 CT scans
of different patients to estimate the volume of lungs affected by the UIP
pattern. The measurements were compared with those obtained using
the reference software for the automatic detection of UIP pattern, named
Computer Aided Lungs Informatics for Pathology Evaluation and Rating
(CALIPER), through the Bland-Altman plot. The network performance
assessed in terms of both BF-score and sensitivity on the test-set and
resulting from the comparison with CALIPER demonstrated that CNNs
have the potential to reliably detect and quantify pulmonary disease in
order to evaluate its progression and become a supportive tool for radi-
ologists.

Keywords: Deep-learning · Convolutional Neural Network · Idiopatic
Pulmonary Fibrosis.
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1 Introduction

The term Interstitial Lung Diseases (ILDs) refers to a large group of lung dis-
orders, most of which cause scars of the interstitium, usually referred to as
pulmonary fibrosis. Fibrosis reduces the ability of the air sacs to capture and
carry oxygen into the bloodstream, leading to a progressive loss of the ability to
breathe. Although ILDs are rare if taken individually, together they represent
the most frequent cause of non-obstructive chronic lung disease. The Idiopatic
Pulmonary Fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumo-
nia, which is classified among the ILDs with the poorest prognosis [1]. The high
variability and unpredictability of IPF course have traditionally made its clini-
cal management hard. The recent introduction of antifibrotic drugs has opened
novel therapeutic options for mild to moderate IPF [2]. In this respect, treat-
ment decisions highly rely on the assessment and quantification of IPF impact
on the interstitium and its progression over time. High-Resolution Computed
Tomography (HRCT) has demonstrated to have a key role in this frame, as it
represents a non-invasive diagnostic modality to evaluate and quantify the extent
of lung interstitium interested by IPF [3]. In fact, IPF shows a typical radiolog-
ical pattern, called Usual Interstitial Pneumonia (UIP) pattern, whose presence
is usually assessed by radiologists to diagnose IPF. The HRCT features that
characterize the UIP pattern are the presence and positioning of specific lung
parenchymal anomalies, known as honeycombing, ground-glass opacification and
fine reticulation [4]. These anomalies appear in the HRCT scans with specific
textural characteristics that are detected via a visual inspection of the imaging
data. Assessing the diffusion of these anomalies is instrumental to understand
the impact of IPF and to monitor its evolution over time. Quantitative and re-
liable approaches are in high demand in this respect, as the visual examination
by radiologists suffers, by its nature, of poor reproducibility [5].

To overcome this issue, much research is being conducted to develop new
techniques for automatic detection of lung diseases that may support radiologists
during the diagnostic pathway, particularly in HRCT image analysis.

CALIPER (Computer Aided Lung Informatics for Pathology Evaluation and
Rating) is a software tool developed by the Biomedical Imaging Resource Labo-
ratory at the Mayo Clinic for the automatic detection and quantification of CT
anomalies in HRCT images of ILDs [10]. CALIPER uses histogram signatures to
characterize and quantify parenchymal disease on HRCT and it was developed
using pathologically confirmed imaging data evaluated by expert radiologist con-
sensus. It is currently considered as the most viable instrument by radiologists.
Nevertheless, it is not an open-source tool and its performance varies based on
the acquisition context, thus on CT scanners and protocols and on the spatial
kernel used by the image reconstruction algorithm.

This study aims to provide a tool for UIP pattern recognition based on a
low-cost and real-time Machine Learning (ML) method to obtain UIP-pattern
volume measurements based on a different approach than CALIPER, in the
attempt to eventually overcome the aforementioned limits. The method relies on
a fully-convolutional neural network (CNN), called UIP-net, which takes as input
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a lung HRCT image and returns the corresponding binary map discriminating
disease and normal tissue. This preliminary work firstly investigates whether
CALIPER might be reproduced, to open the way to further investigation on
many different scenarios (e.g., using UIP-net on images acquired by different
scanners and reconstructed with different spatial kernels), possibly leveraging
an unsupervised approach towards more generalizable results.

The paper is organized as follows: Section 2 describes the state of the art in
the field of ML techniques applied to the detect UIP pattern and IPF biomarkers
from lung HRCT scans; in Section 3 the UIP-net, that is the CNN here proposed
for the detection of UIP patterns, is presented; then, in Section 4 the experimen-
tal setup and results provided by the UIP-net are described. Finally, Section 5
concludes the paper.

2 State of the art

Modern CT scanners allow for assessing anatomical and physiological proper-
ties providing high-definition volumetric images with an excellent spatial and
temporal resolution. Computerized algorithm for HRCT image analysis, namely
quantitative CT (QCT), gives a non-invasive mean for direct visualization, char-
acterization and quantification of anatomic structures in order to obtain rapid
and reproducible digital IPF biomarkers [6]. Indeed, several studies showed that
QCT may overcome the issue of the inter-observer variability and could provide
more consistent prognostic indexes. Furthermore, QCT may allow to extract CT
features that are not visually recognisable and to objectively keep track of the
disease progression [7]. The most relevant QCT methods for the assessment of
ILD in patients with IPF are based on densitometric and local histogram analysis
and textural analysis.

CT histogram provides a distribution of X-ray attenuation allowing the cal-
culation of mean value, skewness and kurtosis that may give a measure of the
extent of fibrosis. For example, both kurtosis and skewness showed correlation
with functional test such as Forced Vital Capacity (FVC)[8]. It was demon-
strated also that mean value, skewness and kurtosis are correlated with survival
in patient with ILDs [9]. However, this approach is not sufficient to quantify
the extent of every single interstitial lung abnormalities in patient with IPF,
therefore more sophisticated textural analysis have been implemented.

Texture analysis consists in the quantitative description of the structural ar-
rangement of pixels of different intensities and their relationship to the surround-
ing environment. Given the heterogeneity of lung parenchyma both in healthy
subjects and in the presence of IPF, a correct interpretation of HRTC images
may rely on texture analysis.

CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and
Rating) can be considered as the most performing method based on texture
analysis for IPF pattern visualization. This tool integrates a texture matching
method with the analysis of histogram features of voxels for the automated
lung parenchymal characterization and quantification of pulmonary disease on
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HRCT images. This process automatically labels each pixel as belonging to one
of seven specific parenchymal patterns: normal, ground-glass opacity (GGO),
reticular density, honeycombing, and mild, moderate, or severe low-attenuation
areas (see Figure (1)). It has been demonstrated that compared to visual scor-
ing, CALIPER results are strongly correlated with functional tests [11], overall
survival and decline of pulmonary capacity [12, 13].

Fig. 1. HRCT image of UIP with CALIPER characterization. Top: Reticulation,
groundglass opacity with a honeycomb cyst in the left lower lobe. Bottom: Color over-
lay image highlighting parenchymal patterns characterized by CALIPER: normal lung
(light and dark green), ground-glass opacity (yellow), reticulation (orange), and hon-
eycombing (red).

2.1 Deep Learning and Convolutional Neural Networks

The discussed methods, based on histogram and texture analysis, involve hand-
crafted features, that means manually engineered features, which are fed to
machine learning classifiers to locally recognize patterns in lung tissue. More
recently, advanced AI techniques, such as Deep Learning, outperformed such
methods by adopting learned features, that are automatically obtained from the
layers of the neural network thus overcoming the issues related to human bias.

Deep learning has achieved impressive results in several medical image clas-
sification tasks but only few methods have been proposed for IPF radiological
pattern classification through Convolutional Neural Networks (CNNs).

Walsh et al. used a pre-trained Neural Network (NN) for the discrimination
of UIP and not-UIP patterns, with training data labelled by expert radiologists
[14]. Anthimopoulos et al. designed and tested a CNN for the classification of
7 anomalies within 2-D patches of HRCT images: healthy, GGO, micronodules,
consolidation, reticulation, honeycombing, combination of GGO and reticula-
tion[15], as shown in Figure (2). The proposed CNN reached an accuracy of 85%
showing the potential of CNNs in IPF pattern recognition. Also Kim et al. de-
veloped a CNN for the classification of lung tissue in 2-D images; in this specific
case, CNN outperformed a Support Vector Machine classification algorithm[16].

Several studies focused on the development of deep neural networks also for
segmentation tasks. Anthimopoulos et al. designed a network that outperformed
the traditional classification methods with less computational power and few
segmentation errors [14, 16, 17]. Agarwala et al. pre-trained a P-net using daily
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photographs and after a fine-tuning, the parameters of the network have been
modified in order to optimize the performance on thoracic HRCT images includ-
ing only ILD manifestations[18]. The network had good capacity in detecting
fibrosis and emphysema even if the number of labelled patches used as training
data was exiguous. Although the reported deep neural networks provided good
results, they were not able to overcome the issues related to texture recogni-
tion of UIP patterns in HRCT images. The work reported in this paper aimed
to design a CNN for the detection of UIP patterns preserving texture details
during image processing. The network, named UIP-net, exploits the descriptive
capability of neural networks to improve the diagnostic accuracy compared to
the existing methods for quantitative image analysis of IPF. The network has
been trained and tested on a dataset of 5000 images. In addition, according to
the opinion of an expert radiologist, it provided acceptable results compared to
CALIPER.

Fig. 2. Healthy tissue and typical ILD patterns from left to right: healthy, GGO, mi-
cronodules, consolidation, reticulation, honeycombing, combination of GGO and retic-
ulation[15].

3 Data and Methods

3.1 Data

For the training and test of UIP-net, 20 HRCT volumetric scans of patients
with IPF from the 2nd Radiology Unit database of Pisa University Hospital
were used. Each scan had about 250 slices with 512×512 pixels per slice, thus
the dataset had a total of about 5000 images. The scans were acquired using the
same CT scan (Siemens Sensation 64) and acquisition protocol. Each slice had
the same pixel spacing of 0.7 mm.

First of all, CT scans were processed by CALIPER in order to obtain the
ground truth. CALIPER provided colour images with the segmentation of the
areas corresponding to the parenchymal anomalies characteristic of the UIP pat-
tern: yellow for Ground Glass Opacity (GGO), orange for reticulation and red for
honeycombing, as shown in Figure (1). The colour images returned by CALIPER
were imported in Matlab R©(version R2019b) for obtaining the corresponding bi-
nary masks. These masks had pixels values equals to 0 or 1 if belonging to normal
tissue or to UIP patterns, respectively. They represented the desired outputs of
UIP-net: that means, UIP-net was trained to provide a binary mask for each
gray-level input image with pixels equals to 0 or 1 if belonging to normal tissue
or disease, respectively.
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In order to test the usefulness of UIP net in quantifying the volume of the
disease, another 60 CT scans of different patients and acquired with the same
scanner were used. Also these scans had gray-scale slices with 512×512 pixels
per slice.

3.2 Methods

Data Pre-processing In order to reduce the computational complexity of
training and improve the speed of convergence of the model, the original images
were pre-processed using Matlab R©.

Nonetheless, no filtering was applied for preserving the intensity difference of
adjacent pixels. On the other hand, to optimize the amount of data to be ana-
lyzed, the number of nonzero pixels was decreased through a Fuzzy c-means
(FCM) algorithm. Two clusters were defined: the background (with the ab-
domen) and the foreground (i.e., the lungs). Pixels with a probability greater
than 70% to belong to background were set to zero, those with a probability
greater than 70% to belong to foreground were kept unchanged. After that,
both the images and the ground truth were cropped for reducing the size of
the Field of View (FOV). Thus, pre-processed images had 492×492 pixels with
nonzero values only within the lungs (see Figure (3)).

Fig. 3. On the left: an example of pre-processed cropped image with non-zeros pixels
only within the lungs. On the right: an example of the ground truth obtained from
CALIPER.

UIP-net architecture First, in order to design the optimal architecture of
UIP-net, the problem was carefully analyzed and the requirements of the model
were defined:

1. Since UIP patterns are characterized by typical textural features, the net-
work should preserve the excellent image quality, in term of spatial resolution
and bit depth, and be able to capture texture details;

2. The network should reduce data loss during training;
3. The network should be trainable and provide good results even:

(a) with few examples because big datasets are not always available;
(b) with few computational resources to make the network an accessible tool.

On the basis of these assumptions, UIP-net was inspired by [19] and designed
with an Encoder-Decoder structure as in Figure (4). With respect to [19], the
design of UIP-net architecture provides for:
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1. the suppression of batch-normalization and pooling layers in order to prevent
an excessive loss of information;

2. fewer layers to reduce the number of operations performed on the images;
3. the introduction of the tanh activation function for the last layer (instead

of the softmax), in order to improve the speed of convergence of the model
and make the network stable against sudden changes of the input.

Fig. 4. UIP-net architecture.

The input layer of the UIP-net takes a 492×492 image and is followed by
three convolutional layers and three de-convolutional layers. The size of receptive
field was set to 3×3 for each layer, except for the first and the last one that
have 5×5 kernel, in order to capture characteristic local structure of texture.
Each convolutional layer doubles the number of features maps outputted. Thus,
the first, the second and the third layers return 32, 64 and 128 features maps,
respectively. On the other hand, two of the three de-convolutional layers produce
64 and 32 feature maps, while the third one keeps the same number of features
maps, changing only the size of images. The last convolutional layer, finally,
merges all the features maps into one with 492×492 pixels. Therefore, the output
layer returns a binary mask with the segmentation of UIP patterns detected
in the input image, keeping the same size. Each layer has a ReLU activation
function, except the last one which, as mentioned above, has tanh activation.

Since no pooling was carried out between the convolutional layers to prevent
loss of information, the stride was set to 2 in order to halve the size of the image
after each layer. The padding was set to k−1

2 with k equal to the size of kernel
(i.e 5×5 for the first and last layers, 3×3 for the others).

Training Method The UIP-net was trained by minimising the binary cross-
entropy using Adam optimizer.

After some experiments, it was proved that the network works well with de-
fault values, namely the learning rate equal to 0.001, the exponential decay rates
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for the moving average of the gradient equal to 0.9, and the squared gradient
equal to 0.999.

Furthermore, Dice score monitored the network performances during train-
ing, comparing the segmentation made by UIP-net (S) with the ground truth
(G), according to eq. 1.

D =
2|S ∩G|
|S|+ |G|

(1)

Finally, the weight updates were performed in mini-batches and the number
of samples per batch was set to 10.

4 Experimental Setup and Results

4.1 Experimental Setup

The number of HRCT scans available for the training set was set to 13. Since
each scan had about 215 slices, the training set consisted of about 3200 examples.
Nevertheless, in order to avoid overfitting, it was necessary to establish how many
images were strictly necessary.

Also the number of the epochs was set in order to stop training once the
model performance stops improving on a validation set.

Thus, the validation set used for the fine tuning of the hyper-parameters was
made up of 30% the examples, randomly extracted from the training set at each
epoch.

A total of 20 trainings were carried-out:

1. 200, 400, 800, 1600, 3200 samples were fed to UIP-net for the same number
of epochs;

2. UIP-net was trained for 50, 100, 150, 200 epochs keeping unchanged the
number of examples.

Loss function and Dice score were monitored during training in order to choose
both the correct number of examples and epochs.

As shown in Figure (5), the best model was the one trained by 800 samples
for 50 epochs, with a binary cross-entropy on training and validation set of 0.14
and 0.097 respectively, and a Dice score of 0.81 and 0.78, respectively.

For this model, a 5-fold cross validation scheme was adopted to ensure the
validity of the results. On average over all folds, the number of slices was 640
images for training and 160 for testing, while Dice score was 76.19% with a
deviation standard of 3.54%.

The discussed method was implemented using Keras and TensorFlow frame-
work and coded in Python 3.7.
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Fig. 5. Loss function (top) and Dice score (bottom) during training.

4.2 Results

The performances of the network were evaluated on the test set, consisting of
7 HRCT scans, with 1800 images in total. A quantitative performance analysis
was performed, followed by qualitative assessment according to the opinion of
an expert radiologist on the predicted segmentation (see Figure (6)).

Finally, 60 HRCT scans were used to compute the volume of UIP pattern
detected by the UIP-net. The measurements were then compared with those
obtained with CALIPER.

Fig. 6. On the left: original input image with ground truth overlapped (yellow). On
the right: original input image with predicted segmentation of UIP-patterns overlapped
(red). The predicted segmentations outputted by the network were assessed both quan-
titatively and qualitatively.
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Quantitative Analysis The quantitative evaluation measures were: Dice and
Boundary F1 (BF) contour matching score (BF-score), sensitivity and specificity.

BF score is a metric that tends to correlate better with human qualitative
assessment than Dice score. It measures how close the predicted boundary of
an object matches the ground truth boundary. The BF score is defined as the
harmonic mean of the precision (P) and recall (R) values calculated within a
distance error tolerance (typically 0.75% of the image diagonal [20]) to decide
whether a point on the predicted boundary has a match on the ground truth
boundary or not. BF-score can be defined through P and R according to the
following eq. (2):

BF =
2PR

(P + R)
(2)

Sensitivity and specificity could be defined on the basis of true/false positive
and true/false negative, as shown in eq. (3) and (4).

Sensitivity =
TP

(TP + FN)
(3)

Specificity =
TN

(TN + FP )
(4)

In Table 1 evaluation measures on the test set are shown, with maximum
values highlighted in green and minimum in red, while in Table 2 mean value
and standard deviation of all HRCT scans of the test set are shown.

Table 1. Quantitative evaluation measures on test set.

P1 P2 P3 P4 P5 P6 P7

Dice 74.94% 73.3% 61.58% 59.4% 58.4% 57% 56.65%

BF-score 78.96% 72.9% 81.16% 78.68% 81.32% 75% 83.73%

Sens 83.52% 83.51% 84.57% 74.46% 80.39% 74% 77.03%

Spec 98.75% 98.33% 97.98% 98.7% 99% 99% 98.17%

Table 2. Mean value and standard deviation of evaluation measures

Dice BF-score Sensitivity Specificity

Mean value 63.1% 78.8% 79.6% 98.5%

Standard deviation 7% 3% 4.4% 0.4%

Qualitative Assessment For a more comprehensive evaluation process, the
performance of UIP-net was assessed through a qualitative visual analysis of the
predicted segmentation performed by an expert radiologist. This showed that,
compared to the ground truth (see Figure (7)):
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1. UIP-net detected some patterns missed by CALIPER expecially where the
amount of diseased tissue is high (see Fig 7);

2. UIP-net detected lung disease in the intestine and labelled vessels and air-
ways as lung tissue. On the contrary, CALIPER manages to discriminate
both vessels and airways.

Fig. 7. On the left: the ground truth. On the right: UIP-net predicted segmentations.
At the top: in the blue boxes, there are pixels detected by UIP-net but ignored by
CALIPER. At thehttps://www.overleaf.com/project/5f686a151c2b180001f801de bot-
tom: on the left, the arrows point to the vessels segmented by CALIPER, but ignored
by UIP-net; on the right, the red box highlights the intestine mistakenly segmented by
UIP-net.

In order to evaluate how the discussed issues affect the quantitative measures
of the performance of UIP-net, a post-processing step was carried-out.

Firstly, false detections in the intestine were removed using the method pro-
posed by Ross et al.[21] that allows to obtain masks containing only lungs.
Briefly, this involves initial gray level thresholding using Otsu’s method followed
by morphological closing to fill in high attenuating areas within the lung field. In
order to properly label airways outside the lung field, component region growing
was applied. Once the region of the trachea is determined, an initial threshold
and seed location are selected to initialize the region growing algorithm to ex-
tract the airway tree. The obtained masks contain lungs without airways but
with vessels. Thus, in order to extract vessels from lungs, the method proposed
by Sato et al.[22] was used. This involves 3-D line enhancement filtering with
which accomplishes the following:

1. Recovery of line structures of various width, especially thin structures;
2. Removal of the effects of non-linear structures and of noise and artifacts.

Both methods were implemented using 3-D Slicer software and Chest Imaging
Platform (CIP) framework. Once binary masks of the whole lungs and vessels
were obtained, they were combined in order to get another one with only lungs
which allowed to keep only segmented pixels belonging to lungs, thus removing
those belonging to vessels and intestine (see Figure (8)).
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Fig. 8. On the top: predicted segmentations of UIP-net before (left) and after (right)
post-processing. On the bottom: ground truth (left) compared to predicted segmenta-
tion of UIP-net after post-processing (right).

The same quantitative evaluation measures described in section 4.2 were then
computed (see Table 3 with maximum values highlighted in green and minimum
in red).

Table 3. Quantitative evaluation measures after post-processing.

P1 P2 P3 P4 P5 P6 P7

Dice 84.43% 77.4% 65.77% 62.28% 75.43% 60.1% 64.58%

BF-score 96.07% 96.1% 96.71% 91% 93.6% 89.2% 94.14%

Sens 75% 84% 85.87% 76.3% 80.7% 75% 78.1%

Spec 100% 98.33% 98.66% 99.2% 99.3% 99% 98.87%

In Table 4 mean values with standard deviations of evaluation measures
before post-processing and after post-processing are compared.

Table 4. Mean value and standard deviation of evaluation measures before and after
post-processing

Dice BF-score Sensitivity Specificity

Before post-processing 63.10%±7% 78.8%±3% 79%±4.4% 98.5%±0.4%

After post-processing 70%±9% 93.8±2.8% 79.2±4.4% 99±0.5%

Volume estimation and comparison with CALIPER In order to evaluate
the reliability of UIP-net in quantifying the volume of diseased tissue in the
lungs, 60 HRCT scans were used. The scans were provided as input to the
network to segment the UIP pattern. The segmentations were then imported in
3D-Slicer and, through CIP framework, the measures of volume of diseased tissue
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in each scan (in cm3) were computed. The comparison with those estimated by
CALIPER was done through the Bland-Altman plot (see Table 5 and Figure 9)
since it provides a visual representation of the agreement between two different
methods.

The difference between UIP-net and CALIPER were acceptable: in Fig. 9 can
be seen that most measures fall in the range between the lower and the upper
Limit Of Agreement (LOA).

Table 5. Mean value (bias) and standard deviation of raw differences calculated be-
tween the measurements of volume obtained with UIP-net and CALIPER. Lower and
Upper Limit of Agreement (LOA) were mean±1.96×standard deviation. Bias, lower
LOA and upper LOA are shown on Bland-Altman plot as dashed lines.

Raw Differences (cm3) Lower LOA Upper LOA

UIP pattern volume 69.18041 ± 584.6433 -1076.72 1215.081

Fig. 9. Bland-Altman plot. Average and raw differences between UIP-net and
CALIPER measurements (x-axis and y-axis respectively). The dashed lines indicate
the lower and the upper LOA.

4.3 Discussion

Quantitative analysis of predicted segmentation of UIP-net and volume estimates
followed by comparisons with CALIPER highlighted some aspects.

First of all, the lower values of Dice score, which was less correlated with
human visual opinion than the others evaluation measures, could be due to the
inhomogeneities of ILD. Indeed, Dice score works best with the segmentation of
compact diseases like nodules, but ILD is mostly uneven within the lungs (Fig.
10).

On the other hand, BF-score was always consistent with visual assessment
and took higher values than Dice score. At last, although specificity had always
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highest values, it is not clear if such measure is accurate. As mentioned above,
IPF is heterogeneously distributed within the lungs and tends to be present
mostly in the middle and lower lung fields, so the many null pixels of apical
slices of the same scan, might unbalance the measures (Figure (10)). On the
contrary, sensitivity can be taken as a reference measure and it had similar
values to BF-score.

Fig. 10. On the top: an example of sparsity of the segmentation. On the bottom: an
example of images with null pixels which unbalance the value of specificity. Original
image (left), ground truth (center), predicted segmentation (right).

Overall, the UIP-net demonstrated good performance metrics and these re-
sults are encouraging. BF-score after post-processing reached a maximum of
83.73%. The post-processing results demonstrated that the misclassification of
vessels and intenstine mostly affected the performance. In fact, all the computed
indices increase: Dice score increases of 7%, while BF-score increases of 15%
reaching a maximum of 96.71%. Thus, finer pre-processing can solve the issue.

Another consequence of a wrong pre-processing can be seen in Figure 11:
some pixels belonging to the abdomen were mistaken for belonging to the lungs
and appear on the final image given as input to UIP-net. Consequenlty, UIP-net
analyze them and find the disease. This fact is reflected on the outliers in red of
Figure 9 which represent the increased amount of diseased tissue detected.

Fig. 11. Original image after an incorrect pre-processing (left): the abdomen are mis-
taken for lungs by the clustering algorithm. Segmentation mask outputted by UIP-net
on the right.

5 Conclusion

In this work, a CNN named UIP-net was proposed for the detection of UIP
patterns in HRCT images. A novel architecture was designed in order to preserve
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fine details of the texture, thus taking advantage of the excellent quality of the
images, both in term of spatial resolution and bit depth.

Future works will consist in:

1. Validating the current version of the UIP-net on additional data.
2. Modifying the network in order to:

– take into account the 3-D nature of the UIP pattern;
– provide a differential characterization of UIP patterns (e.g to discrimi-

nate between honeycombing and GGO).
3. Improving the generalizability and reliability of the CNN testing it on images

belonging to different acquisition contexts. In this work, only images acquired
with the same scanner and reconstructed with B60 kernel were involved.

4. Investigating unsupervised and label-independent learning, to boost UIP-
net’s performance and generalization ability on data not human-annotated.

5. Using the UIP-net to detect also HRCT manifestations of other diseases,
first of all those produced by Covid-19.
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