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Abstract: Composites made of linear low-density polyethylene (LLDPE) and β-cyclodextrin/D-
limonene inclusion complex (CD-lim) were prepared by melt extrusion to develop a novel food
packaging material. Scanning electron microscopy evidenced a fairly good dispersion of the filler
within the polymeric matrix. Infrared spectroscopy coupled with thermogravimetric analysis con-
firmed the presence of CD-lim in the composites, proving that the applied technology of including
the essential oil within β-CD cages allows for preventing a sizable loss of D-limonene despite a
high temperature and shear applied upon extrusion processing. Moreover, the influence of the filler
on the thermal properties of PE was assessed. It was found that the cyclodextrin-based inclusion
complex significantly fastens the crystallization path of the polyethylene matrix with an improved
crystallization rate of the PE/CD-lim composites compared to the neat polymer.

Keywords: linear low-density polyethylene; polymer composite; food packaging

1. Introduction

Packaging materials are commonly based on polyolefins, mostly polyethylene (PE)
and polypropylene (PP), due to their excellent processing, optical, barrier, and mechanical
properties [1,2]. Almost half of the plastic packaging available on the market is made
of polyethylene, which is attainable in a vast variety of molecular structures, with the
most common being high-density, low-density, and linear low-density polyethylenes [3–6].
Linear low-density polyethylene (LLDPE), used in this study, is a semi-crystalline polymer
consisting of three different morphological phases, namely, crystalline and amorphous
parts linked through an interphase comprising rigid amorphous chain segments [7,8].
Linear low-density polyethylene is most often used to produce reusable and/or single-use
bags, trays, agricultural films, and industrial and consumer packaging, including shrink
and stretch films, as well as food and specialty containers [9]. LLDPE represents a unique
combination of toughness, tear resistance, processability, and low melting temperatures,
with the latter especially important in this study, as detailed below. Despite all the beneficial
features of polyethylene, there is still a need to improve the material for modern active
food packaging designs.

Food packaging is a common, often neglected product; however, it plays a predomi-
nant role in everyday life with the most important aim to provide protection from chemical,
biological, and physical alterations. Current trends such as sustainability, environmental
impact reduction, and shelf-life extension have gradually become among the most im-
portant aspects of designing a packaging system. Active packaging systems are able to
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reduce food waste by providing, apart from an inert barrier against external agents, several
additional functions associated with food preservation, e.g., antimicrobial or antifungal
properties [10]. The introduction of natural ingredients acting towards specific pathogens,
with an emphasis on their positive impact on health, has been widely discussed in the
literature [3,11,12]. Essential oils (EOs) are naturally antimicrobial and antifungal additives
currently used as food preservatives and active ingredients in food packaging [11,13–18].
These volatile substances may be extracted from several citruses (such as orange, lemon,
mandarin, lime, grapefruit, etc.) and/or other plants such as garlic, thymol, oregano,
moringa, tea tree, etc. [19]. Unfortunately, their incorporation into polymer matrices may be
challenging because the melting point of most thermoplastics exceeds essential oil boiling
points. This, in turn, prevents the direct melt mixing of the components and hinders the
antimicrobial properties of the modifier. Therefore, the authors proposed an effective route
that enabled enhancing the thermal stability of an antimicrobial agent, i.e., the encapsula-
tion of an essential oil, namely, D-limonene, within a cyclodextrin cage-like host (CD-lim
inclusion complex). This has been widely discussed in our previous publications [20–22].
We proved that the CD-lim content in poly(butylene succinate) (PBS) and poly(lactic acid)
(PLLA) matrices is able to extend shelf life and improve product quality by both preventing
bacteria and fungi growth and enhancing UV protection. More importantly, the obtained
formulations were fully biobased and biodegradable. However, those beneficial features
were accompanied by deteriorated mechanical properties, which, especially in the case of
naturally stiff PLLA, may be a limiting factor. Taking into account other occurring issues
that cannot be affected, e.g., high cost, yellowish color, low transparency, etc., the potential
application of these biodegradable and biobased polymers may be difficult, mostly when
a long life use time is foreseen for the specific item. Therefore, despite the continuous
development of biobased materials and the drive towards eco-friendly solutions, there
are applications, especially large-scale industrial ones, where synthetic thermoplastics are
still preferred.

It is worth underlining that this issue, despite being significant, is often addressed as
controversial, also from an environmental point of view. In fact, biodegradable polymers
are often difficult to recycle because their reprocessing at high temperatures in many cases
involves material degradation and, in turn, worsened properties. Conversely, like most
thermoplastic petroleum-based materials, polyethylene can be easily recycled into other
products, which is more cost-effective than manufacturing a new product from virgin
plastic. Just to give some context, reusing old plastic saves from 80 to 90% of the energy that
would be required to make the same item from virgin materials [23]. On the basis of the
previous considerations and with an aim to evaluate the potentiality of polyethylene-based
films as novel bioactive food packaging materials, the current research focuses on the
production of linear low-density polyethylene-based composites, in which the CD-lim
inclusion complex represents the functional dispersed phase.

To the best of our knowledge, such a coordinated system consisting of PE and the
CD-lim inclusion complex has not been presented in the literature yet. The idea exploited
the outstanding antibacterial properties of encapsulated D-limonene, as proved in our
previous publications [20–22], which was further dispersed within the linear low-density
polyethylene matrix. To our knowledge, only limited literature is available on polyethylene-
based composites containing β-CD filled with an active compound: an essential oil, such
as carvacrol and cinnamaldehyde [24], or Ferula asafoetida leaf and gum extract [25], but no
data are available on PE containing the CD-lim inclusion complex.

Thermal, structural, and morphological analysis of the PE/CD-lim composites are
detailed and discussed in this manuscript, which is mainly focused on the assessment of
the preparation route, including the quantification of essential oil within the polymer and
its homogeneous dispersion. As this study aims at the development of a novel material
for active food packaging, specific material properties, including optical (haze, gloss,
and transparency), barrier, and mechanical (Young’s modulus, elongation at break, and
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tensile strength), as well as antimicrobial properties, against a variety of gram-positive and
negative bacteria and fungi will be presented in a forthcoming manuscript.

2. Results and Discussion

The morphology of PE/CD-lim composites was investigated by scanning electron
microscopy. The electron micrographs of cryogenically fractured cross-sections of the
composites are reported in Figure 1 and compared with plain PE. For the sake of brevity,
only the composites including 20 wt% of CD and 20 wt% of the CD-lim complex were
reported and compared. The fractured surface of compression-molded linear low-density
polyethylene (Figure 1a) appeared quite smooth, as expected. When 20 wt% of CD was
added to the neat polymer (Figure 1b), surface morphology displayed small voids, as well
as embedded particles distributed along the whole surface of the sample, with some larger
particles also visible on the sample surface. The averaged sizes of the voids and particles
were 5–10 µm, wherein some large particles also appeared. Both dispersed particles and
empty holes are much larger than β-CD molecules, whose external diameter is 1.53 nm [26].
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Figure 1. SEM micrographs of PE (a), PE/20CD (b), and PE/20CD-lim (c).

As far as PE/20CD-lim composites are concerned, it is worth observing the presence
of a coarsened fractured surface, with the dark perimeter area corresponding to the hole left
in the PE matrix from the discrete domains of the CD-lim complex aggregation detachment
and subsequent pulling out. The hole shapes confirmed that an adhesive failure (debonding
at the particle/polymer interface) rather than cohesive failure (either in the particle or in the
matrix) occurred, in this way strengthening the absence of physical compatibility between
linear low-density polyethylene and the CD-lim inclusion complex. These outcomes are
widely described in the literature for similar biocomposites, in particular when natural
hydrophilic fillers are included in a hydrophobic matrix [27]. Actually, cyclodextrins have
hydroxyl groups on the outer surfaces; thus, a poor physical affinity with a hydrophobic
matrix such as polyethylene is expected, leading to the aggregation of the β-CD particles.
Nevertheless, the gathered filler particles appeared homogeneously distributed within the
polyethylene matrix, as seen in Figure 1c. Moreover, only a part of the filler was pulled out
during the cryogenic fracture process; the particles rather remained attached to the matrix,
despite the expected poor compatibility between the components. Moreover, a plastic cryo-
genic fracture, characterized by smoothed fracture planes could be observed in the presence
of the CD-lim complex. Presumably, during the thermal processing, some limonene, likely
adsorbed on the CD surface, could migrate in between the PE macromolecular network,
slightly improving the physical interaction between hydrophobic residues and the interfa-
cial adhesion between the polymer and CD particles. This hypothesis was confirmed by
spectroscopic analysis, as evidenced in the FTIR-ATR discussion presented below.

FTIR-ATR was performed to assess the presence of the main functional groups of
linear low-density polyethylene, β-CD, and limonene inside the PE film after the thermal
processing performed to obtain the sheets.
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For clarity of the discussion of the FTIR-ATR profiles, only neat PE, PE/20CD, and the
sheet doped with 20 wt% of CD-lim inclusion complex spectra are reported in Figure 2a,b
since the FTIR profile of the linear low-density polyethylene sheet containing 30 wt%
of CD-lim shows the same functional groups. As far as PE’s main functional residues
are concerned, two strong asymmetric and symmetric stretching vibrations of the –C–H
methylene groups were observed at 2915 and 2848 cm−1, respectively. The band observed
at 1470 cm−1 was due to the asymmetric deformation vibrations of the same methylene
group, whereas the band occurring around 1462 cm−1 was ascribed to CH2 out-of-plane
wagging mode. The sharp band occurring at around 720 cm−1 was attributed to CH2
rocking vibrations. Due to PE crystallinity, this peak was split with an additional maximum
observed at around 730 cm−1.
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In addition, weak bands located at 1250 and 1160 cm−1, as well as at 1367 and 1135 cm−1,
appeared due to the asymmetric and symmetric bending vibration of the CH group and to
CH2 wagging and CH2 twisting vibrations, respectively [28]. The FTIR spectra of β-CD and
D-limonene have been already shown by the authors in their previous paper [20] and, in
order not to overburden the spectra, they are reported in Figure S1a,b of the Supplementary
Materials. Nevertheless, their main absorption peaks are detailed as follows: The main
characteristic peaks of the cyclic oligosaccharide can be found at around 3300 cm−1 due
to the stretching vibrations of intra–inter molecular OH hydrogen bonded groups and/or
of interstitial water molecules. Moreover, the intense peaks at 2925 and 2854 cm−1 due to
C–H asymmetric and symmetric stretching modes were also visible. In addition, a peak
at around 1650 cm−1 concerned the vibration frequencies of H–O–H deformation bands
of different types of water molecules located inside β-CD cavities. Finally, the peaks at
1153 cm−1 and 1029 cm−1 indicated C–O–C and C–H overtone stretching, respectively.

The FTIR-ATR spectrum of D-limonene shows the following characteristic bands:
3074 and 3011 cm−1 (=C–H stretching vibrations), 2964 and 2921 cm−1 (C–H stretching
vibrations), and 1643 and 1676 cm−1 (C–C stretching vibrations), respectively, of the ring
and vinyl group, as discussed in Ref. [29]. Unfortunately, most of the vibration frequencies
typical of β-CD and D-limonene functional groups are covered by the prominent PE
absorption peaks, as shown in Figure 2 for overlapped (Figure 2a) and stacked (Figure 2b)
spectra. Anyway, two main differences can be highlighted from Figure 2a,b. The first
one concerns the successive rise in vibrational absorption modes around 3000–3500 cm−1

passing from the neat polymer up to the PE/20CD-lim system. This outcome was likely due
to the increase in both β-CD hydroxyl groups and D-limonene vinyl stretching vibrations.
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The second one is related to the peak rise at around 1600 cm−1 due to the vibrational modes
of β-CD water molecules and the C–C stretching vibration of the D-limonene vinyl residues.

The authors conducted a qualitative approach to verify the presence of β-CD inside
linear low-density polyethylene sheet and their likely interaction by means of a spectral
subtraction between PE/20CD and PE in a magnified absorbance scale (a multiplying
factor of about 0.4). The positive insights are reported and discussed in Figure S2 of the
Supplementary Materials. In order to verify the presence of D-limonene inside β-CD torus-
shaped cavity sites and, thus, inside the PE polymer matrix, PE/20CD-lim and PE/20CD
spectra were overlapped, and the attention was mostly focused in the finger-print region,
where the main vibrational modes typical of D-limonene can be found. In Figure 3, the
spectra of PE/20CD-lim (red curve) and PE/20CD (blue curve) sheets are reported. It is
worthy to observe the presence of peaks (black circles) in the bioactive functionalized film at
1158, 1125, 1080, 945, 855, and 760 cm−1 corresponding to the different C–C, C–H bending,
and deformations of the ring and vinyl group in and out of plane [30–32]. The presence of
the above peaks suggests that D-limonene was well encapsulated in β-CD hydrophobic
cages and that the whole bioactive complex was entrapped in the PE matrix and preserved
also after the extrusion, confirming its high-performant thermal stability. Although the
previous outcomes likely suggest the presence of the inclusion complex in the polymer
matrix, thermogravimetric analysis was also performed for quantitative confirmation.
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Figure 3. FTIR-ATR spectra of PE/20CD and PE/20CD-lim.

Thermogravimetric analysis upon heating of plain PE and PE/CD-lim composites are
reported in Figure 4 and Table 1 as mass loss as a function of time, with values normalized
with respect to the initial sample mass. Plain polyethylene starts to lose mass around
450 ◦C upon heating at 10 K min−1 in nitrogen inert atmosphere, with a single mass-loss
step that is completed before 500 ◦C and no sizable ash residue remaining, which is in
agreement with the literature data [33–36]. Decomposition is caused by random chain
scission followed by the radical transfer process, which is typical for polyolefins [33,37].

The addition of the CD-lim inclusion complex largely varies the pyrolysis profile
of polyethylene, with the appearance of multiple degradation steps, highlighted in the
enlarged part. The varied profile is caused by the partial evaporation process of D-limonene
that overlaps with the release of free and freeze-bound water on the β-CD outer surface up
to 120–130 ◦C [21], followed by a slow mass release when D-limonene is gradually released
from β-CD cages, then by a mass drop that starts around 300 ◦C due to the decomposition
of β-cyclodextrin. The mass remaining before the thermal degradation of β-CD allows
for estimating the fraction of terpene oil that remains within the PE/CD-lim composites
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after processing [21]. At 290 ◦C, the PE/20CD-lim lost 1.1% of the initial mass, whereas the
sample containing 30 wt% of filler had a mass decrease of 1.8% compared to the original
value, as highlighted by the blue- and red-dotted horizontal lines in the plot. The fraction
of D-limonene within the sample, estimated from the enlarged plots, compares well with
the expected content of terpene oil in the composites. In fact, the procedure used to prepare
the CD-lim inclusion complex allows the inclusion of 7 m% of limonene within β-CD [21];
hence, the theoretical values expected within the composites are 1.4 and 2.1 m% for the PE
samples containing 20 and 30 wt% of CD-lim, respectively. These data indicate that only
a small fraction of D-limonene is lost during the preparation of the composites and that
the preparation route allows for successfully preparing composites containing D-limonene
encapsulated within β-cyclodextrin cages.
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Figure 4. Thermogravimetric analysis (TGA). Mass loss upon heating in nitrogen atmosphere of
PE/CD-lim composites compared to pure PE matrix.

Table 1. Crystallinity degree, crystallization onset temperature (Tc,ons), degradation onset tempera-
ture (Td,ons), and D-limonene content in the PE/CD-lim composites.

Sample Name
DSC TGA

Xcr (%) Tc,ons (◦C) Td,ons (◦C) D-limonene
Content (%)

PE 54 109.7 463.5 -

PE/20CD 64 111.2 308.5 -

PE/20CD-lim 63 111.2 302.5 1.1

PE/30CD-lim 60 112.1 303.6 1.8

Thermal analysis of linear low-density polyethylene, both plain and modified with
β-CD or CD-lim, is presented in Figure 5a,b. Figure 5a illustrates the thermal profiles of
compression-molded sheets upon heating at 10 K min−1. All plots display a major melting
endotherm peak at 124.5 ◦C, whose position does not vary with composition. Conversely,
the size of the endotherm is affected by filler content, revealing a varied crystallinity of
the material. Crystal fraction was estimated by a comparison of the experimental melting
enthalpy with the thermodynamic value taken from [38]. Crystallinity values normalized
to PE content (Xcr) are presented in Table 1, which evidences the effect of the natural filler
in favoring the crystallization of LLDPE. Compression-molded plain PE displays a crystal
fraction of 54%, which increases to 60–64% upon the addition of β-CD or CD-lim.
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Further information on the effect of the filler on the crystallization of linear low-
density polyethylene was gained by cooling the melted polymers at 5 K min−1, with the
corresponding heat flow rate plots presented in Figure 5b. The cooling profile of the plain
polymer is typical of LLDPE, with a major sharp exotherm followed by a much broader
exotherm that extends down to low temperatures [39,40]. The onset of the major exotherm,
measured as the intersection of the inflectional tangent with the extrapolated baseline [41],
is affected by composition, with the data from the various samples also reported in Table 1.
The onset of the crystallization of plain linear low-density polyethylene, occurring at
109.7 ◦C, is anticipated to be 111.2 ◦C in the composite containing 20 wt% of β-CD or
CD-lim and 112.1 ◦C in the composite containing 30 wt% of filler. These data evidence that
β-CD, either in its emptied form or filled with D-limonene can promote the crystallization
of LLDPE in its early stage, probably favoring crystal nucleation. A similar nucleating
effect was also reported for poly(L-lactic acid) composites containing β-CD containing
D-limonene [21], which suggests that CD-lim may also be used as an additive to enhance
the crystallization rate.

3. Conclusions

Linear low-density polyethylene composites containing the β-cyclodextrin/D-limonene
inclusion complex were prepared via melt mixing in various formulations, from 20 to 30
wt% of filler content, and their structural, thermal, and morphological properties were
presented and discussed here. The preparation route via extrusion mixing ensures the
homogeneous distribution of β-CD and CD-lim particles within the polyethylene matrix,
as proved by scanning electron microscopy analysis. The homogeneous dispersion of
β-cyclodextrin within polyethylene was not a priori expected, because cyclodextrins have
hydroxyl groups on the outer surfaces; hence, the poor affinity with a hydrophobic poly-
mer matrix such as polyethylene could have led to the aggregation of the β-CD particles.
As shown by infrared spectroscopy analysis, it is likely that during the melt processing,
part of the limonene, possibly adsorbed on the β-CD surface, could have migrated to PE,
thus, improving the interaction and interfacial adhesion between the polymer and the
filler particles.

Most importantly, the inclusion of D-limonene within β-CD cavities prevents the
loss of the volatile essential oil upon composite preparation. Despite the fact that the high
processing temperature should lead to large evaporation of the terpene oil, a sizable amount
of D-limonene was proven to remain within the composites. The inclusion of D-limonene
within the β-CD cages avoids the release of the volatile compound upon melt extrusion,
as only a small fraction of the terpene is lost during the preparation of the composites.
Therefore, the preparation route detailed here allows for successfully preparing composites
containing D-limonene encapsulated within β-cyclodextrin cages, which is a key issue for
the antibacterial properties of the films.

Moreover, the fillers act as nucleating agents for polyethylene, as the films containing
20–30 wt% of modifier have increased crystallization temperature from melt and enhanced
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crystallinity degree compared to neat polyethylene. The enhanced crystal fraction is of
importance to evaluate the influence of the filler on material properties. In fact, the addition
of the CD-lim modifier into the linear low-density polyethylene matrix is also expected to
influence other—crucial from a food packaging perspective—properties, such as optical,
barrier, and mechanical features. Therefore, an analysis of the above will be presented and
discussed in a forthcoming paper, together with a thorough investigation of the antibacterial
and antifungal activity of this novel material.

4. Methodology
4.1. Materials

A commercial linear low-density polyethylene DowlexTM 2045G, abbreviated PE or
LLDPE, with MFR 1 g/10 min (190 ◦C, 2.16 kg), and 1-octene comonomer content of
2.7 mol% was purchased from The Dow Chemical Company (Midland, MI, USA) [42].
β-cyclodextrin (β-CD) with a purity of ≥99% was provided by Cyclodextrin Shop (Tilburg,
the Netherlands). The materials were used after drying under vacuum at 50 ◦C for 24 h
before extrusion. D-limonene technical grade (~90% purity) was supplied by Sigma-Aldrich
and used as a raw material in the microencapsulation process.

4.2. Preparation of CD-lim Inclusion Complex and Composites

An inclusion complex of β-cyclodextrin and D-limonene was obtained via precipi-
tation, as detailed in our previous works [20–22]. PE pellets were mixed with CD-lim
complex in a rotary mixer Retsch, type GM 200 for 3 min at a rotation speed of 2000 rpm.
Homogenization of the premixed materials with different CD-lim inclusion complex con-
tents (from 0 to 30 wt%) was ensured by molten state extrusion with a Zamak corotating
twin-screw extruder operated at 160 ◦C and 60 rpm. The extruded rod was cooled in air
and pelletized. PE-based composites modified with CD-lim at various compositions were
prepared, as summarized in Table 2.

Table 2. Symbols and mass concentrations of samples.

Sample Name
Mass Concentration [wt%]

LLDPE CD CD-lim

PE 100 0 0
PE/20CD 80 20 0

PE/20CD-lim 80 0 20
PE/30CD-lim 70 0 30

CD: β-cyclodextrin, CD-lim: β-cyclodextrin/D-limonene inclusion complex, and LLDPE: linear low-density
polyethylene.

The composites were prepared via the compression molding method using a hydraulic
press, manufactured by the Remi-Plast (Czerwonak, Poland), at a temperature of 160 ◦C at
a maximum load of about 180 Pa to obtain 2 mm thick sheets. Prior to the forming process,
the materials were dried under vacuum at 50 ◦C for 24 h. The samples were cooled in the
air at room temperature after thermal processing.

4.3. Methods
4.3.1. Scanning Electron Microscopy (SEM)

Cryogenically fractured cross-sections of PE-based composites were analyzed using
a Quanta 200 FEG, 338 FEI scanning electron microscope (Thermo Fisher Scientific, Eind-
hoven, the Netherlands). SEM microphotographs were collected at room temperature
and voltage of 20 kV. Before analysis, the surfaces of the samples were sputter-coated
with an 18 ± 0.2 nm layer of Au-Pd alloy by a MED 020 splattering device, Bal-Tec AG
(Pfaffikon, Switzerland).
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4.3.2. Attenuated Total Reflection Fourier-Transform Infrared (FTIR-ATR)

Attenuated total reflection fourier-transform infrared (FTIR-ATR) spectroscopy of
PE/CD-lim composites was carried out on the surface of the compression-molded films.
Details of the FTIR-ATR spectra of neat β-CD, D-limonene, and CD-lim complex were
performed and reported in [20]. The spectra were collected on a PerkinElmer Spectrum
100 spectrometer equipped with a Universal ATR diamond crystal sampling accessory
(Netzsch, Waltham, MA, USA). All the samples were analyzed at room temperature in the
range of 4000–480 cm−1, recorded as an average of 64 scans with a resolution of 4 cm−1.
Before testing, all samples were dried in an oven at 60 ◦C for 24 h.

4.3.3. Differential Scanning Calorimetry (DSC)

Thermal properties were investigated with a Netzsch DSC 204 F1 Phoenix® (Netzsch,
Selb, Germany) apparatus, using aluminum crucibles and 3 ± 0.5 mg samples under nitro-
gen flow. High purity standards were used to calibrate the instrument, including indium,
tin, bismuth, zinc, and aluminum. Indium melting enthalpy was used for energy calibration.
All the samples were heated from 30 ◦C to 200 ◦C at a heating rate of 10 ◦C min−1 and held
in a molten state for 5 min and then cooled to 30 ◦C at 5 ◦C min−1.

4.3.4. Thermogravimetric analysis (TGA)

TGA analyses were performed in the temperature range between 30 and 800 ◦C, at
a heating rate of 10 ◦C min−1, under a nitrogen atmosphere using a Netzsch TG 209 F1
apparatus (Netzsch, Selb, Germany) calibrated by analyzing several standards, including
In, Sn, Bi, Zn, Al, and Ag. The decomposition onset temperature, To, of approximately
10 mg samples, was determined at the intersection of tangents to two branches of the
thermogravimetric curve [43]. Each measurement was preceded by an empty pan run,
which was subtracted from each thermogram to correct instrumental drift [44].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031220/s1, Figure S1: FTIR-ATR spectra of β-CD (a)
and D-Limonene (b). Figure S2. FTIR-ATR spectral subtraction in magnified absorbance scale (azure
curve) between PE/CD (blue curve) and PE (red curve).
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21. Dobrzyńska-Mizera, M.; Knitter, M.; Mallardo, S.; Del Barone, M.C.; Santagata, G.; Di Lorenzo, M.L. Thermal and Thermo-
Mechanical Properties of Poly(L-Lactic Acid) Biocomposites Containing β-Cyclodextrin/d-Limonene Inclusion Complex. Materi-
als 2021, 14, 2569. [CrossRef] [PubMed]
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