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Abstract 
Dynamics of pollutants from land to deep sea have been investigated in a pilot area of the central 
Mediterranean basin (Gulf of Cagliari, S Sardinia) where important industrial plants are sited since 
beginning of the last century. The deep-sea (>200 m) has long been considered a pristine 
environment due to its remoteness from anthropogenic pollution sources. Nonetheless, in 
continental margins, canyons appear to act as natural conduits of sediments and organic matter 
from the shelf to deep basins, providing an efficient physical pathway for transport and 
accumulation of particles with their associated land-produced contaminants. The continental 
slope of the south Sardinia has been used as a natural laboratory for investigating mechanisms 
and times of transfer dynamics of contaminants from land to sea and from shelf and deep sea 
through an articulated system of submarine canyons. Five sediment cores dated by 210Pb and 137Cs 
reveal: i) a complex dynamics of organic and inorganic pollutants from point source areas on land 
to the deep sea and ii) a crucial role played by canyons and bottom morphology as primary 
pathway conveying sediments and associated contaminants from sources to very far deep sea 
environments. This study unequivocally suggests that land and deep sea appear much more 
connected than previously assumed. This is challenging mostly in regions where coastal pollution 
could represent critical threats for larger areas of the Mediterranean Sea. 
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Abstract 15 

Dynamics of pollutants from land to deep sea have been investigated in a pilot area of the 16 

central Mediterranean basin (Gulf of Cagliari, S Sardinia) where important industrial plants 17 

are sited since beginning of the last century. The deep-sea (>200 m) has long been considered 18 

a pristine environment due to its remoteness from anthropogenic pollution sources. 19 

Nonetheless, in continental margins, canyons appear to act as natural conduits of sediments 20 

and organic matter from the shelf to deep basins, providing an efficient physical pathway for 21 

transport and accumulation of particles with their associated land-produced contaminants. 22 

The continental slope of the south Sardinia has been used as a natural laboratory for 23 

investigating mechanisms and times of transfer dynamics of contaminants from land to sea 24 

and from shelf and deep sea through an articulated system of submarine canyons. Five 25 
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sediment cores dated by 210Pb and 137Cs reveal: i) a complex dynamics of organic and 26 

inorganic pollutants from point source areas on land to the deep sea and ii) a crucial role 27 

played by canyons and bottom morphology as primary pathway conveying sediments and 28 

associated contaminants from sources to very far deep sea environments. This study 29 

unequivocally suggests that land and deep sea appear much more connected than previously 30 

assumed. This is challenging mostly in regions where coastal pollution could represent critical 31 

threats for larger areas of the Mediterranean Sea. 32 

 33 

Key words 34 

Tyrrhenian Sea, submarine canyons, deep sea, pollution focusing 35 

 36 

1 Introduction 37 

Coastal marine areas are under increasing pressure due to various anthropogenic activities 38 

with their relevant input of pollutants to the sea and consequent concerns for the fragile 39 

marine ecosystems. The complex biogeochemistry of inorganic and organic contaminants in 40 

the marine environment combined to their persistence and limited potential for degradation, 41 

produces long-term residence time, long-range potential transport and relevant effects of 42 

bioaccumulation and biomagnification in the trophic web (e.g., Lohmann et al., 2007; 43 

Scheringer et al., 2009). Pollutants in the marine sediments undergo a combination of 44 

chemical (e.g., adsorption/desorption, water/particle exchanges, etc.), early diagenetic and 45 

sedimentological processes (e.g., re-suspension and re-deposition), which make difficult to 46 

track, in terms of chemical and physical dynamics, their evolution in the marine environment.  47 

Recent investigations demonstrated that many chemical pollutants reach the deep-sea (e.g. 48 

Storelli et al., 2009; Jamieson et al., 2017) representing, with the reduced physical and 49 

chemical dynamics of this environment, a long-term risk with unpredictable effects for the 50 
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deep ecosystem (Froescheis et al., 2000; Covaci et al., 2008). The deep-sea (>200 m) has long 51 

been considered a pristine environment due to its remoteness from anthropogenic sources. 52 

Nevertheless, in continental margins, canyons act as natural conduits of sediments and 53 

organic matter from the shelf to the deep basins, providing an efficient physical pathway for 54 

transport and accumulation of particles with associated land-produced pollutants. Several 55 

recent multidisciplinary projects have focused on the study of canyons, and have considerably 56 

increased our understanding of their ecological role, the goods and services they provide to 57 

humans, and the impacts that anthropogenic activities have on their ecological condition 58 

(Fernandez-Arcaya et al., 2017). Being a link between coastal areas and deep oceans, they 59 

serve as conduits for the transport of sedimentary material from the surface to the bottom of 60 

the sea (Fabres et al., 2008). Also, the role played by canyons in transporting pollutants to the 61 

deep sea is enormously reinforced when they are the locations of highly dynamic shelf to 62 

basin export processes (i.e. Dense Shelf Water Cascading-DSWC in the NW Mediterranean Sea; 63 

Canals et al., 2006). In this context, the continental slope of the south Sardinia is an interesting 64 

natural laboratory for exploring mechanisms and timing of transfer dynamics of contaminants 65 

from land to sea and from shelf to deep-sea through an articulated system of submarine 66 

canyons and specific source areas. An ensemble of chemical analyses of radionuclides, 67 

inorganic and organic compounds from sediment cores sampled from coastal to deep-sea 68 

areas provide a unprecedented opportunity to investigate dynamics of contaminants from the 69 

land sources to the marine sinks. 70 

 71 

2 Site description 72 

The Gulf of Cagliari (CG) is placed in the SE sector of Sardinia (Figure 1A), where fluvial 73 

sedimentation since Pleistocene caused favourable conditions for the development of coastal 74 

lagoons separated by the rhodalgal limestones Miocenic hills of Cagliari (Cossellu et al., 2006; 75 
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Kalb et al., 2008). Holocenic sandbars complete the evolution of the coastal margin. Clayey, 76 

sand and siliciclastic carbonate sediments characterize the latest Pleistocene-Holocene 77 

stratigraphy of Cagliari Basin. Because of sediment supply, sea-level changes and tectonics, CG 78 

has a pronounced shelf that extends about 15-20 km south-eastward (Lecca et al., 1998). The 79 

shelf abruptly interrupts with a marked break in slope located at 60/80 m below sea level 80 

(bsl). Extensive canyons (and several tributary incisions) dissect the offshore-continental 81 

slope margin of CG, named Pula (PC), Sarroch (SC), S. Elia-Foxi (SEC) and Carbonara (CC), 82 

respectively (Figure 1B). In this area, also two major seafloor relative highs are present: the 83 

Carbonara Ridge (CR) and the Banghittu Knoll (BK; Figure 1B and 1C). CR is a 85 km long, 25 84 

km wide NE-SW striking seamount rising more than 1000 m from the surrounding seafloor 85 

(Figure 1C). The deeper flanks of CR slopes are located at 1250 m bsl, while its apical sector 86 

reaches 156 m bsl. BK is located in the SW sector of CG, on the uppermost portion of the slope, 87 

where it acts as a physiographic boundary between SC and PC. BK shows an almost flat, SW 88 

gently dipping top (ca 0.5°) on its apical part, which is located between 110/140 m bsl. 89 

The presence of two major industrial complexes dominate potential inputs of contaminants at 90 

sea from the coastal area of the CG: the major and industrial area of the Cagliari town and, in 91 

the westernmost part of the gulf, the refinery industrial plant of Sarlux-Saras (Figure 1). 92 

 93 

3 Data and methods 94 

Seafloor bathymetry and sediment cores were acquired during the Anomcity_2014 95 

oceanographic cruise on-board of the R/V Minerva Uno (National Research Council, CNR). 96 

Bathymetric data were used to deploy a Digital Terrain Model (DTM) covering an area of 97 

17’000 km2 in the 2670 m to 1 m bsl bathymetric range.  98 

Five sediment cores were collected using a box-corer, at depths ranging from 475 and 1153 m 99 

(Figure 1A and 1B; Table 1). The A2TM and A3TM cores are located at a depth of about 600 m 100 
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bsl in the SEC and SC canyon branches, respectively; these two sampling sites were selected 101 

where a slope decrease in the seafloor morphology has been observed. The A4TM sets at the 102 

confluence of SEC and SC active branches, at a depth of about 900 m bsl, while the A6TM was 103 

sampled at the confluence of the PC active branches (SW from A2TM and A3TM, at about 780 104 

m bsl). Finally, the A7TM lies SE from the apical sector of the CR main axis, at about 1140 m 105 

bsl depth. Core sub-samples were prepared for grain size, geochemical and radiometric 106 

analyses. Cores analysis included: radionuclide measurements, grain-size fraction, 107 

concentrations of Al, Fe, Mn, Cd, Pb, Co, V, As, Cr, Cu, Ni, Zn, Hg, TOC, TN, PAHs (16 US-EPA 108 

priority congeners) and PCBs. Results are reported in Supplementary Table S1. A full 109 

description of data and methods can be found in the additional materials (see text in 110 

Supplementary Material).  111 

 112 

4 Results 113 

 114 

4.1 Seafloor morphology 115 

The morphology shows the existence of several abandoned canyon branches, partially filled 116 

by sediments and presently unlinked to the active sections of SC and SEC (Figure 1B). 117 

Contrary to the active canyon thalwegs, minor incisions tend to disappear toward deeper 118 

sectors of the slope. Since their intrinsic sediment dynamic, the CG active set of canyons and 119 

incisions rules the mechanism of sediment distribution from land to deep sea (e.g., Puig et al., 120 

2014). The overall emplacement of uppermost branches of canyons is mainly controlled by 121 

the slope direction, i.e., ca NW-SE (Figure 1B and 1C). On the contrary, the presence of CR, 122 

located at the slope foot, constraints the pattern of deeper segments of canyons (Figure 1B).  123 

 124 

4.2 Radionuclide tracers and chronology  125 
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The combined use of 210Pb and 137Cs profiles provides a solid based geochronology during the 126 

last century, since these elements have similar half-lives (22.23y and 30.05y, respectively) but 127 

quite different inputs in the environment: natural 210Pb is continuously produced by its 128 

parents while artificial 137Cs is time dependent (Hancock et al., 2000; Smith, 2001). In fact, 129 

137Cs has been diffused in the environment mainly during the nuclear tests in atmosphere in 130 

the 1945-1963 period and then reached an ubiquitous distribution. In the marine 131 

environment, a large fraction of radionuclides and pollutants is associated with particles and 132 

fine sediments (Baskaran et al., 1993; van Wijngaarden et al., 2002 and reference therein) 133 

settling through the water column and reaching the seafloor. Therefore, high deposition of 134 

137Cs marks sites with high accumulation of recent fine particles.  135 

210Pbxs and 137Cs downcore profiles in the five sediment cores of this study are shown in 136 

Supplementary Figure S1. The A2TM and A3TM cores (SI Figure S1A and S1B) show a clearly 137 

visible 137Cs sub-surface peak in the downcore activity profiles. At station A2TM, assuming a 138 

Constant Flux of 210Pb and a Constant Sedimentation rate (CF:CS model) (Appleby, and 139 

Oldfield, 1992; Robbins, 1978) in the last century, a Mass Accumulation Rate (MAR) of 0.24 ± 140 

0.01 g/cm2 y, equivalent to a Sediment Accumulation Rate (SAR) of 0.33 ± 0.01 cm/y, is 141 

calculated. With this MAR value, the 137Cs sub-surface peak (mass depth = 12.3 g/cm2) 142 

corresponds to the year 1963 ± 2, in perfect agreement with the real maximum fallout 143 

deposition in 1963. Furthermore, 137Cs disappears below 16,27 g/cm2, dated back to 1946 ± 2, 144 

very close to the beginning of the nuclear weapons testing. Consequently, the 210Pb dating for 145 

the A2TM core is considered to be totally reliable and accurate. Differently for station A3TM, 146 

MAR calculated by the CF:CS model from the 210Pbxs downcore profile is 0.18 ± 0.01 g/cm2 y 147 

(equal to a SAR of 0.26 ± 0.02 cm/y). This dates the 137Cs peak (mass depth = 6.5 g/cm2) at 148 

1978 ± 3, which is not consistent with the 137Cs global fallout peak in 1963. If we assume a 149 

variable sedimentation rate and apply the Constant Rate of Supply (CRS) model (Appleby, and 150 
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Oldfield, 1978) to the 210Pbxs activity profile, the 137Cs peak dating improves with the result of 151 

the year 1956 ± 5, closer to the 1963 peak. With the CRS calculation, the 210Pbxs dating of the 152 

A3TM core is more reliable although it shows a greater uncertainty than the A2TM core. The 153 

use of two different models highlights a different nature in terms of sedimentary dynamics of 154 

SEC and SC Canyons where the A2TM and A3TM cores are located, respectively. 155 

For the other three sediment cores (A4TM, A6TM and A7TM), 210Pbxs and 137Cs downcore 156 

activity profiles (SI Figure S1C, S1D and S1E) are more disturbed because of post-depositional 157 

processes such as bioturbation and sediment mixing. Furthermore, 137Cs activity profile does 158 

not allow a validation of the 210Pb-based dating models and no reliable dating is available for 159 

sediment cores A4TM, A6TM and A7TM.  160 

 161 

4.3 Grain size, inorganic and organic geochemistry of sediments: trends and potential 162 

sources of pollution 163 

Some relevant features emerge, particularly in the two cores A2TM and A3TM, which reveal in 164 

great detail some of the most important and historically documented anthropogenic impacts 165 

on the near coast during the last 110 years. In particular, in the A2TM core, PAHs, Pb and Hg 166 

increase since 1930, testifying the first industrial activities already well documented for the 167 

Cagliari industrial area (Figure 2A). PCBs have been detected since 1940, immediately after 168 

the industrial use of these chemicals in Italian chemical plants. Also, three time intervals 169 

1900-1940, 1940-1980, 1980-recent well document (particularly in the A2TM core), in terms 170 

of gradually increasing silty fraction (see box plot at the bottom of the Figure 2A), the effects 171 

of anthropogenic damming on land which progressively reduced input of sediments fine 172 

fraction at sea. The PCBs profile in the A3TM core shows a similar behaviour with As and Hg 173 

increasing only since 1960, thus reflecting the start-up of industrial activity in the Sarlux-174 

Saras refinery (Figure 2B). Thus, these two sediment cores document with high accuracy the 175 
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most important anthropogenic events on land with different spatial responses to the two 176 

diverse point sources.  177 

The A4TM core clearly reflects, considering the last ~110 years, anthropogenic inputs from 178 

land of PCB, PAHs, Pb, Hg and As, thus documenting an efficient transport and 179 

accumulation in the sediments (Figure 2C). Although documented in a shorter sedimentary 180 

record, the input of anthropogenic contaminants (PAHs, PCBs, As and Pb) is identified in 181 

the last ~110 years of the A6TM core (Figure 2D). Noteworthy, significant amounts of PCBs 182 

and minor of PAHs, Co, Cr, Ni, V and Zn were also found in the upper part of the A7TM, 183 

characterised by extremely low sedimentation rate (Figure 2E). 184 

 185 

4.4 Inventory of pollutants and patterns of distribution 186 

The estimate of the inventories for the anthropogenic contribution of each single Trace 187 

Element (hereafter TE) in each sediment core layer was calculated firstly by subtracting the 188 

percentage related to the different mineralogical and background components from the total 189 

concentration of the TE and then by multiplying by the mass depth value estimated for each 190 

sample. More in detail, in order to minimize the contribution of grain size and mineralogy on 191 

the concentration of each TE in the sediments and thus estimate the anthropogenic 192 

component, we subtracted the percentage calculated as TE/Al ratio from each point with 193 

respect to the minimum TE/Al documented in each core. On the other hand, background 194 

values for PAHs and PCBs were calculated as the lowest concentration value documented 195 

in the lowermost part of the five cores. Then, for each TE, including 137Cs, the inventory was 196 

calculated as cumulative sum of the concentrations in each sediment layer multiplied by its 197 

bulk dry density and divided by the core surface area (Table 2). 198 

 199 

5 Discussion 200 
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 201 

5.1 Radionuclides as tracers for sediment transport 202 

The levels and the downcore distribution of natural and anthropogenic radionuclides can be 203 

used to derive information about the sediment provenance and composition (Ra isotopes and 204 

40K) and to characterize depositional environments and sediment accumulation rates (210Pb, 205 

137Cs). 206 

The balance of 210Pbxs fluxes (Bq m-2 y-1) at the sediment-water interface is shown for each 207 

station in the Supplementary Figure S2. 210Pbxs flux accumulated in sediments (Fs) exceeds 208 

the estimated flux from atmospheric deposition (Fa) and decay of 226Ra in the water column 209 

(Fm), with the exception of A7TM. In detail, A2TM shows the strongest lateral transport of 210 

210Pbxs, and the 210Pbxs profile of the A2TM station indicates a regular and constant 211 

sedimentation over a ~110 year time scale. These features are in agreement with (Meleddu et 212 

al., 2016) which identify hyperpycnal flows in the northern area of CG that, considering the 213 

limited extension of the continental shelf, influence the development of deposits in the head of 214 

the SEC (Figure 1B). 210Pbxs data of A2TM core identify a sediment deposition transported by 215 

these hyperpycnal flows pointing out the constant SEC sediment transport activity.  216 

Similarly to A2TM, A3TM station shows a significant lateral input of 210Pbxs but displays a 217 

more disturbed trend of 210Pbxs profile. These observations support the hypothesis made in 218 

the CRS model obtained by data (see previous chronology section), thus suggesting a variable 219 

sedimentation supply for A2TM and A3TM on the basis of the 210Pbxs profiles. The obtained 220 

result is substantially in agreement with (Orrù et al., 2014), that mapped two significant 221 

marine slide deposits located in correspondence of Sarroch. These deposits extend from the 222 

edge of the continental shelf to a depth of about 400 m (until the head of SC). Moreover they 223 

are affected by erosion in the SC, causing a less regular deposition at A3TM than at A2TM. 224 

Although, A3TM is located at the same depth of A2TM, its 210Pbxs surface activity is about half 225 
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of A2TM, thus indicating that the A3TM station receives a relevant sediment input from these 226 

marine slide deposits.  227 

A4TM and A6TM are quite similar and show a lower lateral supply of 210Pbxs. However, 228 

210Pbxs fluxes are twice the expected ones by considering the atmospheric and the seawater 229 

contributions only, thus indicating a significant supply of sedimentation.  230 

Differently, the A7TM core (the deepest one) shows a globally lower 210Pbxs flux than the 231 

expected. Here the post-depositional are dominant compared to sedimentation rate values, 232 

very similar to those of the deep sea. Since the CR separate A7TM from the slope, this latter is 233 

poorly interested by sedimentation arising by the shelf and the slope, while is subjected to 234 

other marine sources of sediments as testified by 40K, 234Th and grain size data (SI Table S2 235 

and Figure S4). 236 

 237 

5.2 Inventories of contaminants and sediment patterns distribution 238 

Despite 137Cs in the oceanic water column behaves as a soluble nuclide and hence 137Cs has 239 

properties that make it useful as a water mass tracer, a very little of 137Cs delivered to the 240 

ocean reaches the seabed. At present, there is no global fallout of 137Cs derived from nuclear 241 

weapons testing (Baskaran, 2011). The dominant source of 137Cs in the air is a re-suspension 242 

(e.g. due to agricultural activities) of previously deposited 137Cs in soil and its subsequent 243 

transport by winds (Pham et al., 2013 and references therein). Therefore, 137Cs can be reliably 244 

applied as tracer of terrigenous inputs of fine sediment fraction in coastal areas. 245 

The Cagliari urban area, with its harbour and lagoon, represents the major source point for 246 

sediment release in the CG. Taking into account that, we infer a potential relationship between 247 

the distance of each sampling station from Cagliari and 137Cs inventories. Specifically, the 248 

inventory of 137Cs has been reported in Figure 3: i) against the linear distance estimated from 249 

the main source area (Cagliari; Figure 3A and 3B) and ii) against the estimated morphological 250 
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distance (following the thalweg of the canyon systems located in front of the two major 251 

industrial plants of Cagliari and Sarlux-Saras; Figure 3C and 3D) from land. The plot of 137Cs 252 

inventories from each core vs the linear distances from the nearest coastline measured for 253 

each sample station shows a relatively low fit (Figure 3B). This plot testifies that 137Cs “travels” 254 

from land-to-sea but does not follow the ideal linear connection from a point to the nearest 255 

emerged sectors. Conversely, if we calculate a “morphological distance” from land, assuming 256 

that sediments travel from the shelf to the station following the preferential way of the axis of 257 

canyons, we obtain values that are in very closer relation with the 137Cs inventories (Figure 258 

3C) with a second order fitting line perfectly approximating the distribution of the four values. 259 

Really, the relationship between the “morphological distance” and the 137Cs inventories 260 

should be considered as the first part of an exponential decrease, since this trend must reach 261 

an equilibrium value for high distance from the coast, where the only source has been the 262 

direct fallout. Hence, by subtracting the A7TM inventory to other 137Cs inventories we can 263 

observe the distribution of 137Cs with terrigenous origin (Figure 4). This could suggest that 264 

coastal to deep-sea transport of sediments deposited at seafloor is strongly driven by 265 

morphology and drifting mechanism. Actually, once arrived at the break in slope, sediments 266 

undergone an acceleration and a re-disposing primarily driven by the gravity action of the 267 

over solid-flows on the slope. In addition, they are under the effects of the attractive action 268 

played by canyon axis. In this sense, local morphology plays a major role for sediment 269 

distribution, especially for channels and canyons for which the overall dynamic of sediment 270 

transport is quite faster with respect to the slope activity (SI Figure S3). It is worth stressing 271 

that submarine canyons act as preferential pathway for transport of sediment from the shelf 272 

to adjacent basins (e.g., Shepard, 1981), thus strongly influencing the evolution of the shelf 273 

itself and the overall sediment displacement of a slope (Canals et al., 2004; 2006; Allen et al., 274 

2009; Piper and Normark, 2009; Puig et al., 2014; 2017; Talling, 2014). Presently, the 275 
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transport activity and the exchange of sediments with the upper, adjacent, external 276 

continental shelf seems to be primarily linked to the tectonic activity and the sediment supply 277 

from land. The sediment amount in the uppermost section of the shelf, as a result of 278 

anthropogenic activities (e.g., dredging of harbours or natural event like flash floods, etc.), 279 

may result in a re-activation of sediment transport along the canyon (Carter et al., 2012; 280 

Khripounoff et al., 2012; Puig et al., 2014). This implies that canyons, particularly those 281 

located in area characterized by important tectonic activity, may represent efficient focusing 282 

systems for pollutants from land (see Micallef et al., 2014 and reference therein). Then, once 283 

sediments reach break in slope, they are partially attracted from not incised slopes, partially 284 

by not active channel segments or abandoned canyons and, perhaps goes to fill old valleys.  285 

The calculated TE inventories for the different cores show comparable exponential decrease 286 

with the distance from land (considering the 137Cs as a reliable tracer; Figure 5) but the slope 287 

of this decrease is different for each element, reflecting specific geochemical affinity 288 

(sediment–water distribution coefficients, Kd) with sediments (IAEA, 2004). The PAHs-289 

PCBs group shows an analogue behavior although a slightly more complex trend does not 290 

exclude other PAHs andPCBs sources and deposition mechanisms from the coastal area. 291 

In this study, we documented very fine correlations of sedimentological and chemical features 292 

among dated cores located at different depths and morphologic settings. A primary control of 293 

contaminants transport from land to the deep sea via shelf canyons could represent a 294 

systematic mechanism of contaminants focusing generating hot spots of pollutants in the 295 

uncontaminated ocean sediments from very far point sources on land. Transport mechanisms 296 

by shelf canyons could offer unforeseen fast track system of deep sea contamination. A 297 

dominant geomorphological feature of the Mediterranean basin in terms of shelf-to-deep sea 298 

connection is represented by innumerable canyons, which document geological events 299 

modelling the mid- to long-term regional events. These canyons represent natural conduit 300 
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conveying sediments and associated contaminants from sources on land to very far deep sea 301 

environments. Thus, land and deep sea appear much more connected than previously 302 

assumed in a region where coastal pollution represents a crucial threat for large areas of the 303 

Mediterranean Sea. 304 
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Supplementary Material 306 
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Additional Information regarding materials and methods are detailed descripted and shown 308 

in Figure S1-S4 and Table S1-S2. 309 
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 454 

Figure captions 455 

Figure 1 A) Location Map of Gulf of Cagliari. B) Digital Terrain Model (DTM) of the SE sector 456 

of Sardinia. CG= Gulf of Cagliari; BK=Banghittu Knoll; A-TT=Algerian-Tyrrhenian Trough; 457 

CR=Carbonara Ridge; CV=Carbonara Valley; SPC, PC, SC and SEC=Spartivento, Pula, Sarroch 458 

and San’Elia-Foxi canyons. White capital letters are locations of sampling stations. C) 459 

Elevation profile extracted from the DTM (location is in B). 460 

Figure 2 A) and B) PAHs, PCBs, Hg, As and Pb concentrations vs age in the A2TM and A3TM 461 

sediment cores. Box-whisker plot of silt fraction subdivided in three time intervals (values 462 

in %), is also reported for A2TM sediment core. C), D) and E) PAHs, PCBs, Hg, As and Pb 463 

concentrations vs depth in the A4TM, A6TM and A7TM. Grey bands marks the presence of 464 

137Cs released in the last 60 years. 465 

Figure 3 A) Map showing the distances from Cagliari (which is the main source of sediments 466 

in the Gulf of Cagliari) to the sampling stations (A2TM, A3TM, A4TM and A6TM) and the 467 

distance vs derived 137Cs Inventory plot (B). C) “Morphologic distance” (i.e. the true distance 468 

covered by sediments) calculated taking into account the morphology of the seafloor and its 469 

corresponding higher fitting distance vs 137Cs Inventory plot (D). 470 
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Figure 4 The “morphologic distance”, previously mentioned, vs 137Cs Inventory calculated 471 

considering its terrigenous component (i.e. by subtracting A7TM value) and Hg and Zn 472 

“normalised” inventories (see text for further details) for A2TM, A3TM, A4TM and A6TM.  473 

Figure 5 137Cs inventories vs PAHs, PCBs, Hg, Cu, Zn and Pb plots for all sampling stations.  474 

 475 

Table captions 476 

Table 1 Table of coordinates and water depth of the studied sediment cores together with 477 

sampling site and core length (cm).  478 

Table 2 Inventories values of 210Pb, 137Cs, HPAHs, PCBs and TEs for the studied sediment 479 

cores. 480 

 481 

Supplementary Figures 482 

Figure S1 210Pb and 137Cs activity profiles of A2TM, A3TM, A4TM, A6TM, A7TM sediment 483 

cores collected in the SE Sardinia with indication of water depth (m). 484 

Figure S2 Comparison between the measured and the estimated value of 210Pbxs flux at the 485 

water-sediment interface for the studied sediment cores. Fa + Fm = atmospheric + water 486 

production 210Pbxs flux; Fs = sediment water interface 210Pbxs flux. 487 

Figure S3 On the left is shown the slope map derived by the DTM of Cagliari, while the right 488 

part of the figure displays the flow patterns of sediments. 489 

Figure S4 Profiles of grain size composition vs depth (cm).  490 

 491 

Supplementary Tables 492 

Table S1 Mean values of Al, Fe, Mn Cd, Pb, Co, V, As, Cr, Cu, Ni, Zn, Hg, TOC, TN, PAH and 493 

PCB. 494 
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Table S2 Mean values activity of 226Ra, 40K, and supported 234Th (Bq kg-1, dry weight). 234Thxs 495 

downcore mass-depth with in square brackets the depth value in cm. 210Pbxs and 137Cs 496 

inventories are also reported. 497 



Area ID station Latitudine Longitudine Depth Legth
N E mbsl cm

Gulf of Cagliari 
(Sant'Elia-Foxi Canyon; SEC)

A2TM 39°05'34'' 09°21'29'' 625 33

Gulf of Cagliari 
(Sarroch Canyon; SC)

A3TM 39°00'21'' 09°18'00'' 636 36

Gulf of Cagliari 
(Carbonara Canyon; CC)

A4TM 38°59'01'' 09°29'22'' 907 28

Gulf of Cagliari 
(Pula Canyon; PC)

A6TM 38°46'05'' 09°12'07'' 787 29

SE Sardinia 
(Trough;A-TT)

A7TM 38°43'29'' 09°40'36'' 1153 22
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Inventory  137Cs  ΣHPAHsantr  ΣPCBsantr  Hgantr  Vantr  Cuantr  Pbantr  Znantr  Asantr  Cdantr  Coantr  Crantr  Niantr

Bq m-2 mg m-2 µg m-2 µg m-2 mg m-2 mg m-2 mg m-2 mg m-2 mg m-2 mg m-2 mg m-2 mg m-2 mg m-2

A2TM 740 4.6 66 9724 6019 1077 5004 6250 2165 45 474 2961 1351
A3TM 560 1.6 37 5614 2357 657 1600 2903 628 24 182 1482 617
A4TM 450 1.2 4.1 2724 2491 424 1153 1758 1929 28 205 1759 576
A6TM 360 0.8 5.3 2572 938 292 693 731 816 24 136 730 553
A7TM 110 0.3 2.4 994 146 129 402 251 244 3 43 127 75
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