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Abstract

This paper aims at assessing the influence of environmental parameters on
the modal characteristics of age–old masonry constructions. The results of
a long–term ambient vibration monitoring of the San Frediano bell tower in
Lucca (Italy) are reported. The tower, dating back to the 11th century, has
been fitted along its height with four triaxial seismometric stations, which
were left active for about one year. Data from the monitoring system have
been processed via the Stochastic Subspace Identification Method in order
to identify the tower’s modal characteristics and their variations over the
year. The dependence of the tower’s frequencies on the ambient temperature
was first studied and simulated via simple auto–regressive models. Then,
some output–only models based on the principal component analysis (PCA)
were applied, under the hypotheses of both linear and nonlinear (Kernel
PCA) dependence of the natural frequencies on the unknown environmental
parameters. The results indicate PCA to be an effective tool for detecting
changes in the dynamic characteristics of masonry constructions.
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1. Introduction

Measuring the vibrations of masonry towers is a common practice for
assessing their dynamic behaviour. The first efforts date back to the 1970s
[8], when researchers began to investigate the inertia forces induced on bell
towers by the swinging bells. In [25] the authors presented the results of
an experimental campaign conducted on 19 church towers in England, in
which the towers’ accelerations during bell-swinging were measured and their
fundamental frequencies identified, while in [10] the effects of bell–swinging
on the dynamic behaviour of a masonry tower in Spain are analysed. In
addition to the bells actions, masonry towers are subjected to a number of
vibrations sources, such as traffic, micro–tremors, wind and earthquakes. The
availability of even more sensitive instruments to detect towers’ movements is
allowing researches and engineers to conduct accurate long–term monitoring
campaigns. In fact, ambient vibration monitoring can provide important
information on the structural health of old masonry constructions, as it is
a non-destructive technique able to capture the most important features of
their dynamic behaviour, such as natural frequencies, damping ratios, mode
shapes and wave propagation velocities. Once the influence of environmental
factors has been accounted for, changes in these dynamic properties over
time can represent effective structural damage indicators.

The literature contains few reports on long–term ambient vibration record-
ings on monumental buildings. Among these, paper [17] reports on the vi-
brations of the Mogadouro Clock Tower and the church of the Monastery
of Jeronimo in Portugal, [2] studies the Garisenda and Asinelli towers in
Bologna (Italy), [6] describes the dynamic monitoring of the tower of the
church of San Vittore in Arcisate (Italy) and [5] deals with ambient vibra-
tion testing of the bell tower of the cathedral of Monza. Dynamic monitoring
of Gabbia tower in Mantua (Italy), reported in [7] and [23], furnishes data
before and after the earthquake that struck the North of Italy in May 2012:
a slight permanent variation in the natural frequencies of the tower has been
observed after the seismic event. In all these examples, the influence of en-
vironmental parameters such as temperature and humidity, on the measured
natural frequencies of the monuments has been observed and modelled via
auto–regressive models. Finally, in [26], [27] and [28] authors report on the
monitoring of the San Pietro bell tower in Perugia, study the environmental
effects on its natural frequencies and propose procedures to detect damage.

The environmental parameters affect the dynamic behaviour of monu-
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mental buildings in a peculiar way, which seems to be different from that
for concrete, steel and prestressed concrete structures [14]. For example, in
the cases cited above the natural frequencies of the monuments increase with
temperature. Another issue arises regarding recognition of the most effective
configuration of the ambient sensor network able to capture the correlation
between the monument’s dynamic properties and the external environment.
In addition, in most cases the environmental parameters are measured in a
very limited number of points on the structures. For these reasons, output–
only procedures can prove to be useful. The term “output–only” means that,
given a system subjected to unknown inputs (ambient vibrations and other
environmental factors), only the damage–sensitive features (natural frequen-
cies, for example), which constitute the system’s output need to be measured
for the system to be characterised. A crucial point is that the variations in
environmental conditions are typically much slower than the structural vibra-
tions. Thus, for example, changes in temperature and humidity have daily
or seasonal frequency, while the lowest structural eigenperiods are in the
order of one or few seconds. This enables estimating the damage–sensitive
features of the structure via short sequences of measured data, during which
the structure behaves as a linear time–invariant system, and then considering
these estimated quantities as the outputs of a global model, whose input are
the unknown environmental parameters.

In this paper we present the results of long–term ambient vibration mon-
itoring of the San Frediano bell tower in Lucca. The tower has been fitted
with four three–axial high–sensitivity seismometric stations, left on the mon-
ument for about one year. The velocities recorded by the instruments have
been used for the dynamic identification of the tower. The bell tower and its
monitoring are described in Section 2. A preliminary experimental campaign
on the tower was conducted in May 2015. The results have been presented
in [1], where the tower’s natural frequencies, mode shapes and modal damp-
ing ratios have been estimated from a five day dataset via the Stochastic
Subspace Identification (SSI) Method [15], [19], implemented in the MACEC
[20] code. In [1] a finite–element model has also been built with the NOSA–
ITACA code [4], [12], [16] and applied to estimate the mechanical properties
of the tower’s constituent materials. The results presented in [1] are briefly
summarized at the end of Section 3 herein, which also describes the improved
identification of the tower’s mode shapes obtained by merging data from dif-
ferent sensor layouts. Most of Section 3 is devoted to data analysis. An
automated SSI procedure is applied to the entire monitoring period, after
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dividing the velocities dataset into many one hour long sequences. During
the early hours of 24 August 2016, the signal of the Amatrice earthquake,
that struck central Italy with a 6.0 magnitude, was also recorded on the
tower. Although Lucca is about 400 Km far from Amatrice, the signal of the
earthquake was clearly detected by the sensors, with velocities on the same
order of those induced by the swinging of the bells. No significant damage
was observed on the tower as a result of the seismic event.

Section 4 focuses on the influence of environmental parameters on the
dynamic properties of the tower. Unlike [5], [7], [27], where only linear mod-
els are used, here a nonlinear approach is followed as well. In subsection 4.1
some Auto–Regressive eXternal input (ARX) models are applied by taking
the tower’s natural frequencies as output and the air temperature measured
in Lucca’s historic centre as input. Then, in subsection 4.2, the procedure de-
scribed in [21], which makes use of the Gaussian kernel principal component
analysis (kernel PCA) to study a post–tensioned concrete bridge, is applied
in order to identify output–only linear and nonlinear environmental models.
These models, focused on novelty detection in signal processing, are able to
automatically detect anomalies in the tower’s dynamic response. They are
applied to the recorded data by using different training periods and, in partic-
ular, before and after the Amatrice earthquake, in order to assess the tower’s
structural integrity after the event. Some simple damage scenarios are also
simulated, in order to test the models’ ability to detect structural damage
on the structure. The results indicate that in the case under examination
performances of linear PCA and kernel PCA are comparable.

Although continuous monitoring of structures is a common practice, data
available from long–term measurements on historical buildings are quite
scarce. Thus, the information collected and analysed in this paper on the
changes in the dynamic properties of the bell tower over one year, will en-
hance our understanding of the dynamic behaviour of such constructions and
allow for detecting any structural damages they may undergo.

2. The San Frediano bell tower and the monitoring system

The Basilica of San Frediano (see Figure 1) dates back to the 11th century.
It is one of the most fascinating monuments in Lucca, much of its fascination
being due to the marvellous mosaics that adorn its façade, which glistens
spectacularly in the light of the rising sun. The church’s bell tower is one
of the best preserved in Lucca’s historic centre. It is 52 m high, with walls
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Figure 1: The Basilica of San Frediano in Lucca (Italy). On the left, the San Frediano
bell tower.
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Figure 2: Sections of the tower.

Figure 3: A seismic station on the San Frediano bell tower.
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Figure 4: Sensor placements during the monitoring period. Layout 1 (L1): from 28 May
2015 to 3 June 2015. Layout 2 (L2): from 28 October 2015 to 27 May 2016. Layout 3
(L3): from 27 May 2016 to 16 October 2016.

Figure 5: Sensor placements for the tests conducted on 27 May 2016.
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varying in thickness from about 2.1 m at the base to 1.6 m at the top. The
tower is entered through a masonry staircase leading from the street level to
the first floor, which is formed by a masonry vault set at a height of about
8.6 m (Figure 2). From this level, a stone staircase running along the inner
perimeter provides access to the terminal section of the tower, about 40 m
high, which houses the bells. The bell chamber is separated from the rest of
the structure by a stiff masonry vault, which has been fitted with 4 steel tie
rods of rectangular section. Over the vault, at about 43 m, there is a walkable
wooden floor, which makes it possible to reach the bells. No rigid diaphragms
are present inside the tower between the two vaults: the structure’s section
is not stiffened for about 30 m’s height. The tower bears openings on all
sides and is covered by a pavilion roof made up of wooden trusses and rafters
in a very poor state of maintenance. The San Frediano Basilica adjoins the
tower on two sides for about 13 m of its height. Although little information is
available on the history of the bell tower, the numerous modifications made
to the structure over time are clearly visible. In particular, the upper part of
the structure, now hosting the bell chamber, seems to have been built later
than the rest of the structure. The same appears for the bifora and trifora
windows along the tower. With regard to the mechanical characteristics
of its constituent materials, no experimental information is available at the
moment. On visual inspection, the masonry seems to be made up of regular
stone blocks at the base, while quite homogeneous brick masonry is visible
in the upper section, apart from the central part of the walls, where the
masonry between the windows is made up of stone blocks.

Between May and June 2015 the tower was instrumented with four SARA
triaxial seismometric stations (Figure 3). Each station was equipped with
a SL06 24-bit digitizer coupled to a SS20 seismometer (electrodynamic ve-
locity transducer). The instruments, made available by the Osservatorio
Sismologico of Arezzo (INGV) are usually employed in seismic monitoring
networks. They were arranged on the San Frediano bell tower along a ver-
tical line, as shown in Layout 1 of Figure 4, and left active on the tower for
five days. The results of this experiment are available in [1]. Subsequently,
the instruments were installed again on the tower and left active from 28
October 2015 to 16 October 2016. Over the course of this year, two main
sensor layouts were chosen. In the first (reported as L2 in Figure 4), two
sensors were placed on two opposite sides of the bell chamber, and the re-
maining aligned along the tower. In the second (reported as Layout 3 in
Figure 4) one of the sensor along the tower’s height was moved to the base,
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in order to measure ground vibrations. In this layout the Amatrice seismic
sequence was recorded from 24 August 2016. On 27 May 2016 other experi-
ments were conducted by moving the sensors from layout L2 to three other
configurations in order to improve the mode shapes mapping. The layouts
of these experiments, named T1, T2 and T3, are shown in Figure 5. In all the
experiments the sampling frequency was set to 100 Hz.

3. Data analysis

In Operational Modal Analysis (OMA) the modal parameters of a struc-
ture are calculated from vibration data measured under operational condi-
tions [18]. The structure, subjected to unknown input, is modelled in the
time domain as a discrete linear time–invariant system whose dynamic be-
haviour is governed by the following state–space model:

xk+1 = Axk +wk, (1)

yk = Cxk + vk, (2)

where xk ∈ Rn is the state of the system at the kth time, yk ∈ Rny is the
measured output vector, and wk ∈ Rn and vk ∈ Rny are the process noise
and output noise, respectively. Since the spectrum of the ambient excitation,
included in wk, typically has no dominant frequency components, and vk is
the measurements error, quantities wk and vk are modelled as white noise
random processes. The n × n matrix A and the ny × n matrix C are the
system matrices.

Stochastic Subspace identification (SSI) is a widespread OMA method
in the time domain [15], [19]. In this paper we make use of the covariance
driven SSI algorithm (SSI–cov) implemented in the MACEC code [20], [22],
[19]. The SSI–cov algorithm calculates matrices by using the covariance
functions of the measured output vectors yk. The SSI–cov method allows for
determining the system’s modal characteristics (frequencies, modal damp-
ing ratios and mode shapes) from the eigenvalues decomposition of A. The
model order n is linked to the number of system modes (a system with a
model order n has n/2 modes). Usually, the system matrices A and C are
estimated for many model orders and the corresponding modal character-
istics are calculated. Modes that appear at many orders are called stable
modes and are reported in the stabilization diagram, together with the cor-
responding frequencies and damping ratios.
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The velocities recorded by the monitoring system have been processed
through the SSI–cov method. The records have been divided into short
sequences, each lasting one hour. The effects of swinging bells have been
removed before processing. Then, the natural frequencies, mode shapes and
damping ratios have been calculated from each sequence. The data have
been processed through an automatic procedure implemented in the MACEC
code. To automatically detect the stable modes [14], the following criteria
have been used:

δf ≤ 0.1%, δζ ≤ 5%, δm = 100× (1−MAC) ≤ 1%, (3)

MPC ≥ 0.9, ns ≥ 8, (4)

where δf, δζ, and δm represent, respectively, the frequency, damping ratio
and mode shapes relative differences calculated between poles identified at
a certain order and poles identified at the previous order, and MAC is the
Modal Assurance Criterion [13]. The integer ns is the number of times for
which a pole appears in the stabilization diagram. The conditions on the
Modal Phase Collinearity (MPC) enable considering only modes with rele-
vant real components.

Figures 6 and 7 show plots of the tower’s first four frequencies vs. time for
the entire monitoring period (October 2015 – October 2016). The seasonal
effects can be recognized in the data, which exhibit a sinusoidal behaviour
over the course of the year. The dependence of the frequencies on tempera-
ture is shown in Figures 8 for the one year monitoring period. The first four
frequencies (blue line) and the temperature (red line) measured in January
2016 are plotted in Figure 9. The Figures clearly highlight the influence of
the temperature. As reported in Table 1, the relative differences ∆ of the
frequencies (evaluated on the 1st and 99th percentile) are in the order of
5% − 6%. These variations confirm the results reported in [23]. Daily vari-
ations in the frequency values have also been measured [1]; the maximum
variations in this case are in the order of 2% − 3%. Figure 8 shows the
squared correlation coefficients [3]: the first two frequencies depend almost
linearly on temperature, while the third and the fourth frequencies are less
linearly correlated to temperature. Moreover, the first two natural frequen-
cies are differently influenced by temperature; this could be attributed to the
different behaviour of the church–tower system in the two directions. As ob-
served in other long–term vibration monitoring of ancient buildings [17], [7],
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Mode Natural frequencies
Min[Hz] Min1[Hz] Avg[Hz] Max99[Hz] Max[Hz] ∆[%] σ̃[Hz]

1 1.020 1.074 1.099 1.132 1.197 5.42 0.013
2 1.251 1.342 1.382 1.429 1.449 6.50 0.018
3 3.003 3.376 3.447 3.560 3.931 5.44 0.041
4 4.078 4.522 4.614 4.787 4.980 5.85 0.051

Table 1: The tower’s natural frequencies calculated via the SSI–cov algorithm during the
one year monitoring period: minimum, 1st percentile, average, 99th percentile, maximum
values, relative differences ∆ = (Max99 −Min1)/Min1, standard deviations σ̃.

[27], all frequencies tend to increase with temperature, as an effect of closing
of micro–cracks due to the thermal expansion. A different behaviour has been
highlighted in [28], where the torsional mode of the bell tower exhibits an
opposite trend, as an effect of the thermally-induced slackening of some rein-
forcements elements acting on the transversal section. With regard to Figure
9, temperatures are higher than 0o C and go below in five days for only a
few hours a day. The drastic change in frequency-temperature correlation
found in [28] in freezing conditions, with frequencies increasing with decreas-
ing temperatures, is not so evident in this case, although a similar trend can
be recognized in the coldest days, when the mean daily temperature decrease
below 2◦.

The SSI–cov method, as implemented in the MACEC code, allows for
calculating the variances of the estimated modal characteristics as well [19],
[22]. These variances represent the statistical uncertainty which is caused by
the estimation of the output covariances from the measured output samples
and the subsequent propagation of these estimation errors through the SSI-
cov algorithm.

As the variations over time of the frequencies measured on the San Fre-
diano bell tower are small, a comparison with the errors calculated via the
SSI–cov algorithm has been performed. Figure 10 shows the histogram of the
standard deviations σ of the tower’s first four natural frequencies calculated
by MACEC. Most (more than 90%) of the first three frequencies exhibit σ
values ranging between 0.001 Hz and 0.005 Hz. The fourth frequency exhibits
higher σ values, between 0.01 Hz and 0.07 Hz. A comparison with the data
in Table 1 clearly shows that the variations over time of the fourth frequency
are in the same order as the estimation inaccuracies, while for the first three
frequencies the estimation inaccuracies are one order of magnitude below the
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environmental variations. This larger estimation inaccuracy for the fourth
frequency could be due to the fact that the corresponding mode is less well
excited than the others. Figures 11 and 12 show the tower’s modal damping
ratios calculated for the first four frequencies vs. time and temperature, re-
spectively. The data on damping appear much more dispersed with respect
to the corresponding values of the natural frequencies, revealing amplitude
variations of up to 80%. Moreover, the uncertainties on the estimation of the
modal damping ratios are generally larger than those of the frequencies and
mode shapes. As in the case of the frequencies, the damping ratios tend to
increase with temperature.
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Figure 6: The tower’s first two natural frequencies measured during the monitoring period
(October 2015 – October 2106)
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Figure 7: The tower’s third and fourth natural frequencies measured during the monitoring
period (October 2015 – October 2106)
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Figure 8: The tower’s first four frequencies plotted vs. temperature.
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Figure 9: The tower’s first four natural frequencies (blue line) and the temperature values
(red line) measured during January 2016.
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Figure 10: Histogram of the estimated standard deviations of the tower’s first four fre-
quencies.
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Figure 11: Damping ratios of the tower’s first four mode shapes measured during the
monitoring period (October 2015–October 2106).

18



0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

10.00 

-5
.0

0
 

0
.0

0
 

5
.0

0
 

1
0

.0
0

 

1
5

.0
0

 

2
0

.0
0

 

2
5

.0
0

 

3
0

.0
0

 

3
5

.0
0

 

D
a

m
p

in
g

 [
%

] 

Temperature [ C] 

Figure 12: Damping ratios of the tower’s first four mode shapes vs. temperature.
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Figure 13: The first (bending along x) and second (bending along y) identified mode
shapes.

With regard to mode shapes, in order to evaluate the variation of the
mode shapes with temperature, we have calculated the MAC value between
the mode shapes corresponding to the minimum (-3 ◦C) and maximum (+27
◦C) temperature reached with layout L2, for the four frequencies. These
values range from 0.9891 to 0.9981, thereby suggesting the substantial lack
of dependence of the mode shapes on temperature.

The data from the different sensor layouts (L2 in Figure 4 and T1, T2, T3

in Figure 5) have been superposed, and the resulting mode shapes are shown
in Figures 13 and 14. In particular, Figure 13 shows the first two bending
modes. Figure 14 shows the third torsional mode and the fourth bending
mode along x. For the sake of comparison, Figure 15 reports the first four
mode shapes calculated by the finite–element code NOSA–ITACA via model
updating procedures [1], [16], the bell tower being discretized into 18500
thick shell elements [4]. The corresponding numerical frequencies are 1.17
Hz, 1.37 Hz, 3.34 Hz and 5.05 Hz, respectively. The MAC values between
the identified and numerical mode shapes are greater than 0.94.

4. Assessment of environmental effects

In this Section the effects of environmental changes on the natural fre-
quencies of the San Frediano bell tower are taken into account. In particular,
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Figure 14: The third (torsional) and fourth (bending along x) identified mode shapes.

in Subsection 4.1 an ARX model is used to assess the dependence of the
tower’s natural frequencies on the air temperature. The temperature values
measured during the monitoring period by a sensor located in the Lucca
Botanic Garden (near the tower) constitute the input of the model; the out-
put is given by the measured natural frequencies of the tower (see Figure
8). In Subsection 4.2 an output–only procedure instead applies, able to au-
tomatically remove the environmental effects and the operational influences
from the data and thus detect abnormal changes in the tower’s dynamic be-
haviour. Output–only means that only the tower’s natural frequencies are
required, without any explicit information on the environmental conditions.
This approach turns out to be useful in this monitoring campaign, in which
environmental sensors were not placed exactly on the tower. In both meth-
ods only the first three natural frequencies have been taken into account, in
consideration of the high estimation inaccuracies evidenced in the calculation
of the fourth frequency (see Figure 10).

4.1. ARX models

This Subsection reports the main features of the Auto–Regressive output
and eXternal input (ARX) model [11] and the results obtained. The model
is described by the following relation between the output yk (in this case a
natural frequency) and the input uk (in this case air temperature) at the
instant k:
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Figure 15: The first four mode shapes computed via finite–elements.
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Mode ARX model Static regression model

na nb nk λ̂ na nb nk λ̂
1 2 5 0 3.05 · 10−5 0 1 0 5.98 · 10−5

2 4 1 1 1.21 · 10−4 0 1 0 1.55 · 10−4

3 2 6 2 6.87 · 10−3 0 1 0 1.60 · 10−3

Table 2: Comparison between ARX and static regression models for the first three natural
frequencies of the San Frediano bell tower.

yk +a1yk−1+ · · ·+anayk−na = b1uk−nk
+ b2uk−nk−1+ · · ·+ bnb

uk−nk−nb+1+ ek,
(5)

where na is the auto–regressive order, nb the exogeneous order, nk the time
delay between input and output, ek an error term, modelled as white Gaus-
sian noise in which the unknown inputs and measurement noise are included.
In the equation, the input and output data have been reduced to a zero mean.
In particular, by putting [na, nb, nk] = [0, 1, 0], equation (5) reduces to a static
regression model. For each frequency, the loss function λ̂ [14] has been mini-
mized, via specific functions implemented in MatLab, in order to choose the
optimal values of the triad [na, nb, nk]. The calculations have been performed
over the training period from October 2015 to June 2016. Table 2 reports,
for each of the tower’s three natural frequencies, the optimal values of the
ARX model orders and the corresponding values of λ̂, together with the re-
sults of the corresponding static regression models. The very low values of λ̂
indicate that very accurate models have been found. Little loss of accuracy
is evidenced when passing from ARX models to static models, except for the
third frequency, which appears to depend nonlinearly on temperature.

Figure 16 shows plots of the tower’s natural frequencies vs. temperature
for the entire monitoring period. Blue indicates the experimental values, red
the values simulated via the ARX models. The static regression lines are also
plotted in blue. Figure 17 shows the simulation errors vs. time, calculated
as the difference between the experimental and the simulated values of the
tower’s frequencies. The red dashed lines represent the 95 percent confidence
interval [3], [14]. The vertical red lines on the Figure split the errors in two
parts: the training period lasting about eight months (from October 2015 to
June 2016) and the subsequent validation period, containing the Amatrice
earthquake. According to the criterion stated in [14], if a simulation error
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exceeds the confidence interval, it is likely that something happened to the
tower. As suggested by visual inspection, no systematic tendencies in the
frequency variations are revealed by the figures. The errors on the third
frequency, whose dependence on temperature seems to deviate from linearity,
are larger than those related to the other frequencies.

4.2. Kernel principal component analysis

Kernel principal component analysis (kernel PCA) is here used to detect
the existence of a novelty in measured data by comparing them with the
values predicted by a model calibrated on suitable training data [9], [24]. The
method is based on a nonlinear relationship between the measured output and
the unknown changing environmental conditions and described in [21], where
it is applied for structural health monitoring purposes on a post–tensioned
concrete bridge.

Kernel PCA is a nonlinear generalization of linear PCA. The basic idea is
to map data ŷi, i = 1 . . . ns (with ns number of data samples) from measure-
ments into a high (or infinite) dimensional space F via a nonlinear function Φ,
ẑi = Φ(ŷi), and calculate the singular value decomposition of the matrix Z,
whose columns are the images ẑi of the training data through Φ, i = 1 . . . nt,
with nt ≤ ns. We denote by Um the subspace of F spanned by the eigenvec-
tors of the correlation matrix ZZ∗ corresponding to the m largest singular
values of Z. Given the approximation z̃i of Φ(ŷi), i = 1 . . . ns, if an anomaly
occurs after the training interval, the measured data ẑi for i ≥ nt will not
belong to Um. Thus, the novelty index (or misfit) ∥ei∥ can be defined as the
norm of the projection of the error ẑi − z̃i onto the orthogonal complement
to Um in F . If z̃i is a good approximation of ẑi, then ∥ei∥ is small. Changes
occurring in ẑi are evidenced by values of ∥ei∥ approaching to 1.

In [21] a Matlab tool based on Gaussian kernel PCA has been developed
and applied to a three–span post–tensioned concrete bridge monitored for
one year. In this Section, the numerical tool described in [21] is applied to
the San Frediano bell tower considering its first three natural frequencies.
For the sake of comparison, the results obtained with linear PCA are also
reported. As only three frequencies are available, the number m of retained
principal components in linear PCA can be equal to 1 or 2; the best results
have been obtained for m = 2 and are reported in the following.

Firstly, a training set of nt = 5500 data points has been considered, corre-
sponding to all the measurements recorded before the Amatrice earthquake.
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Figure 16: The tower’s first three natural frequencies vs. temperature (first frequency on
the top). Blue dots: measured values. Red dots: values given by the ARX model. Blue
line: static regression line.
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Figure 17: Simulation error of the first three frequencies vs. time (first frequency on the
top). The red horizontal dashed lines indicate the 95 percent confidence interval. The
vertical line indicates the training period.
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This particular value of nt allows for assessing the tower’s structural condi-
tions before and after the seismic event. The corresponding results are shown
in Figure 18 for the linear and the kernel procedure. We point out that the
absolute misfits for linear and kernel PCA are not directly comparable, since
in linear PCA the misfit is measured in physical space while in kernel PCA,
it is measured in the feature space.In order to highlight a possible novelty in
the structural behaviour of the tower and compare the results obtained via
linear and Kernel PCA, the 95th percentile of the misfits has been evaluated
for the training period (the red horizontal line in the Figure). Then, con-
sidering data measured after the Amatrice earthquake, the percentage N95

of points exceeding the threshold of the 95th percentile has been evaluated:
a percentage greater than 5% indicates a novelty in the tower’s behaviour.
As expected, results of both linear and kernel PCA indicate that negligible
damage seems to be occurred to the tower as a consequence of the earthquake.

Figure 19 illustrates the application of these procedures to a simulated
damage scenario suggested by the results shown in [7], where a slight decrease
has been observed in the natural frequencies of the Gabbia tower (Mantua)
after a seismic event. In Figure the training period coinciding with the entire
monitoring period (blue dots) has been replicated (green dots) by assigning
a decrease of 2%, 1% and 0.5% to the first, second and third natural fre-
quency. These values correspond to those observed for the first two bending
modes and the fourth torsional mode of the Gabbia tower after the seismic
event. The results are shown for the linear (top) and the kernel (bottom)
PCA. The percentage N95 of points exceeding the threshold (horizontal red
line) calculated as the 95th percentile of the misfit on the whole training
period is 47.84 % for linear PCA and 40.50% for Kernel PCA. Results of
linear and Kernel PCA are then comparable and clearly indicate a novelty
in the tower’s dynamic behaviour, in spite of the slight decrease assigned to
the frequencies, in the order of the variations induced by temperature fluc-
tuations. In Figure 20 a more severe damage scenario is presented, in which
the first, the second and the third natural frequencies are reduced by 4%,
2% and 1%, respectively. The corresponding misfits increase and PCA is
proved to be an effective tool for damage detection, with N95 = 98.55% for
linear PCA and N95 = 97.23% for Kernel PCA. As far as the training period
is concerned, several calculations with different durations have been carried
out, yielding different accuracies in estimating anomalous frequency changes.
In fact, misfits calculated for training periods shorter than one year do not
contain all the information about seasonal changes.
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Figure 18: Misfit of the linear (top) and kernel (bottom) PCA trained with the data
obtained before the Amatrice earthquake (blue dots).
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Figure 19: Misfit of the linear (top) and kernel (bottom) PCA for the entire data point
training period (blue dots). Green dots refer to a decrease of 2%, 1% and 0.5% in the
first, second and third frequency, respectively.
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Figure 20: Misfit of the linear (top) and kernel (bottom) PCA for the entire data point
training period (blue dots). Green dots refer to a decrease of 4%, 2% and 1% in the first,
second and third frequency, respectively.
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5. Conclusions

Continuous ambient vibration monitoring is a powerful instrument for
safeguarding ancient buildings and monuments. This paper describes the
results of a long–term monitoring of the San Frediano bell tower in Lucca
(Italy). The tower, dating back to the 11th century, has been fitted along
its height with four triaxial seismometric stations, which were left active on
the structure for about one year. Data from the monitoring system have
been processed via the Stochastic Subspace Identification Method in order
to identify the tower’s modal characteristics and their variations over the
year. The dependence of the tower’s frequencies on the ambient tempera-
ture has been first studied and simulated via simple auto–regressive models.
Once the influence of environmental factors has been accounted for, changes
in the tower’s dynamic properties over time can represent effective struc-
tural damage indicators. In order to remove the environmental effects, some
output–only models based on linear and kernel principal component analyses
(PCA) have been applied to the measured natural frequencies. First, data
recorded on the tower after the Amatrice earthquake have been analysed,
then the procedures have been applied to two virtual damage scenarios in-
spired by real damages observed in a bell tower in Northern Italy after a
seismic event.

The main results obtained in the paper can be summarized as follows:

• The variation in the tower’s natural frequencies during the year are in
the order of 5%–6%. Mode shapes do not exhibit significant variations.

• A clear correlation between the tower’s natural frequencies and air tem-
perature has been recognized. As observed in previous papers, frequen-
cies increase as temperature increases; this behaviour can be explained
with the closure of micro–crack due to the thermal dilatation of the
materials constituting the tower. The dependence of the first and sec-
ond bending frequencies on the temperature is almost linear, on the
contrary the dependence of third frequency, associated to the torsional
mode, deviates from linearity.

• With regard to damage detection, PCA turned out to be an effective
tool for detecting even slight changes in the tower’s dynamic behaviour,
in spite of the small number of monitored frequencies.
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