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Bilbao, Basque Country, Spain

E-mail: paolo.paradisi@cnr.it (Paolo Paradisi)

E-mail: gpagnini@bcamath.org (Gianni Pagnini)
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Abstract. Complex systems are known to display anomalous diffusion, whose

signature is a space/time scaling x ∼ tδ with δ 6= 1/2 in the Probability Density

Function (PDF). Anomalous diffusion can emerge jointly with both Gaussian, e.g.,

fractional Brownian motion, and power-law decaying distributions, e.g., Lévy Flights

or Lévy Walks (LWs). Lévy flights get anomalous scaling, but, being jumps of any

size allowed even at short times, have infinite position variance, infinite energy and

discontinuous paths. LWs, which are based on random trapping events, overcome

these limitations: they resemble a Lévy-type power-law distribution that is truncated

in the large displacement range and have finite moments, finite energy and, even with

discontinuous velocity, they are continuous. However, LWs do not take into account the

role of strong heterogeneity in many complex systems, such as biological transport in

the crowded cell environment. In this work we propose and discuss a model describing a

Heterogeneous Ensemble of Brownian Particles (HEBP). Velocity of each single particle

obeys a standard underdamped Langevin equation for the velocity, with linear friction

term and additive Gaussian noise. Each particle is characterized by its own relaxation

time and velocity diffusivity. We show that, for proper distributions of relaxation time

and velocity diffusivity, the HEBP resembles some LW statistical features, in particular

power-law decaying PDF, long-range correlations and anomalous diffusion, at the same

time keeping finite position moments and finite energy. The main differences between

the HEBP model and two different LWs are investigated, finding that, even when both

velocity and position PDFs are similar, they differ in four main aspects: (i) LWs are

biscaling, while HEBP is monoscaling; (ii) a transition from anomalous (δ 6= 1/2)

to normal (δ = 1/2) diffusion in the long-time regime is seen in the HEBP and not

in LWs; (iii) the power-law index of the position PDF and the space/time diffusion

scaling are independent in the HEBP, while they both depend on the scaling of the

inter-event time PDF in LWs; (iv) at variance with LWs, our HEBP model obeys a

fluctuation-dissipation theorem.

PACS numbers: 02.50.Ey, 05.40.Fb, 05.40.Jc, 87.10.Mm, 87.15.Vv

Keywords: anomalous diffusion, heterogeneous ensemble of Brownian particles,

Langevin equation, Gaussian processes, Lévy walk, fractional diffusion, multiscaling,

biological transport
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1. Introduction

Diffusion and transport play a central role in internal dynamical processes of many

complex systems and often represent their main driving. As an example, efficiency in

the transport of chemicals and particles affects reaction rates through the probability

that two or more reacting molecules “meet” each other [1, 2]. Another example is given

by turbulent diffusion that is one of the main mechanisms, the other one is advection by

large-scale motions, driving the dispersion of contaminants and pollutants (gas, aerosol

particles, dust, seeds) in the atmosphere [3, 4, 5, 6, 7, 8].

The first observation concerning diffusive motion of particles in fluids dates back to a

period between the 18th and 19th centuries [9, 10, 11, 12] (see, e.g., [13] for a interesting

historical perspective). The so-called normal, Brownian or standard diffusion was firstly

observed. This is defined by two conditions: (i) Mean-Squared Displacement (MSD)

grows linearly in time: 〈x2〉 = 2Dt and (ii) Probability Density Function (PDF) of

particle displacements is Gaussian ‡.
Normal diffusion has been historically the first observed and theoretically investigated

diffusive motion as it emerges in non-complex, i.e., not self-organized systems, thus

without coherent structures or complex heterogeneous conditions that can affect diffusive

motion in a non-trivial way (e.g., by introducing long-range correlations). This was the

condition usually observed in the kind of experiments made by Brown, Perrin and others,

usually a still liquid or a gas at equilibrium ([9, 10, 11, 14, 15].

On the contrary, when complex systems are considered, that is, characterized by

the emergence of self-organized states, i.e., coherent large-scale, long-time lasting,

structures, deviations from the linear time-dependence of the variance are typically

observed [16, 17, 18]:

〈x2〉 = 2Dφt
φ = 2DHt

2H with φ 6= 1 (H 6= 1/2 ) . (1)

H is the Hurst exponent or second moment scaling and H = 1/2 identifies the normal

diffusion scaling. This condition is known as anomalous diffusion [16, 19, 20]. It is

worth noting that Eq. (1) shows that not only the global efficiency of the diffusion, but

also the particular kind of transport is a crucial property, being the first one measured

by the generalized position diffusivity Dφ and the second one encoded in the diffusion

scaling φ = 2H.

The first observed anomalous diffusion dates back to the Richardson’s t-cubed law

for the relative particle diffusion in turbulence, which was already reported in 1926

[21]. Another historically important example comes from the motion of charge

carriers in amorphous semiconductors, which was extensively studied by Montroll

and co-workers (see, e.g., [22, 23, 24]). In the last three decades, the number

of complex self-organized systems displaying anomalous diffusion has increased very

‡ Both conditions follow from the well-known Central Limit Theorem, which states the emergence of

a Gaussian random variable from the sum of many random contributions that are both finite-size (i.e.,

finite variance) and statistically independent (i.e., uncorrelated).
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rapidly [25, 26, 27, 28, 29, 30, 31]. In particular, in the field of biological transport many

new experimental findings are being published every year [32, 33, 34, 35, 36, 37, 38] and

this is attracting a great interest in the scientific community of theoreticians with many

models being proposed and compared with data [39, 40, 41, 42]. In particular, many

papers are being devoted to model the random diffusive motion of macromolecules in the

cell cytoplasm and membrane [41, 42, 43, 44, 45], or in artificial in vitro environments

[46, 47], such as a mixture of water, proteins and lipids, used to mimick and investigate

mechanisms occurring in biology (e.g., trapping of proteins by simultaneously forming

lipid vesicles) [48, 49, 50].

The first proposed model for anomalous diffusion is the Continuous Time Random Walk

(CTRW), which was introduced and extensively studied and applied by Montroll and

co-workers [22, 23, 24] (see [51] for a review). Its very first version is a random walk

with statistically independent random jumps and random times that are also decoupled

with each other. Random times, also called Waiting Times (WTs), describe a trapping

mechanism due to a sequence of potential wells [52, 53], thus this particular CTRW

model can describe only subdiffusion (φ < 1). The WT is the intermediate long time

between two crucial short-time events, each one given by the escape from a given well

and the jump into another one, thus CTRW is essentially driven by the sequence of

WTs, described by a renewal point process [6, 54, 55, 56, 57, 58]. Several CTRW

models have been introduced and investigated, but the subdiffusive CTRW remains

probably the most studied and applied one, with the exception of so-called Lévy Walk

(LW) model, which is a CTRW whose jumps and WTs are coupled [59, 60, 61]. Unlike

the subdiffusive uncoupled CTRW, LWs can indeed reproduce superdiffusive behavior.

CTRW represents an important modeling approach extensively applied to many complex

systems, such as biological transport (see, e.g., [43, 44, 62] for subdiffusive CTRWs

and [37, 63] for Lévy Walks and search strategies). Other models do not consider the

existence of crucial jump events, while explicitly including the long-range correlations of

the process in the dynamical equations. This is the case of Fractional Brownian Motion

(FBM) [64, 65] and of a viscoelastic model such as the Generalized Langevin Equation

[66, 67, 68, 69], which are both essentially based on Gaussian stochastic processes.

Anomalous diffusion from heterogeneity

CTRW and FBM had some success in applications to biological transport. However,

each of these models does not seem able to take into account all the observed statistical

features of transport [70, 41, 42], so that a unified reasonable physical picture describing

experimental data does not yet exist. A new direction in theoretical modeling recently

emerging in the scientific community comes from a quite simple observation: diffusion

in biological environments like the cell cytoplasm or membrane is mainly affected

by the very complex heterogeneity, the crowding and the presence of different kinds

of structures (e.g., cytoskeleton). For this reason, a great attention on the role of

heterogeneous environments in anomalous diffusion is rapidly increasing and an intense

debate is raising in the scientific community, especially in the context of anomalous
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biological transport [40, 41, 42, 71, 72].

Due to the above reasons, in very recent years the proposal of Heterogeneous

Diffusivity Models (HDMs) is taking momentum in the scientific community [73, 74, 75].

Superstatistics is probably the first model of anomalous diffusion that is based on the

idea of a heterogeneous environment [76, 77, 78], but a great attention is nowadays

focused towards other approaches trying to go beyond superstatistics. In particular,

Diffusing Diffusivity Models (DDMs) are being proposed and studied in very recent

literature [79, 80, 81, 71, 72]. In DDMs an additional stochastic equation is introduced

to describe the position diffusivity. A similar approach was first introduced in

mathematical finance by Heston [82], who proposed a stochastic model for asset volatility

including an additional stochastic equation for the diffusivity.

A similar but different approach, included into the class of HDMs, follows from the

very first idea of Schneider’s grey Brownian Motion (gBM) [83, 84]. In the gBM a

random amplitude multiplying a Gaussian process, usually the FBM, is introduced.

This amplitude characterizes the motion of single trajectories, so that the diffusion

properties of the ensemble are affected by the amplitude distribution. In particular,

gBM is associated with a Mainardi distribution of the amplitude [85, 86] and, in this

case, the displacement PDF satisfies a time-fractional diffusion equation [87, 88, 89].

In the last decade the gBM model was extended to the generalized grey Brownian

Motion (ggBM) [90, 91, 92, 93, 94, 95]. The ggBM was shown to satisfy the Erdélyi–

Kober fractional diffusion equation [96], which includes the time-fractional diffusion

equation, describing the gBM distribution, as a particular case. A further generalization

is given by the ggBM-like model discussed by Pagnini and Paradisi, 2016 [97], which

was proven to satisfy the space-time fractional diffusion equation [98, 99, 100] regardless

of the particular Gaussian process describing single trajectory’s dynamics §. For this

reason, this class of ggBM-like models is here denoted as Randomly Scaled Gaussian

Processes (RSGPs), as it extends the ggBM not only to much more general space-

time fractional diffusion, but it also includes whatever Gaussian process as the process

driving single trajectory dynamics. The DDM approach has been recently compared

against a ggBm-like approach with a random scale governed by the same stochastic

differential equation [72]. The potential application of ggBM-like models to biological

transport was discussed by showing that the behavior of a set of different statistical

indices are qualitatively accounted for by this kind of modeling approach [42]. However,

to our knowledge, DDMs, gBM and ggBM-like models do not directly describe the

particle velocity’s dynamics and, thus, the role of friction and velocity diffusivity are

not explicitly taken into account.

Heterogeneous ensemble of Brownian particles and RSGPs

To overcome this limitation, the dynamics of a Heterogeneous Ensemble of Brownian

Particles (HEBP) have been recently investigated by Vitali et al., 2018 [101, 102], where

§ It is worth noting that, similarly to ggBM, the model discussed in Ref. [97] reduces to time-fractional

diffusion for a proper choice of parameters.
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a stochastic model that takes explicitly into account the heterogeneity is derived, but

this model does not belong neither to the class of DDMs nor to that of HDMs. It is

instead based on an underdamped linear Langevin equation for the velocity dynamics.

Thus, the single particle velocity is a Ornstein-Uhlenbeck stochastic process, which is

equivalent to say that velocity is a stochastic process with a linear friction term and an

additive Gaussian noise term, this last term being responsible for the diffusive behavior

of the velocity at short times and for the normal diffusive behavior of the position in the

long time regime. A population of relaxation time and velocity diffusivity parameters are

then considered, that is, mathematically treated as random variables whose statistical

distributions are derived by imposing the emergence of anomalous diffusion, long-range

correlations and power-law decay in the position distribution of the particle ensemble

(see following section for model details). This means to assume that particles in the

ensemble follow different dynamics depending on the different physical parameters. Due

to linearity, this model is easily recognized to be equivalent to a RSGP for both position

and velocity:

x(t) =
√

2DxG(t) ; v(t) =
√

2D
dxG(t)

dt
, (2)

being xG(t) a proper Gaussian process andD a random velocity diffusivity (see Appendix

B). In the RSGP model (2) the single trajectory is still described by a Gaussian process,

but this is no more a FBM. It instead follows from the joint effect of the different

relaxation time scales τ . For fixed D and proper distribution of τ , this causes the

emergence of long-range correlations and anomalous, but still Gaussian, diffusion with

scaling φ = 2H 6= 1. Conversely, the non-Gaussianity in the PDF of the position

is related to inhomogeneities in the velocity diffusivity D [101]. An interesting point

deserving attention is that the HEBP/RSGP model proposed by Vitali et al., 2018 [101]

has a clear physical meaning as it describes the dynamics of an ensemble of Brownian

particles with heterogeneous physical properties and moving in a viscous medium in

thermal equilibrium, thus giving a well-posed physical basis to ggBM and ggBM-like

processes (i.e., RSGPs) [102].

The problem of infinite energy

A Gaussian version with long-range correlations was mainly investigated in Ref. [101].

This model is derived by considering a population of relaxation times τ , while the

velocity diffusivity D is fixed. The Gaussian HEBP model satisifes all physical

sound properties: (a) finite energy, (b) finite variance, (c) fluctuation-dissipation

theorem. However, anomalous diffusion is often observed jointly with non-Gaussian

PDFs displaying slow power-law decaying tail: p(x, t) ∼ 1/x1+α with 0 < α < 2. For

this kind of non-Gaussian PDFs, the HEBP model developed by Vitali et al., 2018 [101]

share with other anomalous diffusion processes, such as Lévy flights, the problem of an

infinite variance, thus formally allowing for a physically meaningless infinite energy in

the system. Furthermore, this does not allow to have a fluctuation-dissipation theorem

for the equilibrium velocity PDF in a stationary thermal bath.
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To overcome this limitation, while remaining in the framework of heterogeneity-driven

anomalous diffusion, we here discuss a simple and natural modification of the HEBP

model proposed in Vitali et al., 2018 [101]. In particular, we here investigate the effect

of a population of relaxation times and, especially, of velocity diffusivity with allowed

maximum values on the behavior of the HEBP model. This is equivalent to get a

finite population of parameters. We show that this modification is sufficient to get

a physically meaningful model, at the same time being able to reproduce behaviors

similar to those of other anomalous diffusion processes, in particular Lévy Walk (LW)

models. In fact, similarly to LW, our proposed model is shown to display a power-

law decay of the distribution for intermediate values of the position, at the same time

keeping the finiteness of moments and, thus, of energy due to an exponential cut-off

in the distribution tails. However, in spite of its finite energy, LW does not obey a

fluctuation-dissipation theorem.

The paper is organized as follows. In Section 2 we discuss the stochastic model for the

HEBP and we show numerical simulations of the model. In particular, an anomalous-

to-normal transition is shown to occur in Section 2.5. In Section 3 the comparison of

our model with two different LWs is carried out. Finally, in Section 4 some discussions

and final remarks are sketched.

2. Heterogeneous ensemble of Brownian particles

2.1. Preliminary considerations

Starting from the Langevin equations associated to each Brownian particle of the

ensemble, the HEBP approach leads to anomalous diffusion with uncorrelated white

noise. Thus, HEBP models are substantially different from approaches based on

the generalized Langevin equation or on Langevin equations with colored noises

and, in general, on noises with long-range spatiotemporal correlations with even

“anomalous” thermodynamics [103]. In HEBP models anomalous diffusion emerges as

a consequence of heterogeneity in the particle ensemble, while classical thermodynamics

still hold. Heterogeneity is then responsible for long-range correlations, in agreement

with approaches based on polydispersity [103]. In particular, in the present approach

anomalous behavior is displayed during an intermediate asymptotic transient regime

in the Barenblatt’s sense [104], thus requiring an underdamped (white noise) Langevin

approach. These last two features of anomalous diffusion are consistent with the findings

in the case of the underdamped scaled Brownian motion [105], and, implicitly, with the

role of friction when a complex potential is applied [106].

HEBP models are compared in literature with similar approaches based on fluctuating

friction [107, 108, 109], fluctuating mass [110] and with the already cited DDM approach

[80, 72]. Further approaches using a population of the involved parameters were

proposed on the basis of a Gaussian processes, see for example the Markovian continuous

time random walk model with a population of time-scales [111] or the ggBM [92, 42] that
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actually is the FBM with a population of length-scales. Interestingly, approaches based

on fluctuating friction or mass, as such as HEBP models, are underdamped processes on

the contrary of the DDMs and ggBm-like processes [92, 97, 72], that are overdamped.

In systems displaying anomalous diffusion, underdamped processes were shown to be

a preferable approach [105]. All these approaches take into account a distributed

parameter and, then, they can be linked to superstatistics [77]. The discussion of the

present approach within the idea of superstatistics is reported in Section 2.4.

In the HEBP model introduced here the ensemble of particles differ in their density

(the mass of each particle divided by its volume). The main difference with mentioned

approaches is that in our formulation fluctuations refer to differences among particles

and not to changes in time. Then, each particle obeys its own Langevin equation

with linear friction term and additive noise term: mv̇ = −γv +
√

2b ξ(t), with ξ(t) a

Gaussian white noise. Particles differ in their mass m, in their friction coefficient γ and

in their noise intensity b, related to velocity diffusivity through: D = b/m2. Assuming

a local equilibrium between the underlying medium and each particle in the HEBP, the

standard fluctuation-dissipation theorem comes into play. The fluctuation-dissipation

theorem states

b = κBT γ ,

where κB and T are the Boltzmann constant and the temperature, respectively. Then,

the set of distributed independent parameters {m, γ, b} reduces to the set {m, γ}.
Moreover, by assuming that the present one-dimensional model is indeed a Cartesian

direction of a three-dimensional, isotropic process with three independent components,

the friction coefficient for a spherical particle is given by the Stokes law: γ = 6πνr, where

ν is the dynamic viscosity of the medium and r the radius of the Brownian particle. This

means that by the combination of the fluctuation-dissipation theorem and the Stokes

law the set of distributed independent parameters is {m, r}. Considering the definitions

τ = m/γ and D = b/m2, the particle density (the mass of each particle divided by

its volume) is approximately 3m/(4πr3) = 162 π4ν3D2τ 5 and the differences among

particles in terms of {m, r} translate into differences in terms of {τ,D}, namely the

ensemble of particles is characterized by a population of velocity diffusivities D and a

population of relaxation times τ .

In this framework, we highlight that both the populations of masses and radii contribute

to the emergence of the anomalous scaling, by means of the relaxation times:

τ = m/γ = m/(6πνr) , (3)

and to the shape of the resulting probability density functions of particle dispersion, by

means of the diffusivity:

D = κBT 6πν r/m2 . (4)

In real systems an ensemble of particles with heterogeneous properties must admit a

minimum and maximum value for both masses and sizes. In turn, considering the above
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relationships, this determines the existence of maximum and minimum values also for

the populations of D and τ .

2.2. Model description

We consider an ensemble of particles with heterogeneous physical parameters moving

in a viscous medium. Each particle moves according to a linear Langevin equation for

a Ornstein–Uhlenbeck process:

dx

dt
= v , (5)

dv

dt
= −1

τ
v(t) +

√
2D ξ(t) , (6)

where ξ(t) is a white Gaussian noise with zero mean and autocorrelation function:

〈ξ(t)ξ(t′)〉 = δ(t−t′). As anticipated in the previous Section 2.1, τ and D are the viscous

relaxation time and the velocity diffusivity, respectively. The fluctuation-dissipation

theorem for the single particle in the HEBP is given by:

τD =
κBT

m
= 〈v2|τ,D〉eq , (7)

where 〈·|τ,D〉eq denotes the ensemble average when the system reaches an equilibrium

state. The vertical bar | denotes that the statistics of the random variable before the bar

itself is conditioned by the values of τ and D. In our HEBP model each single particle

has a different pair of parameters (τ,D), which meet fluctuation-dissipation relation

(7) and remain constant throughout the motion. The complexity in the dynamics of

the ensemble is mathematically introduced by means of an effective randomness in

the parameters of the Langevin equation (6) and, thus, by means of proper statistical

distributions for τ and D. Interestingly, for each pair (τ,D), every trajectory itself

remains an ordinary Brownian motion in a viscous medium, i.e., a Ornstein–Uhlenbeck

process with Wiener (Gaussian) noise. Thus, the overall complexity emerges as an

average behavior of the entire ensemble of particles, which individually move according

to a standard Ornstein–Uhlenbeck (Gaussian) process.

Given a value of the diffusivity D, uniform for all particles, the following

distribution of τ was shown to trigger the emergence of a Gaussian stochastic

process with long-range time correlation and, thus, anomalous diffusion [101]:

g(τ) =
η

Γ(η)

1

τ
L−ηη

(
τ

τ∗

)
, 0 < η < 1 . (8)

Γ(·) is the Gamma function, L−ηη (·) the Lévy extremal density with stability

index η [112, 113], τ∗ is a reference time scale‖. The average relaxation time is

‖ As well known, the Lévy’s Generalized Central Limit Theorem states that Lévy stable densities

Lθα(x), with θ asymmetry parameter, have a basin of attraction for a class of PDFs with slowly decaying

power-law tails: p(x, t) ∼ 1/|x|1+α with 0 < α ≤ 2. As a consequence, the choice of g(τ) and f(D) (see

below) is a robust one and is expected to apply in the context of complex systems, i.e., systems with

self-organizing features and emergent structures where power-law tails and anomalous transport often

emerge due to cooperative dynamics.
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finite and is given by: 〈τ〉 = η τ∗/Γ(1/η). It is worth noting that τ∗ is rigorously

needed for dimensional reasons in order to fix the physical dimension of τ

(time).

It was proved in Ref. [101] that the process resulting from the τ population

with distribution g(τ), and conditioned to a given value of D, is a Gaussian

process with position PDF, long-range velocity autocorrelation and position

MSD given by:

G(x, σX(t|D)) =
1√

2πσ2
X(t|D)

exp

{
− x2

2σ2
X(t|D)

}
; (9)

R(t|D) = D
Γ(1 + η)

Γ(1− η)

(
Γ(1/η)

η

)η
〈τ〉1+η t−η , 0 < η < 1 ; (10)

σ2
X(t|D) = 〈x2|D〉 = 2CDtφ , 1 < φ = 2− η < 2 ; (11)

C =
Γ(η + 1)

Γ(3− η)

(
Γ(1/η)

η

)η
〈τ〉1+η , (12)

thus resulting in a superdiffusive scaling regime.

It is evident from Eqs. (10–12) that the parameter η affects the space-

time scaling of the diffusion process, defined by the self-similarity variable

z = x/tφ/2. By averaging Eq. (7) over τ , we get for any fixed, finite D [101]:

〈v2|D〉eq = 〈τ〉D . (13)

Similarly to the Fractional Brownian Motion (FBM), this model belongs to

the class of Gaussian stochastic processes with stationary increments and

long-range correlations, as it can be seen from the power-law behavior in

Eqs. (10) and (11). Thus, this is a valid alternative model, as it shares

with FBM the emergence of anomalous diffusion scaling, but with different

velocity autocorrelation function derived within the well-defined physical

framework of complex heterogeneity.

When D is fixed and uniform in the HEBP, the model with only τ fluctuations

is only compatible with a Gaussian PDF p(x, t) = G(x, σX(t|D)) (see Eq. (9))

and does not account for the power-law decay often observed in experimental

PDFs. In the framework of a HEBP approach, power-law PDFs were shown

to emerge by introducing a population of diffusivities D [101]. However,

as already said at the end of Section 1, these models have some drawbacks:

infinite energy and position variance and absence of a fluctuation-dissipation

theorem.

To overcome these limitations we here propose the following distribution of

D:

f(D) =


N
D∗
L
−α/2
α/2

(
D
D∗

)
; D ≤ Dmax ; 1 < α < 2 ,

0 ; D > Dmax .

(14)
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Given the relationship (4) between diffusivity D, mass m and radius r and

considering that, in real systems, both particle masses and sizes are finite

and non-zero, it is reasonable to assume a maximum allowed value Dmax for

the velocity diffusivity D¶. N is the normalization factor, given by:

1

N (k)
=
∫ k

0
L
−α/2
α/2 (s)ds ; k =

Dmax

D∗
. (15)

In the limit Dmax/D∗ → ∞ we get N = 1 as expected. Similarly to τ∗, D∗
is a reference scale for the velocity diffusivity D (squared velocity over

time). Given a heterogeneous ensemble of Brownian particles whose population

of masses and radii (and, thus, τ and D) can be measured, τ∗ and D∗ are statistical

parameters characterizing the spreading of the variables τ and D and, thus, the scale of

the distributions g(τ) and f(D).

The average diffusivity is given by:

〈D〉
D∗

= N
∫ k

0
sL
−α/2
α/2 (s) ds ; k =

Dmax

D∗
. (16)

〈D〉 is finite for Dmax/D∗ finite, but it becomes infinite in the limit Dmax/D∗ →
∞. It is worth noting that η is the model parameter determining the space-time scaling

of the diffusion process, while α affects the power-law decay emerging in the position

PDF p(x, t).

When D is distributed according to the PDF f(D) given in Eq. (14), the

probability of finding a particle in x at time t is given by:

p(x, t) = N
∫ Dmax

0
G (x, σX(t|D))

1

D∗
L
−α/2
α/2

(
D

D∗

)
dD , (17)

being G the Gaussian PDF of Eq. (9) and σX(t|D) given by Eq. (11), while

L
−α/2
α/2 (x) is a extremal Lévy stable density [112, 113]. This PDF is clearly

self-similar with space-time scaling z = x/tφ/2, being p(x, t) = 1/tφ/2F (x/tφ/2).

The average over D of the fluctuation-dissipation relationship, Eq. (13), is given by:

〈v2〉eq = 〈τ〉〈D〉 . (18)

Being both 〈τ〉 and 〈D〉 finite, the above relationship is meaningful and represent a

fluctuation-dissipation relationship averaged over the HEBP. In the limit Dmax →∞
the following relationship is recovered [101]:

p(x, t) =
∫ ∞
0
G (x, σX(t|D))

1

D∗
L
−α/2
α/2

(
D

D∗

)
dD =

=
1√

CD∗tφ
L0
α

(
x√

CD∗tφ

)
, (19)

where C is given by Eq. (12) and L0
α (x) is a Lévy symmetric α-stable density

[112, 113].

¶ This is related to the properties of the HEBP and, in particular, to the maximum and minimum

values in the particle masses and radii. A smoother (e.g., exponential) cut-off could be chosen in Eq.

(14), but we expect that the particular choice of the cut-off does not substantially change the results.
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In this limit, it results 〈D〉 = ∞, and this implies a physically meaningless

infinite energy in the equilibrium/stationary state: 〈v2〉eq = ∞. On the

contrary, when Dmax is finite, the mean energy and the position variance

are finite. Regarding the power-law decay of the PDF, this is exactly seen

in the limit Dmax/D∗ → ∞. Thus, the scaling parameter α affects the power

exponent of the position PDF.

The most interesting aspect is that model (17) satisfies the fluctuation-dissipation

relationship averaged over D, Eq. (18), thus also giving a finite energy. This relationship

can also be used to numerically estimate the value of Dmax for given 〈D〉 or, equivalently,

given 〈v2〉eq and 〈τ〉:

〈D〉 =
〈v2〉eq
〈τ〉 =

∫ Dmax

0
Df(D) dD . (20)

This relationship can be rewritten:

〈v2〉eq
D∗τ∗

=
η

Γ(1/η)
N (k)

∫ k

0
sL
−α/2
α/2 (s) ds ; k =

Dmax

D∗
. (21)

This formula is a different form of the fluctuation-dissipation relationship for the HEBP.

This shows that the velocity variance rescaled over the diffusivity and time scales D∗
and τ∗ depend only on the adimensional parameter k = Dmax

D∗
. Conversely, being the

average kinetic energy 〈v2〉eq related to the thermal bath, this same formula shows that
Dmax

D∗
depends on the temperature of the thermal bath itself. It is important to note that

all the above integrals given in Eqs. (15,16,17,20,21) can be only numerically evaluated,

as a further analytical approach is not possible.

For properly chosen values of k = Dmax/D∗, a power-law decay p(x, t) ∼ 1/|x|1+α is

expected to emerge in a intermediate range, before a rapidly decaying cut-off appears at

large x values. This will be shown in the next sections by means of numerical simulations.

Further, all moments are finite, but they could have very large values depending on the

chosen value of Dmax. In any case, an anomalous superdiffusive scaling is expected in

the MSD: 〈x(t)2〉 ∼ tφ.

2.3. Numerical simulations of the HEBP model

In order to verify the scaling features for the HEBP with truncated diffusivity PDF,

Eq. (17), we carried out both Monte-Carlo (MC) simulations of stochastic trajectories,

computed from the Langevin equation (6), and a direct numerical evaluation of the

integral in Eq. (17). In particular, the emergence of power-law behavior in the position

PDF p(x, t), and the relative range of validity, needs to be numerically estimated.

The numerical simulations of Langevin equation (6) and Eq. (5) were carried out

using the algorithms discussed in Appendix A. A sample set of couples (τ,D) was

drawn from the distributions g(τ) and f(D), Eqs. (8-14), and stochastic trajectories

were simulated. In Fig. 1 the theoretical distributions g(τ) and f(D) are compared

with the respective numerical histograms of drawn values of τ and D. In the numerical

simulations the following parameters were used: α = 3/2, η = 1/2, Dmax = 104, initial
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conditions xi,0 = 0 and vi,0 = 0. Being τ∗ = 1, it results: 〈τ〉 = ητ∗/Γ(1/η) = 1/2.

From the numerical computation of Eq. (20) we get: 〈D〉 ' 8.31 and, then:

〈v2〉eq = 〈τ〉〈D〉 ' 4.16. Being φ = 2 − η = 3/2, we expect: 〈x2(t)〉 ∝ t3/2. From

Fig. 2(a) it is evident that the theoretical scaling φ = 3/2 is numerically verified at

sufficiently long times.

In order to check the self-similarity of the position PDF:

p(x, t) =
1

tδ
F
(
x

tδ

)
, (22)

we use the Diffusion Entropy Analysis (DEA) [114, 115, 57], which is based on the

computation of the Shannon entropy of the diffusion process:

S(t) = −
∫ ∞
−∞

dx p(x, t) ln p(x, t) = A+ δ ln t . (23)

δ is the space-time scaling of the PDF. For monoscaling diffusion+, Eq. (22)

holds exactly, so that the PDF p(x, t) is self-similar with self-similarity index δ, thus

also equal to the Hurst exponent H. The theoretical expectation for the HEBP is:

δ = H = φ/2 = 1 − η/2. The DEA was computed using the histograms estimated

from numerical MC simulations and from the numerical computation of the analytical

expression (17). The comparison of the two different estimates is shown in Fig. 2(b).

It is evident that the DEA computed from the analytical expression shows very good

agreement with the theoretical scaling: δ = φ/2 = 1 − η/2 = 3/4. On the contrary, in

the DEA computed from MC simulations a net straight line in the graph (ln t, S(t)) does

not emerge clearly in the studied range, even if a rough agreement with the theoretical

expectation is seen. This is probably due to statistical limitations of MC simulations,

thus proving that estimation of scaling in such processes could be quite a delicate task

when dealing with real experimental data.

In Fig. 3 we compare the coordinate PDFs computed from Eq. (17) with those evaluated

from the MC simulations (being diffusion symmetrical, the PDFs are plotted in the

range x > 0). The analytical expression clearly shows a well-defined power-law tail

in a intermediate range of |x|: p(x, t) ∝ 1/|x|1+α, followed by a rapid cut-off for large

|x|. Regarding the space-time scaling z = x/tδ, in agreement with DEA, the analytical

PDFs have an exact self-similarity index δ = 3/4. Conversely, the decay of PDFs

derived from MC simulations is slightly more complicated, but the general behavior is

compatible with the analytical one. Even the self-similarity space-time scaling roughly

approximates the theoretical expectation δ = 3/4, but small deviations are evident, is

agreement with the DEA displayed in Fig. 2(b) (blue circles).

2.4. Heterogeneous ensemble of Brownian particles and superstatistics

Superstatistics approach takes into account large-deviations of intensive quantities of

systems in nonequilibrium stationary states [76, 77, 116] and it was motivated by some

+ Monoscaling diffusion processes belong to the general class of monoscaling/monofractal processes or

signals, defined by the condition: X(at) = aHX(t).
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Figure 1. (color online) Distributions g(τ) (red) and f0(D) (blue) [f0(D) = f(D)

for Dmax → ∞, algorithm’s details in Supplementary Material of Ref. [101]]. Lines:

theoretical expressions, (8) and (14). Circles: histograms of the sample set of τ and

D. τ∗ = 1; D∗ = 1; α = 3/2; η = 1/2.

preliminary success obtained when fluctuations of parameters were considered [117, 118].

In general, superstatistics is successful to model: turbulent dispersion considering

energy dissipation fluctuations [76, 119], renewal critical events in intermittent systems

[120, 121], and for different distributions of the fluctuating intensive quantities different

effective statistical mechanics can be derived [77], e.g., Tsallis statistics with χ2-

distribution.

The main idea of superstatistics is that a Brownian test particle experiences fluctuations

of some intensive parameters by moving from cell to cell [77]. Following this idea, the

random value of the fluctuating parameter is generated at any change of cell. The main

assumption behind this picture is that each cell is in equilibrium during the residence

time of the particle: within the cell there are no fluctuations but a different value

assigned to each cell. The local value of the fluctuating parameter changes in the

various cells on a time scale that is much longer than the relaxation time that the

single cells need to reach local equilibrium. This means that the fluctuating parameter

follows a slow dynamics and then the integration over the fast variable is taken after the

integration over the slow variable which is in opposition to what an adiabatic scheme
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Figure 2. (color online) (a) MSD computed from (i) MC simulations (green circles)

and (ii) the numerical evaluation of (17), (see also Appendix A): 〈x2(t)〉 ∝ tφ;

φ = 3/2 = 1.5 (red dashed line). (b) DEA computed using the PDF computed

from: (i) MC simulations (blue circles) and (ii) the numerical evaluation of Eq. (17)

(dashed black line), see also Appendix A. δ = 3/4 = 0.75.

requires [122]. This fact can be considered just an order of integration that does not

affect the computation of the expected values but it is more deep when the entropy is

considered [116, 122]. This inconsistency is solved by considering a dynamical equation

also for the slow fluctuating quantity [122], an example of such dynamical equation was

already considered in Ref. [119].

The HEBP approach is clearly based on a different picture and, even if the superposition

of Langevin equations may suggest some analogies, it is substantially different from

superstatistics. Here the superposition gives rise to anomalous diffusion because it

reproduces the effects of the ensemble heterogeneity. In fact, in the present approach

the fluctuations are not due to different values in different cells but to the population

of densities (the mass of each particle divided by its volume) in the ensemble. As a

consequence of this, the present approach does not take into account slow and fast

dynamics and then the issue concerning the order of integration does not arise.
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Figure 3. (color online) Comparison of the coordinate PDFs of the MC simulated

motion (dashed lines) with that obtained from the analytical expression (17) (straight

lines) for different times.

2.5. Anomalous-to-normal transition

A transition from a short-time anomalous to a long-time diffusive behavior is often seen

in complex biological systems (see, e.g., [45, 123] and, for a recent brief review, [124]).

This clearly means that a stochastic model proposed to describe biological transport

should satisfy this constraint, which is the reason why the modeling of this transition is

attracting an increasing interest in the scientific community [125, 126].

Here we briefly show that the proposed HEBP model can reproduce this anomalous-to-

normal transition. This is the effect of a maximum allowed value for the relaxation time

τ on the diffusion scaling. In fact, let us consider a population of τ with a maximum

relaxation time τmax. Then, at any fixed clock-instant t, each particle is at a different

regime with respect to its own relaxation time τ . This superposition of regimes generates

the anomalous diffusion. When t� τmax all the particles of the statistical ensemble are

decorrelated and move with a displacement variance linear in time and a crossover to a

normal diffusion regime is seen.

Regarding the limitations in the possible values of τ , in analogy with the assumption of a

maximum allowed value Dmax, a maximum allowed τmax is also a reasonable assumption
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in real experimental systems, also considering, in analogy with D, the relation of τ

with mass and size of the particle (see Section 2.1), whose distributions are necessarily

limited.

It is worth noting that this is equivalent to have a finite statistical sampling. This occurs

not only in numerical simulations, but also in the case of experimental measurements

of both τ and D populations. Being the power-law decay in the τ distribution faster

than that of the D distribution (see Eqs. (8)-(14)), the (experimental or numerical)

sampling from τ population is expected to be more crucial with respect to that from D

population. In fact, even if both distributions admit maximum values due to limitations

in the particle masses and sizes, the sampling on τ typically gives a sampled τmax much

smaller than the real maximum allowed value of τ in the ensemble of particles.
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Figure 4. (color online) Histogram of a sample set of τ limited to 10000 draws from

g(τ). τ∗ = 1.

In Fig. 4 we report the histogram for a sample set with 10000 random draws

from g(τ). The parameters are: η = 1/2, 〈τ〉 = 1/2. It can be seen that, for this

limited statistics, g(τ) is well-reproduced up to a value of τ less than 10, while for larger

values there are fluctuations and, for τ greater than about 30− 50, also some apparent

outliers are seen till a maximum value τmax = 297.2. The experimental/numerical mean

relaxation time is 〈τ〉exp = 0.52.

The maximum relaxation time τmax can be considered a kind of time scale after which
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Figure 5. (color online) Numerical simulations of the heterogeneous ensemble of

Brownian particles for the τ sample set of Fig. 4. Top panel: position MSD; bottom

panel: velocity MSD.

all trajectories reach the condition of a variance increasing linearly in time, even if with

different multiplicative factors. As a consequence, we expect normal diffusion to occur

in a very long time regime. This is confirmed in Fig. 5, where the anomalous diffusive

scaling φ = 2− η = 3/2 emerges in the approximate time interval [15〈τ〉, 450〈τ〉], after

which there is a transition to a normal diffusion regime starting at t ∼ 600〈τ〉. It is

worth noting that, in general, the transition time scale does not depend only on τmax,

but also on the detailed statistics of the numerical histogram in the neighborhood of

τmax itself. In particular, a situation where τmax is an outlier is quite different from a

condition where τ -set is, in some sense, dense near τmax, which cannot then be considered

an outlier.

In summary, we can argue that, depending on the experimental/numerical set of

relaxation times τ , our HEBP model reproduces a transition from anomalous to normal

diffusion.

3. Comparison with Lévy walk models

LW is one of the best known models of anomalous diffusion with finite MSD and

was firstly introduced by Shlesinger, Klafter and Wong in 1982 [59]. The number of

papers devoted to LWs is very large (see, e.g., [115, 20, 57, 127, 128, 129, 130]) and
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a quite recent and complete review can be found in Zaburdaev et al., 2015 [61]. LWs

have been applied to many phenomena, but surely the most promising and widespread

applications are in the modeling of search strategies, such as bacteria foraging through

run-and-tumble motion [131, 37, 61]. Unlike Lévy flights, where the particle is allowed

to make large jumps in a whatever short time step (theoretically zero in the time-

continuous limit), thus giving instantaneous infinite velocities and discontinuous paths,

in LW models the particle moves with a finite speed. Such speed remains constant

throughout a random duration time, also called Waiting Time (WT). After this WT,

velocity randomly changes according to an assigned walking rule and it remains constant

for another random WT. Thus, even if there are events with discontinuous acceleration,

LWs have continuous velocity. When WTs have a constant value, equivalent to a fixed

time step, and velocity MSD is finite, LW reduces to a standard Random Walk with

ballistic diffusion: 〈x2〉 ∼ t2. For WTs with finite mean, ballistic diffusion also occurs,

but in the long-time limit (e.g., exponentially distributed WTs). Interestingly, the

LW also displays strong anomalous diffusion, also known as multiscaling/multifractal

diffusion [132, 133]. Multiscaling detection algorithms are usually based on the analysis

of fractional moments:

〈|x|q〉 =
∫ ∞
−∞

dx|x|qp(x, t) = Mq · tλ(q) , (24)

where λ(q) = qH(q), being H(2) the well-known Hurst exponent or second-moment

scaling. A complex system is multiscaling when H changes with the moment order

q and the particular multiscaling features are defined by the behavior of the function

H(q). Conversely, a constant H, thus independent of q, is associated with monoscaling

systems: 〈|x|q〉 ∼ tqH .

Here we consider two different LW models that differ for the velocity distribution. The

first one is the most classical one with randomly alternating velocities, i.e., constant

speed |V
LW
| and randomly changing direction according to a coin tossing prescription

[59, 115, 61]. We limit here to the case V
LW

= ±1. In the second one, we consider a

continuous and symmetric random variable for the velocity [61]. In both LW models the

velocity is constant throughout a WT of duration δti = ti+1 − ti and randomly changes

in correspondence of the critical event i + 1, whose occurrence time ti+1 marks the

passage from the WT δti to the next WT δti+1. For the WT distribution, we consider

the following PDF [56]:

ψ(δt) =
(µ− 1)T µ−1

(T + δt)µ
, (25)

where µ > 1 and T is a reference time scale. The power-law tail emerges in the range

δt� T . In the following we set T = 1. The superdiffusive sub-ballistic behavior (the one

we are interested in) is revealed when 2 < µ < 3. In the LW with alternating velocities,

this regime is characterized by a central part of the PDF p(x, t) that is well approximated

by a symmetric Lévy stable density L0
α with stability index α = 1/(µ − 1) [115, 56].

At sufficiently large |x|, the PDF is abruptly truncated by ballistic peaks located at

x = ±V
LW
t, which corresponds to the ballistic motion of paths whose first WT is longer
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than t. In Fig. 6 the PDFs at different times computed from a MC simulation of LW

Figure 6. Lévy walk probability density functions: the central part looks like Lévy

α-stable law cut by ballistic fronts at x = ±V
LW
t

.

with alternating velocities are reported. The ballistic peaks truncating the PDFs are

evident.

Similarly to HEBP, Eq. (17), this LW model displays a power-law decay in a

intermediate range of |x| followed by an abrupt cut-off, thus resulting in the finiteness

of moments and, in particular, of the MSD: 〈x2〉 ∝ t4−µ [115, 61]. For the LW with

randomly alternating velocities and WT-PDF given by (25) ∗, the fractional moments

are given by [61]:

λ(q) =


q/(µ− 1) ; q ≤ µ− 1 ; (a)

q − (µ− 2) ; q > µ− 1 . (b)

(26)

It is then easily seen from this formula that the LW with randomly alternating velocities

obeys a biscaling law, with a given scaling for low-order moments and another one for

high-order moments.

∗ This is valid for all WT-PDFs with fat tails: ψ(τ) ∼ 1/τµ.
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In the following we compare four different cases: two LW models (with alternating

and continuous velocities, respectively) and our HEBP model for two different sets of

parameters chosen to fit the LW models. In particular:

(i) Lévy walk with randomly alternating velocity rule. WT-PDF given by Eq. (25)

with µ = 5/2. Coin tossing prescription for the change of direction. We set

V
LW

= ±1, so that 〈v2〉eq = 〈v2
LW
〉 = 1;

(ii) HEBP analytical model, Eq. (17), with parameters: α = 3/2, η = 1/2,

〈v2〉eq = 〈τ〉〈D〉 = 1. It results: 〈τ〉 = 1/2, 〈D〉 = 2, φ = 2 − η = 3/2 and

Dmax = 40.1 (numerically calculated from Eq. (20));

(iii) Lévy walk with random continuous velocity. WT-PDF given by Eq. (25) with

µ = 5/2. The velocity PDF is symmetric and evaluated from the stationary state

of MC simulations carried out for the HEBP, Eq. (17). MC simulation parameters

are the same as in the next case (iv). The random generation of velocities was

performed with the inverse transform sampling method;

(iv) HEBP analytical model, Eq. (17), with parameters: α = 3/2, η = 1/2,

〈v2〉eq = 〈τ〉〈D〉 = 8.127. It results: 〈τ〉 = 1/2, φ = 2− η = 3/2, 〈D〉 = 16.254 and

Dmax = 1.43 · 105 (numerically calculated from Eq. (20));

The PDFs p(x, t) of the HEBP, cases (ii) and (iv), are obtained, for different times,

by means of numerical evaluation of Eq. (17). Then, DEA S(t) and MSD 〈x2(t)〉 are

computed by the calculated PDFs. Conversely, the paths of LW models (i) and (iii) are

computed by means of MC stochastic simulations and, then, PDFs, DEA and MSDs

are evaluated by statistical analysis of the sample paths.

The results are gathered in Figs. 7, 8 and 9. In Fig. 7 the comparisons of position

PDFs p(x, t) for different times are shown: LW model (i) fitted by HEBP, case (ii)

(top panel) and LW model (iii) fitted by HEBP, case (iv). It is evident that the two

LW models (alternating/continuous velocities) have very similar behaviors and that,

for both models, it is always possible to find a parameter set for the HEBP to be

comparable with LW models. In particular, HEBP well reproduces the power-law decay

in the intermediate range, while for x greater than the ballistic peaks of LW models an

exponential cut-off emerges in the PDFs of HEBP. However, the space-time scaling δ is

clearly different for the two models, as it is clear from the slight shifts between solid and

dashed lines in both panels. Then, for fixed set of parameters, the quality of the fit is

not the same for all PDF times. In particular, in the top panel (models (i) and (ii)) the

best fit is made at time t = 103, so that the less accurate agreement is at the longest

time t = 106. On the contrary, in the bottom panel the best fit is made at t = 106 and,

consequently, the worst agreement is at the first displayed time t = 103.

In Fig. 8 we report the MSD 〈x2〉 (Top panel) and the DEA S(t) (Bottom panel) for

the four model cases. Numerical simulations and calculations of all models (i-iv) (LW

models and HEBP) reproduce the expected power-law dependence 〈x2〉 ∼ t3/2 with a

very good agreement. The DEA S(t) shows the net differences of the self-similarity

index δ among LW and HEBP, thus making it more evident the different space-time
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Figure 7. Comparison of PDFs p(x, t) for the four model cases (i-iv): Top panel:

LW model (i) with randomly alternating velocities (solid lines) fitted by HEBP, case

(ii) (dashed lines); Bottom panel: LW model (iii) with continuous random velocities

(solid lines) fitted by HEBP, case (iv) (dashed lines).



Finite-energy Lévy-type motion and heterogeneity 23

103 104 105 106

t

105

106

107

108

109

1010
〈x2 (t

)〉
∼ t1.50

∼ t1.50

LW (i)
HEBP (ii)
LW (iii)
HEBP (iv)

Figure 8. Comparison of MSD 〈x2〉(t) and DEA S(t), Eq. (23)), for the four model

cases (i-iv): Top panel: LW model (i) with randomly alternating velocities (blue

triangles); HEBP, case (ii) (dashed blue line); LW model (iii) with random continuous

velocities (red circles); HEBP, case (iv) (dashed red line); Bottom panel: LW model

(i) with randomly alternating velocity (blue dots and line); HEBP, case (ii) (purple

line); LW model (iii) with random continuous velocity (green dots and line); HEBP,

case (iv) (red line).
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Figure 9. Top panel: fractional moments, (Eq. (24)), of LW models (i) and (iii)

(purple and green points, respectively – almost coincide), dashed lines are the analytical

asymptotes given in Eq. (26); Bottom panel: fractional moments of HEBP, cases

(ii) and (iv) (purple and green points, respectively – almost coincide), dashed lines are

the same analytical asymptotes as in Top panel. The black continuous line is a linear

fit giving: λ(q) ' 3/4 · q = 0.75 · q, as expected.
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scaling seen in Fig. 7. The numerical scaling is also in agreement with theoretical

values: δ = 1/(µ− 1) = 2/3 ' 0.67 for LWs and δ = 1− η/2 = 3/4 for HEBP.

Finally, in order to explore the multiscaling character of the models, Fig. 9 show the

results for the evaluation of fractional moments. In top panel the fractional moments

of LW model (i) and (iii) are compared, while bottom panel compares HEBP, cases (i)

and (iv). The LW models (i) and (iii) have exactly the same behavior for λ(q), thus in

agreement with the expected multiscaling and, in particular, the biscaling law of Eq.

(26). The behavior of our numerical simulations of HEBP, cases (ii) and (iv), is also

found to be very similar to each other and in agreement with theoretical predictions,

that is, it shows a well-defined monoscaling. The space-time scaling is the same for both

parameter sets, as it depends only on η, being 〈Xq〉 ∼ tλ(q) = tqH(q) with:

H(q) = φ/2 = 1− η/2, (27)

and, for HEBP, this is also equal to the self-similarity index: δ = H(q) = φ/2 (see Eq.

(19)).

4. Discussion and concluding remarks

We here introduced and discussed a model of a heterogeneous ensemble of Brownian

particles moving in a viscous medium. Single particle velocity is described by a Ornstein–

Uhlenbeck process, that is, the particle motion obeys an underdamped linear Langevin

equation for the velocity. Each particle is characterized by its own relaxation time τ and

its own diffusivity coefficient D, driving the linear friction and the additive noise terms,

respectively. Long-range correlations and anomalous diffusion emerge as a consequence

of the strong heterogeneous condition described by inverse power-law distributions of

parameter’s populations g(τ) and f(D) (Eqs. (8) and (14)). The model with random

τ population and uniform, constant, diffusivity D gives a Gaussian process with long-

range velocity autocorrelation function and anomalous diffusion scaling. The moments

〈|x|q〉 are finite, as well as the velocity variance 〈v2〉eq and the mean kinetic energy.

However, anomalous transport often displays power-law decays in the position PDF

p(x, t) that cannot be reproduced by Gaussian processes, even if long-range. In order to

extend this model to non-Gaussian PDFs with power-law tails, a random D population

is needed. This is obtained by means of the distribution f(D) given in Eq. (14).

This distribution has a cut-off for some maximum value Dmax. We proved that the

presence of the cut-off allows to get finite energy and variance and, thus, the validity

of a fluctuation-dissipation theorem. At the same time, we proved that, similarly to

LWs, our proposed HEBP model can take into account intermediate power-law decays

in the PDF. Unlike LWs, where power-law is truncated by the ballistic peaks due to

the underlying WT statistics, in HEBP the power-law is truncated by an exponential

cut-off in the regime of large x. In experimental data, this is often associated with lack

of statistics or presence of noise [134, 57, 58], but it is also recognized to be reminiscent

of heterogeneous media [71].
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In summary, we derived a model in a physical framework involving heterogeneity

and, then, a population of parameters characterized by given inverse power-law

distributions. Our model follows from a superposition of standard Gaussian processes

with stationary and independent increments. This model therefore has the following

properties:

(1) long-range velocity time correlations R(t) ∼ 1/tη and anomalous superdiffusive

scaling in the variance: 〈x2〉 ∼ tφ (φ = 2 − η; 1 ≤ φ < 2) [this is related to the

distribution g(τ) and to its scaling η, see Eq. (8)];
(2) finite moments 〈|x|q〉, finite energy 〈v2〉eq and a fluctuation-dissipation relation:

〈v2〉eq = 〈τ〉〈D〉;
(3) both an intermediate range with power-law decay 1/|x|1+α and an asymptotic

range with exponential cut-off in the PDF p(x, t) [this is related to the distribution

f(D) and to its scaling α, see Eq. (14)];
(4) space-time monoscaling behavior: x ∼ tδ

(δ = φ/2);
(5) α and δ are independent scaling parameters;
(6) a transition from anomalous (intermediate time regime) to normal diffusion (long

time regime).

This last point implies that the (mono-)scaling index δ is a function of time, being

δ(t) 6= 1/2 for t much less than the maximum relaxation time τmax, and δ(t) = 1/2 for

t� τmax.

Properties (1-3) are similar to those displayed by LW models, apart from the exponential

cut-off of HEBP, which could be difficult to distinguish from the cut-off in the LW-PDF

when dealing with experimental data.

On the contrary, property (4) is not satisfied by LWs, which obey the biscaling law

(26), distinctly different from the monoscaling behavior of HEBP. Also the crucial

property (5) is not seen in LWs.

Further, Lévy Walks do not reproduce the right space-time scaling δ of HEBP neither in

the PDF’s central part, which is that part of the PDF more similar to a pure Lévy stable

density. In fact, in our HEBP model the space-time scaling δ and the power-law decay

of the probability distribution α are independent parameters, while they are not in

LWs. LW is only driven by the parameter µ associated with the underlying trapping

mechanism described by Eq. (25). The additional assumption of jumps coupled with

WTs triggers the emergence of anomalous superdiffusion, thus directly affecting the

space-time self-similarity index δ
LW
].

Thus, when the LW-PDF is characterized by the decay: p(x, t) ∼ 1/|x|µ, the scaling

δ
LW

is constrained, by the jump-WT coupling, to obey the relationship [115, 61]:

δ
LW

=
1

µ− 1
=

1

α
LW

. (28)

] It is interesting to note that this is also true when the velocity PDF, even if characterized by a power-

law decay, has finite variance, and finite higher-order moments, due to the cut-off (always present in

real experimental data).
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where α
LW

= µ−1 represents the Lévy stability index. As known, this is well-established

in the intermediate range where the LW-PDF is more similar to a pure Lévy stable

density L0
α
LW

. It is important to notice that the above relationship among δ and α can

be also satisfied by our HEBP model for particular parameter choices, i.e., given the

experimental α, for η = 2− 2/α.

Another important aspect worthy of discussion is the physical basis of the considered

models. HEBP models directly follow from an heterogeneity assumption applied to a

standard Gaussian process, whether the origin of heterogeneity is (in the medium or in

the particle parameters). Thus, HEBP models, which are based on the same idea of

the ggBM [90, 94], are derived from a physical background directly involving the idea

of a complex heterogeneity, and indeed we expect HEBP models to be more suitable

to heterogeneous transport phenomena. Conversely, LWs should better fit phenomena

where trapping plays a fundamental role.

As already said, many authors have recently been focusing on position transport models

with heterogeneous diffusivities, e.g., DDMs [79, 80, 81, 71, 72]. In some sense,

HEBP models belong to the class of transport models with random diffusivity, i.e.,

HDMs. However, unlike other ones, the HEBP model here discussed explicitly describes

the velocity dynamics, thus including the often neglected but crucial role of viscous

relaxation time τ . More precisely, we here refer to the relaxation time of the velocity, a

physical parameter whose relationship with medium/fluid properties is well-established.

As seen above, the role of heterogeneity in the relaxation time τ is taken into account

and modeled through a population with inverse power-law distribution g(τ). Another

important aspect is that the here proposed HEBP model is derived from a standard

Ornstein–Uhlenbeck process, which, when describing velocity dynamics, is the most

simple stochastic model for a particle moving under the combined effect of medium

viscosity (friction) and thermal noise (diffusion). As a direct consequence, the HEBP

model has finite energy and satisfies a fluctuation-dissipation theorem.

From the above discussion, we can finally suggest a possible statistical recipe to

distinguish the best modeling approach among LWs and HEBP models starting from

a set of experimental transport data. This is of great interest when the underlying

mechanism, heterogeneity or trapping, driving anomalous diffusion is not yet clear. If the

experimental PDF displays a power-law decay, it is possible to apply a best fit procedure

to get p(x, t) ∼ 1/|x|1+αexp for some αexp < 2, where ’exp’ stands for experimental.

Then, fractional moments and the function λ(q) = qH(q) can be computed. DEA can

be applied to compute the self-similarity index and let us assume that a well-defined δ

exists. Then, we have the indices αexp , δ and λ(q). If the data are monoscaling, then

HEBP could be a good candidate and we have two parameters to independently fit the

PDF scaling (α) and the moment scaling (H(q) = φ/2 = constant). The exponential

cut-off could be another clue towards HEBP [71], but actually an exponential cut-

off is usually seen in the tail of experimental PDFs due to lack of statistics and/or

presence of instrumental/environmental noise. If data are multiscaling, then there are

two possibilities: (i) biscaling law (26) is satisfied for some µ = 1 + αexp and LW
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modeling approach is the most reasonable one; (ii) other multiscaling laws, biscaling or

not, emerge and neither LW nor HEBP can be applied.
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Appendix A. Numerical algorithms

In the following we shortly describe the algorithms used for numerical evaluations and

stochastic simulations.

(1) Langevin equation (6) for (x, v) is numerically integrated by using the Euler

scheme.

(2) The random drawings from the PDF f(D) are carried out by means of the

Chambers–Mallows–Stuck algorithm for the simulation of extremal Lévy densities

L−αα in the interval 0 < α < 1 [135, 136, 97].

(3) To get random drawings from g(τ), we first obtained a numerical PDF by applying

the Chambers–Mallows–Stuck algorithm to the Lévy extremal density L−ηη with

very high statistics, and then we computed the numerical histogram and the

function g(τ) using Eq. (8). This numerical PDF g(τ) is then used to draw

number by the cumulative function method [see also details in Ref. [101]].

(4) The HEBP–PDF with maximum diffusivity Dmax, given by Eq. (17), is evaluated

by the numerical calculation of the integral. This is done by applying a composite

trapezoidal rule with sufficiently small step δD.

(5) In the stochastic simulations we used α = 3/2, η = 1/2 (so that the MSD is

〈x2〉 ∝ t3/2), initial conditions xi,0 = 0 and vi,0 = 0. 104 trajectories were simulated,

being each trajectory obtained as an average over a set of N = 9600 couples (τ,D)

drawn from g(τ) and f(D) (for a total of 9.6 · 107 drawn couples (τ,D)). Being the
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minimum τ of the order 10−2, the time step was set to dt = 10−3. The programs

for the simulations were written in the c++ language (Debian gcc 4.9) and Python

2.7.

A final observation is in order. A single trajectory of the HEBP can be interpreted

as resulting from the superposed effects of D and, especially, τ populations. We

applied this approach in performing the numerical simulations. In particular, for a

fixed diffusivity value D, the HEBP model becomes a Gaussian process with long-range

velocity autocorrelation function and variance given by Eqs. (10) and (11), respectively.

This is a consequence of the Central Limit Theorem, as the process results from a linear

superposition of independent Gaussian processes.

Alternatively, the model can be interpreted as a set of different particles whose motion

(x(t), v(t)) is driven by heterogeneous parameters (τ,D). Thus, the average motion can

be derived as an average over this ensemble of trajectories.

To the goal of stochastic simulations the two approaches are mathematically equivalent.

The two physical interpretations of the trajectories are different, but the possibility of

guessing the correct interpretation depend on the possibility of observing a sufficiently

large number of single trajectories with high precision, so that both single particle

and ensemble statistics can be computed (similarly to the direct evaluation of ergodic

condition).

Appendix B. From HEBPs to RSGPs

The dynamical equations of an ensemble of particles moving in a viscous fluid and having

homogeneous parameters τ and D are:

dx

dt
= v ,

dv

dt
= −1

τ
v(t) +

√
2D ξ(t) .

Let us assume that some randomness is assumed for the the diffusivity D and let us

write the process (x(t), v(t)) as:

x(t) =
√

2DxG(t) ; v(t) =
√

2D vG(t) , (B.1)

with vG(t) = dxG(t)/dt. By substituting in the previous equations, we get a Langevin

equation with unitary noise intensity:

dxG
dt

= vG ,

dvG
dt

= −1

τ
vG(t) + ξ(t) . (B.2)

It is well known that the solution for the PDF p(xG, vG, t) and, consequently, for the

marginal PDFs of xG and vG, are Gaussian. Thus, the process (xG(t), vG(t)) is a

Gaussian process.
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This proves that the process (x(t), v(t)) derived from the randomization of the velocity

diffusivity D is equivalent to a RSGP with random amplitude given by
√

2D, while the

Gaussian process is “generated” by a Langevin equation with unitary noise intensity.

When a population of relaxation times τ with a complex PDF g(τ) is considered, the

randomized Langevin equation (B.2) still gives a Gaussian process but, depending

on g(τ), the global velocity autocorrelation function can be non-exponential and, thus,

diffusion can be non-standard. In particular, when g(τ) is given by Eq. (8), the velocity

autocorrelation function is long-range (i.e., slow power-law decaying) and anomalous

diffusion emerges.

References

[1] Rice S A 1985 Diffusion-Limited Reactions (New York: Elsevier) ISBN 9780080868196

[2] Dorsaz N, De Michele C, Piazza F, De Los Rios P and Foffi G 2010 Phys. Rev. Lett. 105(12)

120601

[3] Kaplan H, Dinar N, Lacser A and Alexander Y (eds) 1993 Transport and Diffusion in Turbulent

Fields: Modeling and Measurement Techniques 1st ed (Netherlands: Springer) ISBN 978-94-

010-5220-7

[4] Paradisi P, Cesari R, Mainardi F and Tampieri F 2001 Physica A 293 130–142

[5] Paradisi P, Cesari R, Mainardi F, Maurizi A and Tampieri F 2001 Phys. Chem. Earth 26 275–279

[6] Paradisi P, Cesari R, Donateo A, Contini D and Allegrini P 2012 Nonlinear Proc. Geoph. 19

113–126 p. Paradisi et al., Corrigendum, Nonlin. Processes Geophys. 19, 685 (2012)

[7] Cheng X, Hu F and Zeng Q 2014 Chin. Sci. Bull. 59 4890–4898 ISSN 1861-9541

[8] Goulart A, Lazo M, Suarez J and Moreira D A 2017 Physica A 477 9–19

[9] Ingenhousz J 1784 Vermischte schrifen physisch medicinischen inhalts vol 2 (Vienna: Wappler)

[10] Bywater J 1828, first published in 1819 Physiological Fragments: To Which are Added Supple-

mentary Observations, to Show that Vital Energies are of the Same Nature, and Both Derived

from Solar Light (London: R. Hunter) URL https://archive.org/details/b21458066

[11] Brown R 1828 Phil. Mag. 4 161–173

[12] Brown R 1829 Phil. Mag. 6 161–166

[13] Derek Abbott D, Davis B R, Phillips N J and Eshraghian K 1996 IEEE Trans. Educ. 39 1–13

[14] Perrin J 1908 Compt. Rend. 146 967

[15] Perrin J 1909 Ann. Chim. Phys. 18 5

[16] Metzler R and Klafter J 2000 Phys. Rep. 339 1–77

[17] Paradisi P, Kaniadakis G and Scarfone A M 2015 Chaos Soliton Fract 81 407–11

[18] Paradisi P, Kaniadakis G and Scarfone A M (eds) 2015 The emergence of self-organization in

complex systems (Amsterdam: Elsevier) Special Issue - Chaos, Soliton Fract, Vol. 81(B), Pages

407-588

[19] Metzler R and Klafter J 2004 J. Phys. A: Math. Theor. 37 R161–R208

[20] Klages R, Radons G and Sokolov I M (eds) 2008 Anomalous Transport: Foundations and

Applications (Weinheim: Wiley-VCH)

[21] Richardson L 1926 Proc. R. Soc. A 110 709

[22] Montroll E 1964 Proc. Symp. Appl. Math., Am. Math. Soc. 16 193–220

[23] Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167–181

[24] Scher H and Montroll E W 1975 Phys. Rev. B 12(6) 2455–2477

[25] Solomon T, Weeks E and Swinney H 1993 Phys. Rev. Lett. 71 3975–3978

[26] Kraichnan R 1994 Phys. Rev. Lett. 72 1016–1019

[27] Clausen S, Helgesen G and Skjeltorp A 1997 Physica A 238 198–210

[28] Venkataramani S, Antonsen T and Ott E 1998 Phys. D 112 412–440
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