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Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing
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Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the megahertz
range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at
lower spectral frequencies, for example, in gravitational wave interferometers, despite being more sensitive to
excess phase and frequency noise. Here we show a phase and frequency-noise cancellation mechanism due to
destructive interference which can facilitate the production of ponderomotive squeezing in the kilohertz range
and we demonstrate it experimentally in an optomechanical system formed by a Fabry-Pérot cavity with a
micromechanical mirror.
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I. INTRODUCTION

Optical squeezing is an important tool for improving
quantum limited displacement sensing [1], as first pointed
out in proposals to increase the displacement sensitivity of
large-scale gravitational wave observatories [2,3]. Squeezed
light was first produced using atomic sodium as a nonlinear
medium [4], and then in experiments employing optical
fibers [5] and nonlinear crystals [6]. Substantial squeezing
has been achieved in modern experiments (up to 12.7 dB
[7]), and enhanced sensitivity using squeezed light has been
realized in gravitational wave detectors [8] and in biological
measurements [9].

Searches for ever-better squeezing materials have led to
the suggestion that generation of ponderomotive squeezing
might be possible [10,11], i.e., quadrature-squeezed light at the
output of a cavity caused by the radiation pressure interaction
of the cavity mode with a vibrating resonator. The mechanical
element is shifted proportionally to the intracavity intensity,
and consequently, the optical path inside the cavity depends
upon such intensity. Therefore the optomechanical system
behaves similarly to a cavity filled with a nonlinear Kerr
medium, however, with two important differences: (i) the
effective nonlinearity is delayed by a time depending upon
the dynamics of the mechanical element; (ii) the optome-
chanical interaction transmits mechanical thermal noise to
the cavity field, causing fluctuations of its frequency. When
the mechanical oscillator is fast enough, i.e., we look at
frequencies much lower than the mechanical resonance, the
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mechanical response is instantaneous and the optomechanical
interaction becomes indistinguishable from a Kerr interaction.
It is known that when a cavity containing a Kerr medium is
driven by an intense laser, one gets appreciable squeezing in the
spectrum of quadrature fluctuations at the cavity output [12].
The above analogy therefore suggests that a strongly driven
optomechanical cavity will also be able to produce quadrature
squeezing at its output, provided that optomechanical coupling
predominates over the detrimental effect of thermal noise.
The first analysis of Refs. [10,11] was then later extended
to the case of many vibrational modes in Ref. [13]. The
problem was then reconsidered in a Michelson interferometer
setup in Ref. [14], and an experimental study of the possible
signatures of ponderomotive squeezing in a Fabry-Pérot cavity
with a movable end-mirror was then carried out in Ref. [15].
More recently, ponderomotively squeezed light at the few
percent level has been demonstrated using a mechanical
mode of an ultracold atomic gas inside an optical cavity
[16], and even more recently using a silicon micromechanical
resonator [17] and a thin semitransparent membrane within
a Fabry-Pérot cavity [18]. These latter experiments achieved
squeezing around the mechanical resonance in the megahertz
range; however, quadrature squeezing is particularly useful for
improving sensitivity at lower frequencies, in the audio band,
for example, for improving the sensitivity of gravitational wave
interferometers [3]. At lower frequencies, however, various
sources of technical noise, such as thermal noise, phase and
frequency noise associated with the input field and/or the
slow cavity fluctuations, have detrimental effects on squeezing,
making low-frequency ponderomotive squeezing much more
difficult to achieve.
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Here we consider the general problem of ponderomotive
squeezing in the presence of thermal, intensity, and frequency
noise. We show that frequency noise can be almost completely
canceled around the bare mechanical resonance frequency due
to the destructive interference between the frequency noise
directly affecting the cavity and the same frequency noise
transduced by the mechanical resonator. We demonstrate such
an effect experimentally in a frequency band around 100 kHz,
using an optomechanical setup formed by a Fabry-Pérot cavity
with a micromechanical mirror [19]. Finally, we also show that
such a noise cancellation could facilitate the generation and
detection of ponderomotive squeezing in the audio band.

The paper is organized as follows. In Sec. II we provide a
general description of an optomechanical system subject both
to quantum and technical noise in terms of quantum Langevin
equations. In Sec. III we calculate the output quadrature
noise spectra and illustrate the frequency-noise cancellation
mechanism, also by comparing it with different destructive
interference phenomena such as optomechanical induced
transparency (OMIT) [20–23] and backaction amplification
[24–26]. In Sec. IV we describe the experimental cavity
optomechanical apparatus, and in Sec. V we illustrate the
experimental results. Finally, in Sec. VI we show that this
noise cancellation may facilitate the generation and detection
of ponderomotive squeezing in the kilohertz range and using
microgram mechanical resonators.

II. MODEL

We consider a generic cavity optomechanical system in
which a mechanical resonator with frequency ωm is subject to
a force proportional to the photon number of an optical cavity
mode with frequency ωc, which is driven by an intense laser.
The corresponding Hamiltonian can be written as [27–30]

H = �ωca
†a + 1

2 �ωm(p2 + q2) − �G0a
†aq

+ i�E0(a†e−iω0t − a eiω0t ). (1)

The first term describes the energy of the cavity mode,
with annihilation operator a ([a,a†] = 1), while the second
term gives the energy of the mechanical resonator, described
by dimensionless position and momentum operators q and
p, satisfying the commutation relation [q,p] = i. The third
term is the optomechanical interaction, with single-photon
optomechanical coupling strength

G0 = −
(

dωc

dx

)√
�

mωm
, (2)

where (dωc/dx) is the change in cavity frequency per
displacement and m is the effective mass of the mechanical
mode. The last term describes the cavity driving by a laser
with frequency ω0 and E0 = √

2κ1P/�ω0, where P is the
input laser power and κ1 is the cavity loss rate through its
input port. We have taken the amplitude E0 real, which means
that we use the driving laser as phase reference for the optical
field.

For a full description of the system dynamics, it is necessary
to include the fluctuation-dissipation processes affecting both
the optical and the mechanical mode. They can be taken into

account in a fully consistent way [30], and in the frame rotating
at the laser frequency ω0 one gets

q̇ = ωmp, (3a)

ṗ = −ωmq − γmp + G0a
†a + ξ, (3b)

ȧ = −κa − i[ωc − ω0 − G0q]a

+E0 +
√

2κ1a
in
1 +

√
2κ2a

in
2 . (3c)

ain
1 is the vacuum input noise entering the input port of

the optomechanical cavity, ain
2 is the vacuum input noise

describing all the other decay channels (optical losses and
transmission through the back mirror), with decay rate κ2,
and κ = κ1 + κ2 is the total cavity decay rate. The two input
noises are uncorrelated and possess the following correlation
functions [31]:〈

ain
j (t)ain

j (t ′)
〉 = 〈

a
in,†
j (t)ain,†

j (t ′)
〉 = 〈

a
in,†
j (t)ain

j (t ′)
〉 = 0, (4a)〈

ain
j (t)ain,†

j (t ′)
〉 = δ(t − t ′), j = 1,2. (4b)

The mechanical mode is affected by a viscous force with
damping rate γm and by a Brownian stochastic force with
zero mean value ξ (t), obeying the correlation function at
temperature T [31,32]:

〈ξ (t)ξ (t ′)〉 = γm

ωm

∫
dω

2π
e−iω(t−t ′)ω

[
coth

(
�ω

2kBT

)
+ 1

]
.

(5)
The Brownian noise ξ (t) is a Gaussian quantum stochastic
process, and its non-Markovian nature (neither its correlation
function nor its commutator are proportional to a Dirac δ

function) guarantees that the quantum Langevin equations
(QLEs) of Eqs. (6) preserve the correct commutation relations
between operators during the time evolution [30].

The above-mentioned thermal and vacuum noises are
unavoidable fundamental noises. However, in a realistic
scenario two additional technical noises (uncorrelated between
them and with all the other noises) can play a relevant role:
(i) amplitude noise, which is taken into account considering
that the coherent amplitude E0 at the input of the cavity mode
is fluctuating, E0 → E0 + √

2κ1ε(t), where ε(t) is a real, zero-
mean Gaussian stochastic variable; (ii) phase and/or frequency
noise, which is caused both by the laser frequency fluctuations
and by the fluctuations of the cavity length (and therefore of
its resonance frequency), which are not due to the considered
mode of the mechanical resonator. This noise manifests itself
as a fluctuating detuning ωc − ω0 → 	0 − φ̇(t), where φ̇(t)
is a zero-mean frequency noise. As a consequence, Eqs. (3)
become

q̇ = ωmp, (6a)

ṗ = −ωmq − γmp + G0a
†a + ξ, (6b)

ȧ = −κa − i(	0 − φ̇ − G0q)a + E0

+
√

2κ1
(
ain

1 + ε
) +

√
2κ2a

in
2 . (6c)

Therefore in the frame rotating at the fluctuating frequency,
amplitude noise acts as additive noise on the cavity modes,
while frequency noise is a multiplicative noise, affecting the
cavity field in the same manner as the fluctuations of the
resonator position q.
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We want to generate and manipulate optical quantum
fluctuations and therefore we consider the motion of the system
around a steady state characterized by the intracavity electro-
magnetic field in an approximate coherent state of amplitude
αs, and the micro-oscillator at a new position qs, by writing

q = qs + δq, (7)

p = ps + δp, (8)

a = αs + δa. (9)

By substituting Eqs. (7)–(9) into Eq. (6), and retaining only
the zeroth-order contributions one gets

qs = G0

ωm
|αs|2, (10)

ps = 0, (11)

αs = E0

κ + i	
, (12)

where 	 = 	0 − G0qs = 	0 − G2
0|αs|2/ωm.

The exact and nonlinear QLEs for the fluctuation operators
are given by

δq̇ = ωmδp, (13a)

δṗ = −ωmδq − γmδp + G0(αsδa
† + α∗

s δa) + ξ + G0δa
†δa,

(13b)

δȧ = −(κ + i	)δa + iG0αsδq + i
(
G0δq + φ̇

)
δa + iφ̇αs

+
√

2κ1
(
ain

1 + ε
) +

√
2κ2a

in
2 . (13c)

The nonlinear terms are G0δa
†δa, iG0δqδa, and iG0φ̇δa. The

first two terms have a negligible effect when |αs| � 1, which
is usually satisfied, and therefore they can be safely neglected.
The last term is a multiplicative noise term and it is not obvious
if and when it can be neglected, since its evaluation requires
the knowledge (or realistic hypotheses) of the frequency and
displacement noise spectrum on a wide frequency range. Its
treatment is outside the purpose of the present work and we
shall neglect this last term in the following. Therefore Eqs. (13)
become

δq̇ = ωmδp, (14a)

δṗ = −ωmδq − γmδp + G0(αsδa
† + α∗

s δa) + ξ, (14b)

δȧ = −(κ + i	)δa + iG0αsδq +
√

2κ1ã
in
1 + ζ, (14c)

where we have introduced the two noise terms

ζ = iαsφ̇ +
√

2κ2a
in
2 , (15)

ãin
1 = ain

1 + ε. (16)

III. OUTPUT QUADRATURE SPECTRA

Ponderomotive squeezing is detected in the noise spectrum
of appropriate quadratures of the optical cavity output. This
noise spectrum can be calculated from the Fourier transform
of the field at the input-output port,

aout
1 =

√
2κ1δa − ãin

1 . (17)

Taking the Fourier transform of Eqs. (14), solving for δa(ω),
and using Eq. (17), one gets

aout
1 (ω) = ν1(ω)ãin

1 (ω) + ν2(ω)ãin,†
1 (ω)

+ ν3(ω)ζ (ω) + ν4(ω)ζ †(ω) + νT(ω)ξ (ω), (18)

where

ν1(ω) = (1 − 2η)κ − i(	 − ω)

κ + i(	 − ω)
+ i|G|2κ1χeff(ω)

[κ + i(	 − ω)]2
,

(19a)

ν2(ω) = iG2κ1χeff(ω)

[κ + i(	 − ω)][κ − i(	 + ω)]
, (19b)

ν3(ω) =
√

2κ1

κ + i(	 − ω)

{
1 + i|G|2χeff(ω)

2[κ + i(	 − ω)]

}

= ν1(ω) + 1√
2κ1

, (19c)

ν4(ω) = ν2(ω)√
2κ1

, (19d)

νT(ω) = iG
√

κ1χeff(ω)

κ + i(	 − ω)
, (19e)

where η = κ2/κ , (0 � η � 1) is a parameter quantifying
optical losses, G = G0

√
2αs is the effective coupling, and

χeff(ω) = ωm

[
ω2

m − ω2 − iωγm − |G|2	ωm

(κ − iω)2 + 	2

]−1

(20)

is the effective mechanical susceptibility modified by the op-
tomechanical coupling. The first two functions ν1(ω) and ν2(ω)
are responsible for the generation of ponderomotive squeezing,
while the last three functions determine the response of the
optomechanical system to frequency noise, thermal noise, and
optical losses.

A. Frequency noise cancellation

Equation (18) already enables one to predict that an
interesting frequency-noise cancellation takes place. In fact,
using Eq. (15), one has for the contribution to the output signal
proportional to φ̇,

aout
1 (ω) = i[αsν3(ω) − α∗

s ν4(ω)]φ̇(ω) ∝ χeff(ω)

χ0(ω)
φ̇(ω), (21)

where

χ0(ω) = ωm
(
ω2

m − ω2 − iωγm
)−1

(22)

is the bare susceptibility of the mechanical resonator. In
the usual case of a large mechanical quality factor, at the
unperturbed mechanical resonance ω = ωm, χ0(ω) diverges
and the output signal is unaffected by frequency noise.
Therefore we expect a narrow bandwidth around ω = ωm

where noise is strongly suppressed. The mechanism at the basis
of this cancellation is the interference between the frequency
noise directly affecting the cavity and the same frequency noise
transduced by the mechanical resonator, which is perfectly
destructive when ω = ωm. This cancellation takes place at any
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cavity detuning except at resonance 	 = 0, when χeff(ω) =
χ0(ω). In this case, in fact, the mechanical resonator is sensitive
only to intensity noise and cannot transduce phase and/or
frequency noise.

This frequency-noise cancellation is related to the back-
action amplification of a signal discussed in Refs. [24,25]
and demonstrated in Ref. [26]. In fact, both effects are
described by the “amplification” ratio χeff(ω)/χ0(ω), because
the system responds in the same way to cavity length
variations due either to an external signal or to frequency-
noise modulations. However, here we exploit this interference
phenomenon for a different purpose, i.e., for reducing phase
and frequency noise in the optical output rather than for
amplifying an external signal. We shall see in Sec. VI that
such a noise cancellation is essential for the possibility of gen-
erating and detecting ponderomotive squeezing at hundreds of
kilohertz.

This frequency-noise cancellation is instead different from
the optomechanical induced transparency of an optical probe
beam, which is caused by the destructive interference between
the probe itself and the blue motional sideband of the driving
pump beam [20–23]. Indeed, in OMIT the probe transmission
is described by the coefficient ν3(ω) of Eq. (19c), which can
be rewritten as

ν3(ω) =
√

2κ1

κ + i(	 − ω)
χeff(ω)

×
{
χ0(ω)−1 + i|G|2

2[κ − i(	 + ω)]

}
, (23)

and therefore is not proportional to χeff(ω)/χ0(ω) and never
reduces to it. In fact, when the last term on the right-
hand side, proportional to |G|2, is negligible, χeff(ω)/χ0(ω)
simultaneously becomes essentially equal to one, and therefore
also frequency-noise cancellation disappears. The difference
between OMIT and the present frequency-noise cancella-
tion is manifested also by the fact that in OMIT destruc-
tive interference [that is, ν3(ω) 
 0] occurs at ω 
 ωeff

m ,
the effective mechanical frequency shifted by the optical
spring effect. On the contrary, frequency-noise cancellation
occurs when χeff(ω)/χ0(ω 
 0, which occurs at the bare
mechanical frequency ωm, while at ωeff

m such a ratio is
maximum.

The physical origin of the phenomenon of noise cancella-
tion can be understood also with a simple model. As we have
seen, a single classic variable (in our notation, φ̇) describes
the fluctuations in the cavity detuning, and it can be used
to take into account both the laser frequency noise and the
cavity length fluctuations (excluding the oscillator modes with
low effective mass, for which it is necessary to include in
the description their response to radiation pressure). As a
consequence, we can consider in this simple model all such
noise sources as contributions to effective position fluctuations
of the input cavity mirror. Around the mechanical resonance
(when ω 
 ωm) the effective susceptibility can be expressed
by defining an optical spring with strength

Kopt = m ω2
opt = m |G|2	ωm

(
κ2 + 	2 − ω2

m

)
(
κ2 + 	2 − ω2

m

)2 + 4κ2ω2
m

(24)

x 

y 
 y 

Kopt Km 

FIG. 1. (Color online) Scheme of the simplified model explain-
ing the effect of noise cancellation. The oscillating mass (micromir-
ror) is linked by a mechanical spring (Km) to a fixed frame and by the
optical spring (Kopt) to the input mirror, modeled as a rigid fluctuating
bound.

and damping

γopt = 2κ|G|2	ωm(
κ2 + 	2 − ω2

m

)2 + 4κ2ω2
m

, (25)

which allows us to write

χeff(ω) 
 ωm
[(

ω2
m − ω2

opt

) − ω2 − iω(γm + γopt)
]−1

. (26)

The overall system (cavity with oscillating micromirror feeling
radiation pressure) can be sketched (see Fig. 1) as a first mirror
with a fluctuating position y(t) (we remark that we are not
considering a noise force on the first mirror, but a position
noise), and a second mirror (the micro-oscillator) linked by the
optical spring of strength Kopt to the first mirror, and by the
mechanical spring Km to a fixed rigid frame. The second mirror
has mass m and a fluctuating position x(t) around equilibrium.
Neglecting the damping, the equation of motion for x is

mẍ + Kmx − Kopt(y − x) = 0, (27)

giving the solution, for the Fourier-transformed variables x̃(ω)
and ỹ(ω),

x̃ = Kopt

Km + Kopt − m ω2
ỹ = ω2

opt

ω2
m + ω2

opt − ω2
ỹ, (28)

and for the distance (y − x) (corresponding to the cavity
detuning in the real system),

ỹ − x̃ = ω2
m − ω2

ω2
m + ω2

opt − ω2
ỹ = χeff

χ0
ỹ. (29)

We have therefore a cancellation of the effect of the mirror
position noise on the cavity length when χ0 � χeff , i.e., around
the bare oscillator resonance. The cancellation on the cavity
detuning is effective also on the intracavity and output fields.
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In the next section we will experimentally demonstrate such
a cancellation of frequency noise in a cavity optomechanical
setup.

B. Noise spectra

In general, we detect the noise spectrum of the quadrature
at phase ϕ (0 � ϕ < π ), dϕ = aout

1 e−iϕ + a
out,†
1 eiϕ , which, due

to stationarity, is defined as

2π Sϕ

d (ω)δ(ω + ω′) = 〈dϕ(ω)dϕ(ω′)〉 + 〈dϕ(ω′)dϕ(ω)〉
2

. (30)

The output light is squeezed at phase ϕ when the noise
spectrum is below the shot-noise limit, i.e., when Sϕ

d (ω) < 1
in our definitions. The quadrature noise spectrum Sϕ

d (ω) can
be written in terms of the noise spectra of the amplitude
(Xout ≡ d0) and phase (Y out ≡ dπ/2) quadratures, SX(ω) and
SY (ω), respectively, and their symmetrized correlation spec-
trum SX,Y (ω) as

Sϕ

d (ω) = SX(ω) + SY (ω)

2
+ SX(ω) − SY (ω)

2
cos(2ϕ)

+ SX,Y (ω) sin(2ϕ). (31)

We recall that the Heisenberg’s uncertainty relation implies
for these noise spectra

SX(ω) SY (ω) − [SX,Y (ω)]2 � 1. (32)

The optimal squeezing spectrum Sopt
d (ω) and the corresponding

frequency-dependent optimal phase ϕ
opt
d (ω) of the output mode

can be calculated by minimizing Sϕ

d (ω) with respect to the
phase ϕ, obtaining

2 Sopt
d (ω) = SX(ω) + SY (ω) − {[SX(ω) − SY (ω)]2

+ 4[SX,Y (ω)]2}1/2, (33)

2 ϕ
opt
d (ω) = π + sgn[SX,Y (ω)]

× arccos

{
SX(ω) − SY (ω)√

[SX(ω)− SY (ω)]2 + 4[SX,Y (ω)]2

}
.

(34)

If in the experiment the phase of local oscillator has residual
random fluctuations, the homodyne noise spectrum must be
averaged over the distribution of the fluctuating phase ϕ, which
we take as a Gaussian with variance 	ϕ, i.e.,

S̄ϕ

d, 	ϕ(ω) = 1√
2π (	ϕ)

∫ ∞

−∞
dϕ′ exp

{
− [ϕ′ − ϕ]2

2(	ϕ)2

}
Sϕ′(ω),

(35)

which gives

S̄ϕ

d, 	ϕ(ω) = SX(ω) + SY (ω)

2
+ SX(ω) − SY (ω)

2
e−2(	ϕ)2

× cos(2ϕ) + SX,Y (ω) e−2(	ϕ)2
sin(2ϕ), (36)

and as a consequence the optimal squeezing spectrum becomes

2S̄opt
d, 	ϕ(ω) = SX(ω) + SY (ω) − e−2(	ϕ)2

×
√

[SX(ω) − SY (ω)]2 + 4[SX,Y (ω)]2. (37)

Using the spectrum of the various noise sources, that is,
shot noise spectrum Sin(ω) = 1, the thermal noise spec-
trum ST(ω) = (γm/ωm)ω coth(�ω/2kBT ), the detuning noise
spectrum Sφ̇(ω), and the amplitude noise spectrum Sε(ω),
and Eq. (18), we get the general expressions of the output
homodyne noise spectra of the amplitude quadrature SX(ω),
phase quadrature SY (ω), and of their correlation [SX,Y (ω)].
The explicit results are given in the Appendix.

IV. EXPERIMENTAL SETUP

The mechanical oscillator used in the experiment belongs to
a class of micro-optomechanical system specifically developed
for having at the same time low optical and mechanical losses
[33]. The device has been realized in the microfabrication
facility of FBK [34]. The reflective coating is obtained by the
deposition alternate Ta2O5/SiO2 quarter-wave layers for a total
thickness of about 5.9 μm. Optical cavities with finesse up to
65 000 have been realized with these devices. A structure made
of alternate torsional and flexural springs supports the central
mirror and allows its vertical displacement with a minimal
internal deformation [see Fig. 2(a)]. This feature reduces the
mechanical loss in the optical coatings and allows us to reach
quality factors up to 105. In this specific case the measurements
were performed at room temperature, where the thermoelastic

FIG. 2. (Color online) (a) FEM image of the micromirror, show-
ing the shape of the fundamental mechanical mode under study. The
displacement is maximum in the red (dark gray) central mirror.
(b) Thermal displacement noise spectrum. (c) Scheme of the
experimental apparatus: optical isolator (OI); acousto-optic modu-
lator (AOM); electro-optic modulator (EOM); half-wave plate (H);
polarizing beam splitter (PBS); Faraday rotator (FR); photodiode
(PD); lock-in amplifier (LA); delay line for phase control (φ). Black
lines indicate the electronic part of the setup. We have omitted
for clearness in the scheme an additional Michelson interferometer,
monitoring the displacement of the micro-oscillator from its back
side, used for mechanical characterizations of the free oscillator [we
have thus obtained, e.g., the spectrum (b)].
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loss in the flexural springs prevents the achievement of quality
factors much surpassing ∼104 [35].

The micro-oscillator is used as end mirror of a 0.57-mm-
long Fabry-Pérot cavity with a 50-mm radius silica input mirror
(transmissivity ∼50 ppm) operating in a vacuum chamber at
10−3 Pa. The cavity finesse is F = 57 000 (half linewidth
κ/2π = 2.3 MHz, with κ1 
 κ2 
 κ/2). The mechanical
characteristics of the device are derived from the thermal
noise spectrum measured with a polarization Michelson
interferometer phase locked on a dark fringe [see Fig. 2(b)]
[19]. The mechanical frequency is ωm/2π = 128 961 Hz, the
mechanical quality factor Q = 16 000, and the effective mass
m = 1.35 × 10−7 kg.

The experimental setup is sketched in Fig. 2(c). The light
source is a cw Nd:YAG (yttrium aluminum garnet) laser
operating at λ = 1064 nm. After a 40-dB optical isolator
(OI1), the laser radiation is split into two beams. The first one
(reference beam) is frequency shifted by means of two acousto-
optic modulators (AOMs) operating on opposite diffraction
orders. A resonant electro-optic modulator (EOM) provides
phase modulation at 13.3 MHz used for the Pound-Drever-Hall
(PDH) detection scheme [36,37]. The locking bandwidth is
about 15 kHz, and additional notch filters assure that the
servo loop does not influence the system dynamics in the
frequency region around the oscillator frequency. The second
beam (pump), with a higher intensity, is employed to induce
a strong optomechanical coupling as in usual schemes of
ponderomotive squeezing experiments.

Both beams are sent to the second part of the apparatus
by means of single-mode, polarization-maintaining optical
fibers overlapped with orthogonal polarizations in a polarizing
beam splitter and then mode matched to the optical cavity
with an efficiency above 95%. Since the cavity is birefringent,
the two beams are frequency shifted with the AOM so that
they both match the cavity resonance. The reflected reference
beam, on its back path, is deviated by the input polarizer of
a second optical isolator (OI2) and collected by a photodiode
(PD1) for the PDH detection and laser frequency locking.
The reflected pump beam, whose polarization is rotated by a
double pass through a Faraday rotator (FR), is monitored by the
photodiode PD2.

In order to verify the frequency-noise cancellation effect,
we have studied the response function of the system to
variations of the laser frequency in a narrow band around
the mechanical resonance. The laser frequency is modulated
by a sinusoid generated by the internal oscillator of a digital
lock-in amplifier and applied to a piezoelectric transducer on
the laser crystal. As we will discuss in the next section, we
have first characterized the frequency response of the system
by looking at the modulation in the PDH signal (signal A),
when the pump beam is blocked. The detuning between the
cavity resonance and the reference beam can be varied by
adding an offset voltage to the PDH signal before the locking
electronics. We have then repeated the measurement in the
presence of the pump field, looking at the PDH signal and
eventually at the reflected pump beam (signal B). In this
configuration, the reference beam is resonant with the cavity
and the detuning with respect to the pump beam is varied
by the acousto-optic modulators. The considered signals (A
or B) are sent to the lock-in amplifier in order to extract the

component (amplitude and phase) synchronous with the mod-
ulation. For a direct comparison between experimental results
and theory, we have applied the following normalizations:
(i) the frequency modulation depth (previously calibrated by a
Michelson interferometer) is normalized to the half linewidth
of the cavity, measured independently from a frequency scan
at very low laser power, giving Ain; (ii) signal A is normalized
to the peak-to-peak amplitude of the PDH, giving again (in
the limit of small detuning and well-resolved FM sidebands) a
displacement normalized to the cavity half linewidth (APDH);
(iii) the modulated signal B is normalized to the height of the
reflection dip, giving APDS.

V. EXPERIMENTAL DEMONSTRATION OF FREQUENCY
NOISE CANCELLATION

We have experimentally verified the cancellation of fre-
quency noise in a narrow band around the bare mechanical
frequency ωm in two different ways: (i) looking at the dynamics
of the PDH signal, which is approximately proportional to the
cavity detuning and is therefore suitable to test the physics
of the frequency-noise cancellation described in Sec. III A;
and (ii) measuring the intensity noise spectra of the field
reflected by the cavity, which is the variable typically observed
in ponderomotive squeezing experiments.

In both cases we have added a strong external frequency
modulation in a region around ωm in order to better see
the cancellation of the frequency fluctuations (otherwise
overwhelmed by thermal noise). The calculated noise spectra
can still be used to predict the experimental results by just using
a huge value of Sφ̇(ω) 
 1010 Hz (constant within the detection
bandwidth), which becomes the dominant noise term.

A. Detecting the fluctuations in the cavity detuning

In the first case we have monitored the PDH signal, which
can be considered as a measurement of the output phase
quadrature Y out. In Fig. 3 we show the experimental data,
normalized as explained in the previous section, and the
calculated spectrum normalized with respect to its value far
from the mechanical resonance (corresponding to the signal
at low frequency, zero detuning, and null optomechanical
coupling). Experimental parameters are those given in Sec. IV,
with input power P = 0.09 mW.

Figure 3 shows that the dip is always exactly at ω = ωm

and that for increasing detuning the cancellation bandwidth
increases and the dip is more pronounced, as it is also expected
from the cancellation factor χeff(ω)/χ0(ω) of Eq. (21). In fact,
the cancellation effect is larger when the effect of the op-
tomechanical coupling on the modified effective susceptibility
χeff(ω) is larger, i.e., for larger 	 and G. This fact is confirmed
by Fig. 4 where, for comparison, we have added to the three
curves of Fig. 3, the PDH signal associated with a weak probe
resonant with the cavity in the presence of a much stronger
and detuned pump field, inducing a larger frequency shift
associated with the optical spring effect. The additional purple
dots in Fig. 4 refer to this latter case and show a much deeper
and visible cancellation effect, again centered at ω = ωm. The
associated full black curve is the theory prediction for the
normalized PDH signal associated with the weak reference
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...
(kHz)

FIG. 3. (Color online) Normalized PDH response signal versus
frequency with input power P = 0.09 mW and three different values
of the detunings: 	 = 0.0047κ (red inverted triangles), 	 = 0.028κ

(green dots), 	 = 0.052κ (blue triangles). Error bars express the
statistical uncertainty on about five repeated measurements. The full
lines correspond to the theory prediction with no fitting parameters,
except for the addition of a supplementary detection noise due to the
detection electronics (that determines the depth of the dips) and an
overall adjustment of the vertical scale by ∼20% and fine adjustment
of the driving power, both compatible with the uncertainty in the
calibration of the experimental data. The other parameter values are
those listed in Sec. IV.

field. More precisely, in this case the probe signal is given
by an equation analogous to Eq. (18), with coefficients νj (ω)
obtained by setting 	 = 0 in Eqs. (19), but taking into account
that both the optomechanical coupling G and the effective
susceptibility of Eq. (20) are determined by the power and
detuning 	 associated with the strong pump field and not with
the weak resonant probe. The agreement between theory and
experiment is again very good in the case of a pump field with
input power P = 1 mW and detuning 	 = 0.023κ .

(kHz)

. . . .

FIG. 4. (Color online) The same three theoretical curves of Fig. 3
for the normalized PDH signal versus frequency, together with
additional data set (purple dots) corresponding to the PDH signal in
the presence of an additional strong pump field, which induces a much
stronger modification of the effective susceptibility χeff (ω), with
input power P = 1 mW and detuning 	 = 0.023κ . The full black
line corresponds to the theory prediction with no fitting parameters,
except for the addition of a supplementary detection noise due to the
detection electronics. The other parameter values are those listed in
Sec. IV.

(kHz)

. . . .

FIG. 5. (Color online) Normalized response function of the re-
flected field versus frequency for three different values of the
detunings, 	 
 0.0056κ (magenta inverted triangles), 	 
 0.015κ

(yellow dots), 	 
 0.021κ (cyan triangles). The full lines correspond
to the theory prediction, with no fitting parameters except for the
addition of detection noise spectrum S̄dn = 107. The other parameter
values are those listed in Sec. IV and with driving input power
P 
 1 mW.

B. Detecting the field reflected by the cavity

In the further stage of the experiment, we have detected
the spectrum of the field reflected by the cavity, with average
value

ER =
√

2κ1αs − āin
1 = E0√

2κ1

κ − 2κ1 + i	

κ + i	
, (38)

where we have used Eq. (12) and āin
1 = E0/

√
2κ1. This

means in practice measuring the spectrum SϕR
d (ω), where

ϕR = arctan[	/(κ − 2κ1)] − arctan(	/κ) is the phase of ER.
In Fig. 5 we show the experimental data, normalized as
explained in the previous section, and the calculated spectrum.
The theoretical data are normalized with respect to the depth
of the reflection dip such that the expression for the normalized
detected signal can be written as

APDS

Ain
= κ|ER|√

Sφ̇

[∣∣āin
1

∣∣2 − ∣∣E0
R

∣∣2]
√

SϕR
d (ω) + S̄dn, (39)

where S̄dn is a constant detection noise due to the electronics.
This second experiment is more significative in view of the

detection of ponderomotive squeezing because the reflected
field is just the field where quadrature squeezing caused
by radiation pressure becomes visible. Also, in this noise
spectrum we see the same features already prominent in the
PDH signal: (i) the cancellation dip is exactly at the bare
mechanical resonance ωm; and (ii) the cancellation effect is
more pronounced for larger couplings and detunings, i.e.,
for larger optical spring effect. Also, in this case the theory
prediction (full lines) reproduces the data well, with no
fitting parameters except for the addition of detection noise
S̄nd = 107.

VI. EFFECT OF NOISE CANCELLATION FOR
GENERATING PONDEROMOTIVE SQUEEZING

AT LOW FREQUENCIES

In this last section we show that the experimental setup
studied above, if slightly improved, can be employed for

033810-7



A. PONTIN et al. PHYSICAL REVIEW A 89, 033810 (2014)

generating ponderomotive squeezing at frequencies around
100 kHz, i.e., considerably lower than those of Refs. [17,18],
and that the cancellation mechanism illustrated above is of
fundamental importance for the detection of squeezing. This
can be seen by considering the prediction for the output
homodyne noise spectrum defined by Eq. (30) at a fixed phase
ϕ̄, which we have chosen as the optimal phase of Eq. (34),
evaluated at the bare mechanical frequency ϕ̄ = ϕopt(ωm). We
have considered a slightly improved version of the setup, that
is, the same optical cavity (i.e., same length and finesse), the
same resonator mass and frequency, and considered only an
improved mechanical quality factor, Q = 105 [35], liquid He
temperatures, T = 4 K, and larger input power, P 
 30 mW.
The thick silicon micromirror employed here is able to manage
high power at low temperatures, thanks to the favorable
geometric factor (thicker connectors) and the high thermal
conductivity of silicon at cryogenic temperature. In fact, as
reported in Ref. [19] (see Fig. 4), the overall temperature drop
induced by 1 mW of dissipated power is about 0.1 K, but the
temperature increment of the mechanical springs is not more
than 50 mK. As calculated in Ref. [19], a dissipated power
of 1 mW corresponds to an input power of about 14 mW.
The input power value assumed here, P 
 30 mW, would
provide a temperature increase with respect to the cold finger
of few tenths of Kelvins, and a dissipated power of a couple of
milliwatts, well within reach of a standard liquid He cryostat.

In the device employed here, frequency noise is dominated
by background noise and we have observed Sbg ∼ 10−34 ÷
10−33 m2/Hz in the ∼100 kHz region with up to 25 mW
of input power, and similar figures are shown by other
groups [38]. We have in fact independently verified that laser
frequency noise gives a negligible contribution which amounts
to 1 Hz2/Hz. For our predictions we take conservatively the
upper limit 10−33 m2/Hz, which is equivalent to the frequency
noise Sφ̇ = (dωc/dx)2 Sbg 
 (2π )2 × 300 Hz2/Hz. For what
concerns laser amplitude noise ε, the present apparatus,
including an additional external noise eater, shows an excess
noise 3 dB above the shot noise for a 30-mW laser beam.
(The work described in Ref. [39] has been recently extended
in the ∼100 kHz range for this purpose.) The excess amplitude
noise could be further decreased by 20 dB using a standard
(20-cm-long, 30 000 Finesse) filter cavity [40], and at this
level, it would provide a negligible contribution to the output
spectrum. Consequently, we have neglected the laser amplitude
noise contribution in the predictions below, with the exception
of Fig. 7.

Figure 6 shows the homodyne noise spectrum Sϕ̄

d at phase
ϕ̄ = 178.6◦, together with the various noise contributions, i.e.,
the quantum noise, the frequency, and thermal contributions.
It is evident that one generates ponderomotive squeezing in
a narrow bandwidth around the bare mechanical frequency
ωm only due to the frequency-noise cancellation described
above. In fact, such noise is dominant everywhere except in
this narrow band, where the detected homodyne spectrum is
bounded below by the quantum noise contribution, in this set
of parameters.

An enlarged view of the homodyne spectrum around ωm

is given by Fig. 7, where we show Sϕ̄

d at different values of
the frequency noise Sφ̇ (top) and of laser amplitude noise
Sε (bottom). A larger Sφ̇ implies narrowing the squeezing

(kHz)

FIG. 6. (Color online) Homodyne noise spectrum Sϕ̄

d at the fixed
phase ϕ̄ = ϕopt(ωm) (black solid curve) together with its quantum
noise contribution Sϕ̄, quan

d (yellow dash-dotted curve), frequency-
noise contribution Sϕ̄, freq

d (cyan dashed curve), and thermal noise
contribution Sϕ̄, ther

d (magenta dotted curve). Ponderomotive squeezing
is achieved in a narrow band around the bare mechanical frequency.
Parameters are those of Sec. IV, except that Q = 105, T = 4 K,
Sφ̇ /(2π )2 = 300 Hz2/Hz, Sε = 0, and with driving input power
P = 30 mW. The detuning is 	 = 2π × 32 kHz, corresponding
to 0.014κ .

FIG. 7. (Color online) Enlarged view of the homodyne noise
spectrum Sϕ̄

d around ω = ωm. In the top figure Sϕ̄

d is shown at
different values of frequency noise, Sφ̇ /(2π )2 = 3 × 102 Hz2/Hz
(black solid curve), Sφ̇ /(2π )2 = 3 × 103 Hz2/Hz (dotted blue curve),
and Sφ̇ /(2π )2 = 3 × 104 Hz2/Hz (yellow dot-dashed curve). In the
bottom figure Sϕ̄

d is shown at different values of laser amplitude
noise, Sε = 0 (black solid curve), Sε = 0.2 Hz/Hz (dotted blue
curve), and Sε = 0.5 Hz/Hz (yellow dot-dashed curve). This last
value corresponds to an excess noise 3 dB above the shot noise. The
other parameters are those of Fig. 6.
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FIG. 8. (Color online) Homodyne noise spectrum Sϕ

d at fixed
frequency ω = ωm as a function of the normalized detuning 	/κ

and of the homodyne phase ϕ. Notation and parameters are those of
Fig. 6. The subshot noise region widens for increasing detunings and
departing from ϕ = 0 = π .

bandwidth, and we see that one can tolerate an appreciable
amount of laser amplitude noise (see the figure caption for de-
tails). About 1 dB of squeezing is achievable in this parameter
regime, comparable to that achieved in Refs. [17,18]. Deeper
and wider squeezing can be obtained for lower masses, higher
Q, lower-frequency noise, and an over-coupled cavity (with
κ2 � κ1) to reduce the effect of vacuum noise entering through
optical losses.

The reason why frequency noise (in this case mostly due
to background displacement noise) is so important is that it
is transformed into strong intracavity laser intensity noise by
the frequency-dependent resonance curve of the Fabry-Pérot.
The conversion factor is roughly proportional to the derivative
of the Lorentzian (at least in the bad cavity limit), and
therefore typical calculations of achievable squeezing with
realistic background noise are forced to consider very small
detuning [15,19]. A similar problem is found when aiming to
measure quantum correlations induced by the ponderomotive
effect [41]. Such a small detuning means that the working
point is quite close to the edge of the stability region, and
that the requirement on the accuracy and stability of both the
detuning and the homodyne phase are very tight. On the other
hand, a further and crucial advantage of the frequency-noise
cancellation mechanism around ω = ωm is that it allows us
to significantly relax the requirements on the stability and
precision in the detuning 	 and the detection phase ϕ in order
to get ponderomotive squeezing. This is illustrated in Fig. 8,
where the homodyne noise spectrum Sϕ

d at fixed frequency
ω = ωm is plotted as a function of the normalized detuning
	/κ and of the homodyne detection phase ϕ, with the same
set of parameters of Fig. 6. The subshot noise region becomes
wider and wider by increasing the detuning and, consequently,
by departing from the phase of the amplitude quadrature
ϕ = 0 = π . At larger detunings it is sufficient to stabilize
the detection phase and the detuning itself at better than 1%
level in order to detect squeezing. On the contrary, closer to
resonance 	 = 0, the subshot noise region is much narrower
and one has much more stringent stability requirements on 	

and ϕ. The fact that one can tolerate a significantly larger
uncertainty in the detection phase ϕ by operating around
the noise cancellation point ω = ωm and at larger detunings

FIG. 9. (Color online) Averaged homodyne noise spectrum
S̄ϕ̄

d, 	ϕ as a function of frequency ω/2π and detection phase un-
certainty 	ϕ at fixed detuning (	/κ = 10−3 in the upper panel
and 	/κ = 0.063 in the lower panel) and fixed detection phase
(ϕ̄ = 179.9◦ in the upper panel and ϕ̄ = 173.8◦ in the lower panel).
Notice the different scales of the 	ϕ axes. Notation and the other
parameters are those of Fig. 6.

can be seen also in the averaged homodyne noise spectrum
S̄

ϕ

d, 	ϕ(ω) of Eq. (36), taking into account the presence of a
detection phase uncertainty 	ϕ. This is shown in Fig. 9, where
S̄

ϕ

d, 	ϕ(ω) is plotted versus ω and 	ϕ at fixed detuning and
detection phase [namely, 	/κ = 10−3 and the corresponding
optimal phase ϕ̄ = ϕopt(ωm) = 179.9◦ in the upper panel, and
	/κ = 0.063 and ϕ̄ = ϕopt(ωm) = 173.8◦ in the lower panel].
We see that at small detunings squeezing vanishes already
for an uncertainty 	ϕ 
 0.015◦, while at larger detunings
ponderomotive squeezing is detectable up to a phase detection
uncertainty 	ϕ 
 1◦. Further increase of the detuning is not
convenient because at fixed input power, there is an interval
of values for 	 for which the system is unstable [28]. At
larger values of the detuning the system is again stable but the
achievable squeezing is lower. Similar results can be obtained
by considering the uncertainty in the detuning 	.

Achieving ponderomotive squeezing with the present op-
tomechanical device presents some practical advantages with
respect to the use of the setups of Refs. [17,18], which are
characterized by higher mechanical frequencies and much
lower masses. In these latter setups, radiation pressure effects
are much stronger and therefore ponderomotive squeezing
is easier to achieve. However, the mechanical frequency is
much less stable and reproducible, because of significant
stress drifts induced by thermal effects associated with optical
absorption [42]. On the contrary, in the present thicker silicon
micromechanical mirror, the expected temperature variation is
just around 0.1 K in a cryogenic environment due to the low
thermal impedance of the device. This is confirmed by the fact
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that we could see no relevant drift in the mechanical resonance
frequency by illuminating the sample from its back surface
(where the light is partially absorbed by silicon) with laser
power in the milliwatt range. Therefore the present optome-
chanical setup would be desirable in any application requiring
squeezing in controlled and predetermined frequency bands in
the kilohertz range, such as, for example, for improving the
sensitivity of gravitational wave interferometers [8].

VII. CONCLUSIONS

We have studied the generation and detection of pon-
deromotive squeezing in an optomechanical device formed
by a Fabry-Pérot cavity with a micromechanical mirror [19]
with milligram mass. We have shown that ponderomotive
squeezing is facilitated by a cancellation of the frequency noise
around the bare mechanical resonance, which is caused by
the destructive interference of the input frequency fluctuations
and those induced by the mechanical response to the same
frequency fluctuations. We have experimentally demonstrated
such a cancellation mechanism, and we have also seen that, by
slightly improving the apparatus, i.e., at lower temperatures,
and higher mechanical quality factor, one could generate
squeezing at kilohertz frequencies. Finally, we have also shown
that frequency-noise cancellation allows one to significantly
relax the requirements on the stability and precision in the
detuning and the detection phase in order to get ponderomotive
squeezing.
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APPENDIX: GENERAL FORMULAS FOR THE
HOMODYNE NOISE SPECTRA

Using Eq. (18) one gets the following decomposition of
homodyne noise spectra into quantum, frequency, amplitude,
and thermal noise contributions:

SX(ω) = Squan
X (ω) + Sfreq

X (ω) + Sampl
X (ω) + Sther

X (ω), (A1)

where

Squan
X (ω) = 1

2
[|λ+

12(ω)|2 + |λ+
12(−ω)|2]

+ [|λ+
34(ω)|2 + |λ+

34(−ω)|2]κ2, (A2)

Sfreq
X (ω) = {|λ+

34(ω) + λ
+,∗
34 (−ω)|2

− 2 Re[(1 + e2iθ	 )λ+
34(ω)λ+

34(−ω)]}|αs|2 Sφ̇(ω),

(A3)

Sampl
X (ω) = |λ+

12(ω) + λ
+,∗
12 (−ω)|2 Sε(ω), (A4)

Sther
X (ω) = |νT(ω) + ν∗

T(−ω)|2 γm

ωm
ω coth

(
�ω

2kBT

)
, (A5)

and

λ±
ij (ω) := νi(ω) ± ν∗

j (−ω). (A6)

In the same way,

SY (ω) = Squan
Y (ω) + Sfreq

Y (ω) + Sampl
Y (ω) + Sther

Y (ω), (A7)

where

Squan
Y (ω) = 1

2
[|λ−

12(ω)|2 + |λ−
12(−ω)|2]

+ [|λ−
34(ω)|2 + |λ−

34(−ω)|2]κ2, (A8)

Sfreq
Y (ω) = {|λ−

34(ω) − λ
−,∗
34 (−ω)|2

+ 2 Re[(1 + e2iθ	 )λ−
34(ω)λ−

34(−ω)]}|αs|2 Sφ̇(ω),

(A9)

Sampl
Y (ω) = |λ−

12(ω) − λ
−,∗
12 (−ω)|2 Sε(ω), (A10)

Sther
Y (ω) = |νT(ω) − ν∗

T(−ω)|2 γm

ωm
ω coth

(
�ω

2kBT

)
, (A11)

and

SX,Y (ω) = Squan
X,Y (ω) + Sfreq

X,Y (ω) + Sampl
X,Y (ω) + Sther

X,Y (ω),

(A12)

where

Squan
X,Y (ω) = Im[ξ12(ω)] + 2 Im[ξ34(ω)]κ2, (A13)

Sfreq
X,Y (ω) = 2 Im[ζ34(ω) − (1 + e2iθ	 )η34(ω)]|αs|2 Sφ̇(ω),

(A14)

Sampl
X,Y (ω) = 2 Im[ζ12(ω)] Sε(ω), (A15)

Sther
X,Y (ω) = 2 Im[νT(ω)νT(−ω)]

γm

ωm
ω coth

(
�ω

2kBT

)
, (A16)

and

ξij (ω) := νi(ω)νj (−ω) + νi(−ω)νj (ω), (A17)

ηij (ω) := νi(ω)νi(−ω) − ν∗
j (ω)ν∗

j (−ω), (A18)

ζ34(ω) := [ν3(ω) + ν4(ω)][ν3(−ω) + ν4(−ω)]. (A19)

Moreover θ	 = − arctan(	/κ) is the argument of αs.
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