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Abstract— The Mobile CrowdSensing (MCS) paradigm has been 

increasingly adopted in the last years. Its adoption has been 

proved as beneficial for different scenarios, such as environmental 

monitoring and mobility analysis. However, one of the major 

barriers of the MCS initiatives, is the difficulty in recruiting users 

for the purpose of collecting data. We focus in this work to such 

limitation, and we analyze the mobility traces collected with a real-

world MCS experiment, namely ParticipAct. Our goal is to discuss 

how to exploit the mobility features of the recruited users, as 

grounding information to plan and optimize a MCS data collection 

campaign. In detail, we analyze the quality of the data set, its 

accuracy and several features of human mobility such as radius of 

gyration and the real entropy of the locations visited. We discuss 

the impact of such metrics on the task scheduling, allocation and 

how to obtain a certain coverage of data from visited locations. 
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I. INTRODUCTION 

The Mobile CrowdSensing (MCS) [1] paradigm is a 
promising approach designed to involve citizen to actively 
collect data. Such paradigm consists in exploiting the user’s 
devices in order to gather data useful to understand complex 
dynamics of urban and rural areas, such as studying the urban 
mobility, measuring the quality of life of specific regions or 
monitoring some environmental data. The implementation of the 
MCS paradigm requires a mobile software platform generally 
distributed as a mobile app, a set of volunteer users joining the 
MCS initiative and a back-end server able to submit tasks to the 
users and to store the collected data.  

The number of ongoing MCS experiments increases 
constantly, since the MCS offers the possibility of measuring, 
with a fine-grained temporal resolution, phenomena that hardly 
can be observed with tradition methods. However, the 
effectiveness of the MCS paradigm is currently limited by 
several barriers [2]. Users are generally sceptic to be recruited 
as part of the MCS initiative for at least 3 reasons: privacy issue, 
adoption of a mobile app, benefits obtained. Concerning the 
privacy issue, users have to be aware of the data their devices 
can provide to the back-end. Moreover, the design of the mobile 
app has to be done so that to reduce the battery consumption and 

to motivate users in keep using the app. Concerning the expected 
benefits, the recruited users have to be somehow reworded; 
under this respect several works already address some possible 
solution [1, 3]. Such barriers claim for an optimal involvement 
of the users recruited [4]. In particular, it becomes crucial to 
optimize the amount of tasks submitted to the users, by 
maximizing their completion rate and by increasing the data 
gathered and the quality of the data collected. 

This work moves toward the optimization of a MCS 
experiment. In particular, our goal is to study some of the 
mobility features of a real-world MCS data set with the goal of 
discussing how such features can be exploited for planning an 
effective MCS data collection campaign. We focus on the 
analysis of ParticipAct [13], a project leaded by the University 
of Bologna. We analyse mobility traces collected with 
ParticipAct in 2014, from roughly 170 volunteer users. We 
analyse the mobility in an aggregate way, and we show how the 
knowledge extracted can benefit a MCS initiative. In particular, 
in Section III we introduce the data set and we describe the 
amount of mobility traces collected and the accuracy of the 
traces obtained during the observation period. We further 
analyse some relevant mobility features. In particular, we study 
the distance travelled by users and the amount of locations 
visited. We also investigate the existence of preferential location 
and stop locations, namely locations where users tend to rest. In 
Section IV, we discuss how the information extracted can be 
used for 3 relevant aspects of a MCS initiative: scheduling, 

 

 Fig. 1 Ratio between the expected and collected mobility traces. 



allocating MCS tasks and how to increase the spatial coverage 
of the data collected from the regions visited by the users. 

II. RELATED WORK 

The ability to massively collect sensing data from any 
environment made MCS a vital source of information for the 
management of smart cities. In recent years, studies on MCS 
focused on aspects like task assignment [5], energy efficiency 
[6], and user recruitment techniques. However, many issues still 
afflict large-scale sensing techniques as MCS. Firstly, the 
devices acting in a real-world massive sensing scenario have 
heterogeneous computational capacities, as well as different 
energy resources. The development of techniques that allow to 
select the appropriate devices for the most resource-consuming 
sensing operations is a grand challenge [7]. Secondly, the 
bandwidth wastage is an everlasting problem. Some solutions 
focus on local data mining to overcome the problem [8], but 
there is still work to be done to improve. And finally, along with 
the recruitment issue there is also the problem of how to involve 
the users’ participation in MCS campaigns. In this direction, 
there have been proposed incentive techniques based on rewards 
[9]. 

Concerning mobility datasets, the literature offers some 
freely accessible mobility data sets that can be used for an in-
depth analysis. Focusing on seminal and significant efforts, we 
mention in particular the Cambridge [18] and the MIT reality 
[19] data sets, collected respectively in 2005 and 2006, and the 
Mobile Data Challenge Nokia (MDC Nokia) [20, 21], collected 
using more powerful smartphones in 2009. These data sets are 
highly valued for the research community, as they provide a way 
to test, assess, and compare differentiated solutions for diverse 
application scenarios ranging from MCS [23, 24] to mobile 
social computing [22, 25] and opportunistic networking [26]. 
Moreover, they are based not only on real-world traces of human 
mobility but also on evidences of their activities and social 
behaviors. 

Among more recent efforts, we cite the GeoLife data set 
from Microsoft Research Asia. The data set is useful to study 
human mobility in a crowded region. The data set comprises 182 
users moving in the Beijing region for over three years (2007 – 
2012) [10 - 12]. Users are tracked both with a smartphone or 
with a GPS device. Some of the user’s trajectories are also 

labeled with the type of mobility, e.g. pedestrian, car, subway 
etc. We briefly analyzed GeoLife and we observed that the 
amount of mobility traces remarkably varies along the time and 
it is not possible to estimate the accuracy of the device position.  

Let us conclude noting that, from our experience, these are 
issues that often affect real mobility trace data sets. Therefore, 
in the remainder of this paper we will present a detailed analysis 
of our ParticipAct data set, that we could fully master, hoping 
that the introduced features, analysis tools, and methodologies 
may help other researchers to assess and benchmark similar data 
sets. 

III. THE PARTICIPACT LIVING LAB 

We now introduce the ParticipAct living lab [13, 14], an 
MCS project leaded by the University of Bologna. The project 
aims at organizing several MCS data collection campaigns in 
Italy and Brazil. For the purpose of this work, we analyse data 
collected in 2014 in Italy, from roughly 170 users.  Users are 
recruited on a voluntary basis. Moreover, the organizers 
distributed to the users a smartphone with a SIM card so that to 
increase the user’s participation and involvement to the MCS 
initiative. 

The experiment gathered different kinds of data from the 
users, through the ParticipAct mobile app. The app interacts 
with the back-end and it allows to accept/decline a sensing task. 
Tasks submitted might require to provide personal feedbacks 
about an event, to upload a picture from a location or to answer 
to a simple questionnaire. Moreover, the app computes and 
uploads periodically the position of the device as WGS84 
coordinates. The device position is determined by exploiting the 
Google Location APIs, which localize a mobile device by using 
the information available from the WiFi Hot Spot coordinates, 
GPS signal or the cellular base stations. The device position is 
uploaded at regular intervals. However, several factors affected 
the amount of traces collected during the experiment, such as: 
the battery consumption of the device, the absence of 
connectivity, switch-off of the device.  

In the next sections, we describe the amount of traces 
collected as well as some mobility features of the ParticipAct 
data set. In particular, we first provide a general overview of the 
traces collected (see Section III-A and III-B) and then we 
analyse several mobility metrics useful to understand dynamics 
of human mobility for the purpose of defining an effective MCS 
data collection campaign (see Section IV). 

 

Fig. 2 Distribution of the position accuracy. 

 

Fig. 3 Number of weekly locations visited and active users in 2014. 



A. Description of the Data set 

The mobility data set comprises timestamped WGS84 
traces.  We analyze the data collected from January 2014 to 
December 2014. The data set provides 15.615.341 traces from 
177 distinct users roaming mostly in Emilia Romagna region, 
Italy. The device position is computed periodically, 
approximately every 2.5 minutes. In order to measure the 
amount of traces actually obtained, we compute the ratio 
between the traces collected with respect to the expected ones. 
Figure 1 reports a heatmap showing such ratio. We compute the 
ratio on a weekly period (0 to 51 weeks of 2014), and we 
aggregate the results for each of the week’s days, as reported by 
the rows of the heatmap. From Figure 1, we observe that only 
few weeks’ days report a low number of traces, while for the 
majority of the weeks, the ratio is always acceptable. We 
measure a mean ratio of 75% of the expected traces, with a 
minimum of 21% and maximum of 85%. 

The device position is computed by using the information 
available from the smartphone, therefore the resulting accuracy 
might remarkable vary. The Google Location APIs also 
provides an indication of the accuracy error. It quantifies the 
radius of a circle centered on the location computed. Therefore, 
the lower the radius, the higher the precision of estimated 
positions.  

In Figure 2, we show the distribution of the accuracy error 
on a semi-log y scale. From the graph, we observe that the 
highest probability is given with low values of radius, ranging 
from 1.7 meters to 27 meters. As a general trend, we measure 
the 25th percentile of 27 meters and the 50th percentile of 43 
meters which represent admissible values for the purpose of this 
work.  

In addition, we analyze the number of locations visited 
during the whole 2014 aggregated per weeks, and the number of 
active users in 2014, as shown in Figure 3. The figure shows on 
the top the time series of the number of locations visited week-
by-week. Users visited a median of 278.509 locations every 
week, with a minimum of 84.225 and maximum of 387.164 
locations visited respectively. We observe two time intervals 
during which the number of locations visited drops abnormally 
(weeks 4, 9 to 11, 21 and 43). Those situations were due a few 

mobile app updates that were causing problems in the 
interactions with the back-end system.  

We also measure the number of active users as a heatmap as 
reported in Figure 3. A user is active if its device uploads the 
position at least once during the week. It is worth to notice that 
the amount of mobility traces uploaded by a device is affected 
by several factors, such as the battery consumption of the 
ParticipAct app, crashes of app or network / GPS coverage of 
the smartphone. From the heatmap in Figure 3, we observe that 
the most active period corresponds to the mid weeks of the year, 
specifically from week 18 (May 2014) to week 30 (July 2014).  

B. Mobility Features of the ParticpAct Data Set 

We now focus on the analysis of the mobility features of 
ParticipAct. The mobility analysis we present in this section is 
realized with the scikit-mob python library [III-3], and it aims at 
quantitatively measure some patterns of the user mobility. 

We analyze the PDF (Probability Density Function) of the 
radius of gyration and the number of visits per location. The 
radius of gyration quantifies the “typical distance travelled by an 
individual” [16]. Given a user, its radius of gyration is computed 
as follows: 
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where L represents the set of locations visited the user, ri 
provides the coordinates of the ith location, ni is the visitation 
frequency of the ith location, rcm is the center of mass of the 
trajectory of the user and N is the total number of visits of the 
user. The higher the radius, the higher the distance travelled by 
the users.  

Figure 4 shows the PDF of the radius for all the users. The 
radius varies remarkably, we measure the 25th percentile of 35 
km and the 75th percentile of 198 km. The inset in Figure 4 
shows the PDF of the radius cut to values lower than 500 km. 
We observe that the most probable values of the radius range 
between 0 and 20 km (35% of the users), an admissible distance 

Fig. 4 PDF of the radius of gyration and of the number of visits per 
location. 

 

Fig. 5 Frequency and receny of the locations visisted. 



for short-range commuters. Figure 4 also shows the PDF of the 
number of visits per location. We observe an equal density for 
those locations visited in the range 100 – 103 giving rise to the 
existence of a pool of recurrent locations frequently visited by 
the users.  

We then analyze the user’s trajectories, namely the ordered 
sequence of locations visited by the users. We plot the frequency 
rank of locations visited with respect to the recency rank of the 
locations visited. The frequency rank for a location determines 
if the location is highly visited, while the recency rank for a 
location determines if the location if recently visited. Figure 5 
shows the joint plot of the frequency and recency of the locations 
with iso-centric contours showing the KDE estimator (ranks cut 
to 5000). From the figure it is clear that the locations highly 
visited are also the most recently visited. The marginal 
distributions on the top and left side of Figure 5, further confirm 
such observation.  

Therefore, we consider the existence of a set of preferential 
locations for the users, such locations are both highly and 
recently visited. We focus on two metrics that characterize the 
way users visit the locations. In particular, we compute the 
distribution of the number of locations visited by the users and 
the predictability of the locations visited by the users, both of the 
metrics are reported in Figure 6. The number of locations visited, 
measures the distribution of the number of locations the users 
visit, while the predictability of the locations measures the 
capability of predicting the next location visited by a user. To 
this purpose, we compute the real entry Ei for a given user i. The 
real entropy considers the frequency and the order of the visits 
for a location, thus capturing the full spatio-temporal order of 
the mobility pattern of user i, as described in [17]. From Figure 
6 we observe that, on average, users visit 1744 locations, with a 
25th and 75th percentile of 645 and 2556 locations respectively. 

Concerning the real entropy, we measure an average E≈0.73, 
meaning that the next location, of a randomly chosen user, can  

be  one  among 20.73≈1.65 locations. We finally extract from 
the user’s trajectories the stop places, namely, those locations 
where users stop/rest for a while. To this purpose, we first 
restrict the analysis to the city of Bologna, the major city of 
Emilia Romagna region Then, for every user, we find the places 
where he/she stops for at least 60 minutes in a circular region of 

radius 200 meters. Then, we cluster such places, by using the 
DBSCAN clustering algorithm. The resulting heatmap shown in 
Figure 7, offers an aggregated perspective of the resting 
locations. From the map, we observe several stop locations in 
the city of Bologna, such as the train station (inset of Figure 7), 
several departments of the University of Bologna whose 
students were involved in the ParticipAct project, and some 
popular locations in the city center. 

IV. IMPACT OF HUMAN MOBILITY METRICS FOR MCS 

The mobility metrics we measured in Section III can be used 
to plan several key-aspects for a MCS data collection campaign. 
In this section, we discuss such aspects with the goal of offering 
some hints and suggestions for the realization of large-scale 
MCS initiatives. We focus on three main aspects, namely task 
scheduling, task allocation and spatial coverage.  

For the purpose of this work, we refer to a simple MCS 
architecture composed by: a back-end server and a number of 
devices acting as sensing units and assigned to volunteer users. 
The back-end server interacts with the devices by submitting 
MCS tasks. Tasks, essentially, allow the back-end to gather data 
from the devices. In particular, a task is an action that can be 
completed with or without the explicit user intervention. As for 
example, a MCS task might require to a set of devices to sample 
some environmental data or, differently, it might ask to users to 
take a picture of point of interest. Tasks can be accepted or 
rejected by users. In the last case, a user deliberately avoids to 
complete the task, an option that must be considered during the 
design of a MCS initiative. 

A. Task scheduling 

The submission of tasks to the users requires a prior 
scheduling, so that to increase the acceptance rate. Indeed, let us 
remark that in ParticipAct we do not assume to have a real-time 
MCS data collection, but rather we proactively upload the 
sensing task request to those smartphones that most probably, 
according to some historical data and profiling, will be able to 
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Fig. 7 Stop places of locations cropped in the Bologna city. 



complete it. Accordingly, specific knowledge about user 
mobility can indeed boost during the selection of the best time-
period for submitting a task. In this context, the information 
about the weekly number of locations visited reported in Figure 
4 are particularly relevant. In fact, they provide a useful trend in 
order to better understand the rhythm of the crowd on a temporal 
scale. That, in its turn, could be used to more precisely and 
timely schedule the task, for specific sensing campaigns (e.g., a 
sensing task to get feedbacks from as most locations at a certain 
period of the day), only to those nodes that are very active and 
mobile at that time span, without bothering and overloading a 
higher number of users/nodes. 

B. Task allocation to specific areas and induviduals 

MCS tasks can also be further split in two categories: geo-

fence and individual tasks. The first category refers to tasks that 
can be completed only when a user enters inside a region of 
interest for the task. As for example, a task that requires to take 
a picture of a square, should be submitted to the user only when 
he/she enters inside such region. Differently, individual tasks are 
submitted to users with specific features, such as their profiles, 
their mobility patterns or their social habits.  

Concerning the geo-fence tasks, several mobility metrics can 
be used to plan their allocation. In particular, the accuracy error, 
the stop places and the existence of preferential locations. The 
accuracy error reported in Figure 3 is a first indicator of the 
quality of the geo-fence areas. In fact, knowing that devices are 
localized with a certain accuracy, supports the decision of 
adopting the geo-fencing or not. Moreover, the accuracy also 
provided an indication of the expected error of the data collected 
from the regions of interests. More precisely, devices that 
generally provide an accurate position (low accuracy error) are 
ideal for receiving geo-fence tasks, since they will accept the 
task only inside the boundary of the region of interest. 
Conversely, devices with very low position accuracy will accept 
the geo-fence task also outside from the region of interest. 
Furthermore, the knowledge of locations where users, generally, 
stop for a while enables to better draw the boundaries of the 
regions of interests. From the heatmap in Figure 8, it is easy to 
draw such boundaries, as shown with the Bologna train station. 
Such knowledge reduces the possibility of defining off-width 
regions, or empty regions in which only few devices will 
activate the task. Finally, the relationship between frequency 
and recency of the locations visited is a valuable metric when 
the goal is to gather fresh data from the users.  Figure 6 shows 
an example of frequency and recency for the locations of the 
ParticipAct data set. The figure clearly shows the existence of 
preferential locations highly and recently visited, that can be 
selected when it is required to gather from the users updated 
information. 

Concerning the individual tasks, they are submitted only to 
a specific set of users. The selection of the target users can be 
also achieved by observing their adherence to the use of the 
MCS app. In Figure 4, we report a heatmap with the active users, 
defined as users whose devices report the position periodically. 
The heatmap can be used to infer if users tend to use the app 

during the day and, in turn, to predict if such users are also good 
candidates for receiving an individual task. Intuitively, the more 
users tend to use the app (and hence to report their position), the 
more they likely will accept an individual task. Of course, the 
selection of the target users is not only restricted to the usage of 
the MCS app, rather the profile of the users can also be taken 
into account. 

C. Spatial coverage 

The last aspect we consider is the spatial coverage of the data 
collected from the users. The coverage of the data refers to the 
diversity of the regions from which data are gathered. 

Such diversity is a desirable feature within MCS initiatives 
whose goal is to monitor environmental data in an urban area. 
To this purpose, the study of user’s radius of gyration allows to 
measure quantitatively the distance travelled by users. In Figure 
5, we plot the distribution of the radius of gyration for all the 
users. As described, the higher the radius the more distance users 
travel. Therefore, the radius is a first metric useful to define the 
mobility attitude of a set of users.  In case the MCS tasks are 
designed to collect data from a wide region, the target users 
might be those exhibiting high values of the radius of gyration.  

Moreover, the study of the distribution of the number of 
locations visited further refines the selection of the target users. 
In particular, we plot in Figure 7 the number of locations the 
users of ParticipAct visit. This information, combined with the 
radius of gyration, allows to select those users travelling for long 
distances and visiting different locations. The resulting users are 
the ones ideal for allocating environmental monitoring tasks. 

V. CONCLUSIONS AND FUTURE WORK 

The sensing technologies available on commercial 
smartphones, enable their adoption for massive sensing data 
collection campaigns. The Mobile CrowdSensing paradigm 
exploits such advanced hardware and software features in order 
to enable an effective solution for gathering data from the crowd. 
We consider that the effectiveness of a MCS campaign strictly 
relies on the way volunteer users are involved. To this purpose, 
we propose in this paper a data-driven approach to show the 
potentialities of knowledge extracted from the data, to design an 
effective MCS collection campaign.  

More specifically, in the paper we focused our attention on 
the mobility features of users joining the ParticipAct 
experiment. We analyzed the quality of the data set, the active 
users and several pattern of human mobility, such as the 
distribution of the radius of gyration, the real entropy, and the 
stop places. We finally discussed how such metrics can be, in 
turn, analyzed for planning the task allocation to specific users, 
the task scheduling during specific time periods and how to 
increase the spatial coverage of the data collected from the users. 
We remark that considerations reported in Section IV can be 
further supported with the upcoming sensing technologies such 
as ultra-wide band (UWB) and 5G.  

Propelled by these new technological possibilities, we are 
now working to further extend the MCS platform along two 



main directions. On the one hand, the recent UWB U1 chipset 
available on iPhone 11 can potentially enable high-accurate 
indoor localization of the devices so that to further decrease the 
localization error analyzed in Section III. That higher location 
accuracy would affect the possibility of triggering sensing tasks 
more accurately to those devices that are actually roaming in a 
region of interest. On the other hand, the 5G New Radio (NR) 
technology also pushes forward the accuracy of localization 
both indoor and outdoor. In fact, the adoption of new frequency 
bands at mm-wave and of massive MIMO for accurate angle of 
arrival estimation might increase the localization of devices at 
very different conditions.  

We truly believe that the combination of the above two key-
technologies will give rise to a new era for location-based 
services enabling a wider diffusion of the MCS initiatives.  
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