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Obtaining high-quality labelled data for training a classifier in a new application domain is often costly. Transfer
Learning (a.k.a. “Inductive Transfer”) tries to alleviate these costs by transferring, to the “target” domain
of interest, knowledge available from a different “source” domain. In transfer learning the lack of labelled
information from the target domain is compensated by the availability at training time of a set of unlabelled
examples from the target distribution. Transductive Transfer Learning denotes the transfer learning setting in
which the only set of target documents that we are interested in classifying is known and available at training
time. Although this definition is indeed in line with Vapnik’s original definition of “transduction”, current
terminology in the field is confused. In this article we discuss how the term “transduction” has been misused
in the transfer learning literature, and propose a clarification consistent with the original characterization
of this term given by Vapnik. We go on to observe that the above terminology misuse has brought about
misleading experimental comparisons, with inductive transfer learning methods that have been incorrectly
compared with transductive transfer learning methods. We then give empirical evidence that the difference
in performance between the inductive version and the transductive version of a transfer learning method
can indeed be statistically significant (i.e., that knowing at training time the only data one needs to classify
indeed gives an advantage). Our clarification allows a reassessment of the field, and of the relative merits of
the major, state-of-the-art algorithms for transfer learning in text classification.
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1 INTRODUCTION

When performed via supervised machine learning, text classification (TC) requires the availability of
a substantive amount of accurately annotated training data sampled from the distribution of interest.
When enough labelled data are not available, it is necessary to annotate unlabelled data, and this
requires time and money. Many research efforts have thus been devoted to devising methods that,
in the presence of little or no labelled data, allow to leverage other resources, such as unlabelled
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data (when at least some labelled data are available we then speak of semi-supervised learning [12]),
or data labelled for tasks somehow different from the one of interest (transfer learning [38], a.k.a.
inductive transfer [52]). Transfer learning thus relaxes a core assumption of supervised machine
learning, usually referred to as the iid assumption, according to which the training examples and
the unlabelled examples to be classified are drawn from the same distribution.’

A typical instantiation of transfer learning (and the only one we are going to consider in this
paper) is the one in which labelled data are available only for a so-called source domain (or out-
domain) S, and any available data from the target domain of interest (or in-domain) 7~ are unlabelled.
For example, consider the case in which we want to create a sentiment classifier for book reviews, for
which no labelled examples are available. Instead of incurring the cost of manually annotating book
reviews, we might attempt to reuse labelled movie reviews we may already have, in combination
with a set of unlabelled book reviews. Such a transfer learning setting displays characteristics of
induction (the learner is asked to infer a general rule A from the observation of data) and semi-
supervision (some of the observed data are labelled and some are not). Arguably, a meaningful term
to describe this setting would thus be “semi-supervised inductive transfer learning”. However, this
term would clash with the definitions proposed in [1], where “inductive transfer learning” is used
to refer to the case in which labelled data exist also for the target domain 7, and with that of [38],
where “inductive transfer learning” instead denotes the case in which in the source domain S and
in the target domain 7~ the data are from the same distribution but the sets of classes are different.

The root of these discrepancies in terminology may be explained by the fact that transfer learning
has evolved in parallel with research on dataset shift [45], a strongly related area devoted to the
more general problem of dealing with various types of distributional difference between the labelled
and the unlabelled data; different instantiations of dataset shift are, e.g., covariate shift [48], prior
probability shift [50], and concept drift [54]. Indeed, when a field emerges from the joint effort of
different scientific communities (as is the case for transfer learning), it is common to find both
terminological inconsistencies and attempts to unify and clarify such terminology (e.g., [33]). As a
further related example, some authors use the term “domain adaptation” (DA) to denote a special
case of transfer learning (e.g., [38]), others consider DA and transfer learning as two separate
problems (e.g., [40]), and yet others consider the two terms as synonyms (e.g., [52]).2

We think that one of these terminological inconsistencies is becoming particularly problematic,
because it may completely mislead the reader about the applicative context to which a given
transfer learning method can be applied, and because it may lead (and has indeed led) to flawed
experimental comparisons among different transfer learning methods. We are speaking about the
use of the term “transduction”, originally introduced by Vladimir Vapnik [51], and about how its
meaning has drifted in the transfer learning literature.

In machine learning, the term transduction as introduced by Vapnik means “inference from
particular to particular” [16], i.e., describes the inference carried out by learning methods that (i)
are given access not only to a labelled training set but also to the only set of unlabelled data we are
interested in classifying (in this paper we will call the latter the object set, and (ii) do not label the

IMore precisely, the iid assumption states that, if the training set and the unlabelled set are viewed as random variables,
these two random variables exhibit the same probability distribution and are mutually independent.

2This is in line with what Lipton and Steinhardt [31] call “a troubling scientific trend” in machine learning, a trend of misuse
of language caused by overloading technical terminology, which “consists of taking a term that holds precise technical
meaning and using it in an imprecise or contradictory way.”
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Lost in Transduction 3

documents in the object set by means of a general-purpose classifier.? In other words, transduction
is meant to be applied to settings in which we exactly know, before any learning has taken place,
that we will not be interested in classifying any unlabelled data other than those belonging to
a finite, specific set that is already available to us at training time.* Scenarios such as these are
common, e.g., in market research [6], in e-discovery [36], or when assisting the production of
systematic reviews [26].

The main contributions of this article can be summarized as follows. In Section 2 we propose a
clarification of terminology that restores the original sense of the term “transductive inference”,
as proposed by Vapnik, in the context of transfer learning, while in Section 3 we discuss how the
meaning of “transduction” has shifted in recent literature. In Section 4 we then identify cases in
which the misuse of terminology has led to confusion and incorrect experimental comparisons.
In Section 5 we go on to provide empirical evidence that the differences in performance between
the inductive and transductive variants of a given transfer learning method can be statistically
significant, which implies that experimental comparisons that confuse the two variants (among
which the ones identified in Section 4) are seriously flawed. For doing so, we provide examples of
these statistically significant differences, which we obtain by (i) comparing the performance of
previously published transfer methods belonging to the inductive group and the transductive group,
and (ii) by comparing the performance of two inductive transfer learning methods (Structural
Correspondence Learning (SCL) [7, 43] and Distributional Correspondence Indexing (DCI) [34]) with
corresponding transductive variants that we have generated. Section 6 presents some concluding
remarks.

2 A TAXONOMY OF LEARNING METHODS

In this section we formalize the difference between methods for inductive learning, semi-supervised
learning, transductive learning, inductive transfer learning, and transductive transfer learning.

Let us first define some basic concepts. A domain is a triple D = (X, F, ¢), where X is a random
variable taking values on documents, F is a feature space (e.g., a vector space R™), and ¢ is the
representation function ¢ : X — F which maps documents into the feature space. Note that the
image of ¢ is also a random variable, that we call the domain distribution and denote as Pp. A
sample o of a domain D is an empirical distribution containing random variates of Pp, i.e., a set
o = {x;}].,C Pp of feature vectors drawn from the domain distribution. We will use oy to indicate
that sample o originates from domain D.

For ease of discussion, in this paper we restrict our attention to binary classification; however,
everything we say can straightforwardly be extended to other types of classification, such as
single-label multiclass classification, multi-label multiclass classification, and ordinal classification.
A binary classifier is a function h : F — Y, with Y = {—1, +1} the label space. We use 0'% to denote
any labelled sample {(x;, y;)}/_,C Pp X Y, where document x; has label y;.

The following instantiations of the aforementioned concepts will prove useful in our subsequent
definitions: in the rest of the paper S and 7~ will denote the source and target domains, while Tré,
Trg, Tr7U_, Obg, Oby,, Teg, Tef]]., will denote samples, where Tré is a labelled training set, Trg and
Trfrj are unlabelled training sets, Obg and Obf} are unlabelled object sets, and Teg and Tey, are
unlabelled test sets, all drawn from S and 7~ as indicated. As we will see in Definition 2.2, the notion

3 As Vapnik puts it, “The direct estimation of values of a function only at points of interest using a given set of functions
forms a new type of inference which can be called transductive inference. In contrast to the inductive solution that derives
results in two steps, from particular to general (the inductive step) and then from general to particular (the deductive step),
the transductive solution derives results in one step, directly from particular to particular (the transductive step).” [51, p. 12]
4Put it another way, should we later become interested in classifying another set of unlabelled data, the learning phase
should be carried out anew.
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4 Moreo, Esuli, Sebastiani

of an “unlabelled training set” is justified, since in semi-supervised learning also unlabelled data
play a role in training a classifier. We recall from Section 1 that an object set is a set of unlabelled
documents such that (a) it is available at training time, and (b) the unlabelled data it contains are
the only unlabelled data that we are interested in classifying.

Definition 2.1. An inductive learning (IL) method is a method that, given a labelled training set
Tré, learns a general hypothesish : Ps — Y. O

The adequacy of h must be measured according to an evaluation function that measures the
agreement between the predicted labels h(x;) and the true labels y; for a test set Teg of documents.
(Teg is viewed as “unlabelled” because the true labels y; are hidden from h.) The purpose of Teg
is to support this evaluation, which means that Teg must not be seen at training time (that this
practice has not always been adhered to in past transfer learning literature is, as we will see, a
central claim of our article). Unlike Obg in transductive learning (see below), Teg is expected to
be sufficiently representative of Pg, since the goal of the evaluation is to estimate the accuracy of
h at classifying any possible unlabelled sample from the domain. Note that the training and test
documents are assumed to be drawn iid from the same (and only) domain S.

Definition 2.2. A semi-supervised learning (SSL) method is a method that, given a labelled training
set Tré and an unlabelled training set Tr¥, learns a general hypothesish : Ps — Y. O

This case is also inductive, with the only difference that the learning device has access not only to
labelled data Tré but also to unlabelled data Trg drawn from the same domain S.

Definition 2.3. A transductive learning (TL) method is a method that, given a labelled training set
Trf9 and an unlabelled object set Obg, generates predicted labels h(x;) for all documents x; in Obg
directly, i.e., without using a general ruleh : Ps — Y. O

Note that in this case there is no requirement that the method also returns a generalrule h : Pg — Y,
i.e., the method might just learn a function b’ : Obg — Y that takes binary decisions only for the
elements of Obg.

It is important to distinguish a TL method (or algorithm) from a TL problem (or setting): in a
nutshell, a problem is characterized by what we have and by what we want to achieve, while a
method is characterized by how we achieve it. A TL problem is a situation in which, given a labelled
training set TrkL9 and an unlabelled object set Ob¥, we need to generate predicted labels h(x;) for
all documents x; in Obg. In principle, IL methods are also applicable to TL problems, since Obg
is just a specific sample from Pg; in other words, we can generate predicted labels h(x;) for all
documents x; in Obg indirectly, i.e., by learning a general rule h : Ps — Y and using it to generate
these predicted labels. Adopting such a solution might be called a “TLP-via-ILM approach”, solving
a TL problem via an IL method. Similarly, a “TLP-via-SSLM approach” would consist of solving a
TL problem via a SSL method, and could be achieved by using an additional unlabelled training set
Try (with Tr{ N ObY = {}).

While legitimate, these solutions are suboptimal according to what is now known as “Vapnik’s
principle” [51], which suggests that®

>Vapnik’s is a common-sense principle, one of the many “laws of parsimony” that guide scientific development. Another
instance of Vapnik’s principle in machine learning is represented by “quantification” (a.k.a. “supervised prevalence estimation”
- see [19]), the task of predicting the distribution across the classes of a set of unlabelled items: while this can be achieved
by classifying each item and counting how many items have been assigned to which class, it is more effective (in keeping
with Vapnik’s principle) to solve this problem directly, without resorting to classification.
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“If you possess a restricted amount of information for solving some problem, try to
solve the problem directly and never solve a more general problem as an intermediate
step. It is possible that the available information is sufficient for a direct solution but is
insufficient for solving a more general intermediate problem.”

In other words, Vapnik suggests that the optimal way (i.e., the one conducive to higher accuracy)
of solving a TL problem is directly, via a TL method, and not indirectly, via (fully supervised or
semi-supervised) IL methods.

Definition 2.4. An inductive transfer learning (ITL) method is a method that, given a labelled
training set Tré (plus, optionally, an unlabelled training set Trg), and an unlabelled training set Tr,(/l,
from two different but related domains S and 77, learns a general hypothesis h : P — Y. O

Note that this approach includes aspects from induction (the requirement that a general hypothesis
is generated) and semi-supervision (the optional presence of the unlabelled training set). In this
case the iid assumption no longer holds since S = (X, Fs, ¢s) and 7 = (X, Fr, ¢p5) are different.
This difference might be of type X s # Xg (with Fs = Fy), which is usually known as cross-domain
adaptation, or of type Fs # Fq (with X5 ~ X¢)°, in which case the problem is typically known as
cross-lingual adaptation’. Therefore, in both cases ¢ # ¢4 holds.

Definition 2.5. A transductive transfer learning (TTL) method is a method that, given a labelled
training set Tré and an unlabelled object set Ob,Lr] (and optionally two unlabelled training sets Trg

and Tr,lr], with Tr,gf. N Obg. = {}) from two different but related domains S and T, generates predicted
labels h(x;) for all documents x; in Obf} directly, i.e., without using a general ruleh : P+ — Y. O

The main differences of a TTL algorithm with respect to an ITL one thus lie in the facts that in the
former, unlike in the latter, (i) there is an object set Obg which is observed at training time, and (ii)
we generate no general hypothesis h : P+ — Y but only predicted labels A(x;) for documents x;
in Ob,(]]_.8 The main difference of a TTL algorithm with respect to a TL one is instead that in the
former, unlike in the latter, the training set and the object set are not iid, since they originate from
two different domains S and 7.

Similarly to what we said for TL methods and TL problems, we should distinguish between TTL
methods and TTL problems, the latter being the settings in which we need to generate predicted
labels h(x;) for all documents x; in an object set ObY, given a labelled training set TrgLg (and

optionally two unlabelled training sets Trg and Tr, with Trl 0 ObY = {}). A TTL problem may
also be solved via an ITL method (which might be called a “T'TLP-via-ITLM approach”), i.e., by
labelling the documents x; in Obg indirectly by learning a general-purpose rule h : P — Y, but
this would be yet another violation of Vapnik’s principle.

The definitions above are concisely summarized in Table 1.

It is possible to characterize the learning methods described above with respect to the stand they

take according to three basic dichotomies:

o Fully Supervised (FS) vs. Semi-Supervised (SS): the training data that a fully supervised method
uses only consist of a labelled set Tr%, while the training data that a semi-supervised method
uses consist of a labelled set TrE and an unlabelled set TrV;

%In set theory, two sets A and B are said to be equivalent, denoted A ~ B or A = B, if there exists a bijection between the
two, i.e., if they have the same cardinality. In cross-lingual adaptation, this comes down to assuming that a one-to-one
correspondence between the documents in the source language and the documents in the target language is always possible
(using, e.g., a translation oracle), since the documents in X and X7 are conceptually equivalent.

7Other instantiations exist, in which the cross-domain and cross-lingual adaptations are tackled simultaneously; see e.g., [34].
81n this respect, it is worth mentioning that Vapnik and his co-authors [16] suggested that transductive inference might still
be attained in scenarios in which the iid assumption is relaxed.
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6 Moreo, Esuli, Sebastiani

Table 1. A taxonomy of learning methods and learning problems. An IL/ SSL/TL/ITL/ TTL problem (or
setting) is characterised by the sets indicated in the middle five columns in rows 1/2/ 3/ 4/ 5, respectively.
AnIL/SSL/TL/ITL/TTL method (or algorithm) is characterised by the fact that, in the presence of the sets
indicated in the middle five columns, the only output is the one indicated in the last column inrows 1/2/3/
4/ 5, respectively.

Labelled Unlabelled | Unlabelled | Unlabelled | Unlabelled
Training Set | Training Set | Object Set | Training Set | Object Set Output
(source) (source) (source) (target) (target)
Inductive Learning (IL) Tré - - - - h:Ps —>Y
Semi-Supervised Learning (SSL) Trf9 Trg - - - h:Ps —>Y
Transductive Learning (TL) Tré - Obg - - h(x;) for all x; in Obg
Inductive Transfer Learning (ITL) Tr"§ (Trg) - Trg - h:Pr—Y
Transductive Transfer Learning (TTL) Tré (Trg) - (Tr,l;) Ob,[; h(x;) for all x; in Ob,[;

o Inductive (IN) vs. Transductive (TR): an inductive method learns a general hypothesis A :
Py — Y, while a transductive method only generates predicted labels h(x;) for all documents
X; in an object set Ob%;

o Transfer (TF) vs. No-Transfer (NT): a transfer learning method needs to issue predictions for a
target domain 7~ different from the source domain S from which its labelled training data
Tr\LS come from, while for a no-transfer learning method S and 7 are the same domain.

The cases addressed by Definitions 2.1 to 2.5 are thus characterized by the triples (FS, IN, NT), (SS,
IN, NT), (FS, TR, NT), (*, IN, TF), (*, IN, TF), (*, TR, TF), respectively.

Note that in this section, and in the rest of the paper, we have assumed that the learning problem
is one of classification. However, everything we say in this paper straightforwardly applies to other
supervised learning tasks, such as regression.’

3 THE SHIFTING MEANING OF “TRANSDUCTION”

The definition of “transduction” given in Section 2 is the one given by Vapnik [51, p. 12] (see also
Footnote 3), and refers, according to the terminology we have introduced in Section 2, to transductive
learning methods. However, in the context of transfer learning, that definition would partially clash
with that of Arnold et al. [1], where the term “transductive transfer learning” appeared for the first
time. In these authors’ definition, the term “transductive learning” encompasses all scenarios where
all the data we want to classify are already available at training time, and has nothing to do with the
type of method used for classifying these data. In other words, Arnold et al. [1] seem to be thinking
of transductive learning problems rather than of transductive learning methods: what in Section 2 we
have called a “TTLP-via-ITLM” approach would squarely count, according to [1], as a transductive
learning method. Indeed, some among the models that [1] proposed solve a transductive learning
problem via an inductive learning method. Several works that followed (e.g., [3, 44]) adopted this
definition of “transductive transfer learning”. To the best of our knowledge, the only works about

“We have only dealt with text classification and not with regression, for three main reasons. The first reason is that
classification is usually considered the “mother” of all supervised tasks. The second reason is that the terminological
confusion that this paper addresses has arisen for classification, and has never involved, to the best of our knowledge,
regression or other supervised tasks. The third reason is that, in the realm of text, classification is by far the most popular task,
while text regression is a very infrequently tackled task, which also entails a difficulty to find datasets for experimentation;
for example, when querying DBLP, at the time of writing query “text classification” returns 5,400 matches while query “text
regression” just returns 110 matches.
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transfer learning which use the term “transduction” in Vapnik’s original sense are [46, 47] (although
they presents no text classification experiments) and [2, 23] (which will be discussed in Section 4.2).

Years after [1] was published, the term “transduction” was used in the widely cited survey by Pan
and Yang [38], which has henceforth become a standard reference for transfer learning.10 However,
these authors altered again the meaning of “transductive transfer learning”, which they used to
describe the more general setting in which “no labelled data in the target domain are available
while a lot of labelled data in the source domain are available” [38], thus removing the constraint
that all the unlabelled data we are interested in classifying must be available at training time.'! In
their terminology, cross-domain adaptation and cross-lingual adaptation (see Section 2) become
two subproblems of transductive transfer learning, regardless of whether there is or not a set of
unlabelled data available at training time that is the only data we are interested in classifying (i.e.,
an object set). Probably, [5, 20] were the first works that adopted this altered definition.

The lack of a clear distinction between induction and transduction, in the terms defined by
Vapnik, in the field of transfer learning, makes it difficult for readers to understand whether a
transfer learning method as applied to a transductive problem is actually an inductive transfer
learning method (i.e., it labels the items in the object set by using a classifier that can be applied to
any future set of unlabelled data) or is instead a transductive transfer learning method (i.e., it labels
the unlabelled data seen at training time directly); we show examples of the two types of methods in
Section 4. This aspect is worth taking into account since, despite the fact that a transductive transfer
learning method could well be applied to different unlabelled sets by rerunning the method from
scratch every time, this additional cost is avoided in inductive transfer learning. On the other side,
on a transductive transfer learning problem one should expect better accuracy from a transductive
transfer learning method than from an inductive transfer learning method, since the former is
solving a less general (hence easier) problem than the latter, and thus might be preferred, given
that generalization is not needed (see [11] for a broader discussion).

One consequence of the above-mentioned terminological confusion is the existence of “unfair”
comparisons in the field, where some transductive transfer learning methods have been claimed
to be superior to inductive transfer learning methods when tested on inductive transfer learning
problems, i.e., in problems in which the methods were not assumed to be learning from the unlabelled
documents, and in which transductive methods were not meant to be applied at all. This will be the
topic of the next two sections.

4 INDUCTIVE AND TRANSDUCTIVE TRANSFER PROBLEMS

In this section we give a general view of previous efforts in the field on the basis of the distinctions
discussed before, i.e., we will classify the methods according to whether they have been tested
on an inductive setting or on a transductive setting, and according to whether they are actually
inductive transfer learning methods or transductive transfer learning methods. In doing so, we do
not describe each method in detail; we refer the interested reader to [38, 39] for a more detailed
discussion, or to the original papers.

10 At the time of writing, this paper has 11,989 citations on Google Scholar.

1This reformulation of the problem was deliberate and acknowledged in their survey, and was thus not due to a mistake. In
their own words, “Note that the word “transductive” is used with several meanings. In the traditional machine learning
setting, transductive learning (...) refers to the situation where all test data are required to be seen at training time, and
that the learned model cannot be reused for future data. (Thus, when some new test data arrive, they must be classified
together with all existing data. (...) In our categorization of transfer learning, in contrast, we use the term transductive to
empbhasize the concept that in this type of transfer learning, the tasks must be the same and there must be some unlabelled
data available in the target domain.” [38, p. 1352]
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8 Moreo, Esuli, Sebastiani

The goal of this section is not to offer a review of past literature, but rather to show the need for
a clear distinction between induction and transduction. On the basis of this, we also identify cases
in which the lack of such a clear distinction has led to unfair experimental comparisons and, in
turn, to unreliable conclusions on the relative merits of different methods.

4.1 Transductive Transfer Problems

In a transductive transfer learning problem the learner is given access to the unlabelled object
set Ob,(]]_ right from the beginning. The best-known benchmarks that have been used in order to
test solutions to this problem are adaptations of the Reuters-21578, SRAA, and 20Newsgroups
datasets (all well-known datasets for text classification by topic) proposed by Dai et al. [13, 14] for
cross-domain adaptation.

The adaptation that [13, 14] propose leverages the hierarchical structure of the set of classes
that characterise these datasets in order to generate new benchmarks for testing transfer learning
systems. This procedure consists of picking two top-level classes, say, A and B, with subclasses
Ay, ..., Axand By, .. ., By, respectively, where the task is defined as a binary classification problem
in which one needs to discriminate class A from class B. Then, two disjoint “folds” are extracted
to form the source data (S) and target data (7°); for instance, As = %, A; and Aq = U, Ai
will represent the source and target parts for class A, while Bg = Uil B; and By = Uf:ﬁﬂ B;
will represent the source and target parts for class B, for some 1 < ¢ < x and 1 < § < y. Note
that the documents in S and those in 7~ are indeed related (they belong to the same top-level
class) but different (they belong to different subclasses of the same top-level class), as requested in
transfer learning. The training (source) set and the test (target) set are defined as Trf‘g =AsUBs
and Teg = Aq | By, respectively. Note that what we have described here is a setup for testing
inductive transfer learning methods; if we want to test transductive transfer learning methods,
Aq | Bs must play the role of the object set Obg and of the test set Terl; at the same time, i.e.,
the documents in Ag | B are available to the algorithm at training time, and the accuracy of the
algorithm is measured in terms of how good it is at labelling them. Note also that there is no other
unlabelled set, either from the source domain or from the target domain.

Datasets structured like this were first used by Dai et al. [13, 14] to test two different approaches:
CoCC [13], which co-clusters domains and words as a means to propagate the class structure
from the source domain to the target domain; and TrAdaBoost [14], an extension of AdaBoost
that implements transfer learning. Since then, many authors have adopted experimental settings
with the same structure, in order to test transfer learning systems based on topic models (e.g.,
Topic-Bridged PLSA (TPLSA - [60]), Topic-Bridged LDA (TLDA - [55]), and Partially Supervised
Cross-Collection LDA (PSCCLDA -[4])), non-negative matrix factorization (e.g., MTrick [65]),
probabilistic models (e.g., Topic Correlation Analysis (TCA - [27])), and clustering techniques (e.g.,
Cross-Domain Spectral Classification (CDSC - [30])).

However, although these methods have been tested on transductive transfer problems (i.e., by
having A By play the role of Obg]_ and Te,Lr] at the same time), not all of them are transductive
transfer methods as defined in Section 2. Indeed, TrAdaBoost [14], TLDA [55], and TCA [27]
are inductive transfer methods; i.e., when applied to a transductive problem, a “TTLP-via-ITLM
approach” must be followed. When inductive transfer learning methods are tested on an inductive
transfer learning problem, they are meant to be tested on a test set Teg~ different from the unlabelled
set Tr,l; on which they have been trained, in order to show that they generalize. Analogously, when
these methods are tested on a transductive problem, the unlabelled training set Tr,(]]_ and the object
set Obgj_ must be different too. It is one of the central observations of this paper that this caveat has
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not always been adhered to in comparative experimentations, and this has brought about flawed
comparative results that are still being relied upon today.

4.2 Inductive Transfer Problems

In an inductive transfer learning problem the learner has access to the labelled set Tré from the
source domain and the unlabelled set Trg. from the target domain (an unlabelled set Trg from the
source domain might be available as well). There is no object set Obg{ since the goal is to generate
(induce) a general-purpose classifier for the entire target domain. The test set Te,gj_ is thus only
meant to be used for evaluation purposes, i.e., for estimating the effectiveness of the classifier in
classifying any document from the target domain.

The most popular benchmarks for testing solutions to these problems are MDS [7], which was
proposed for cross-domain adaptation, and its cross-lingual extension Webis-CLS-10 [42]. Both
datasets consist of Amazon product reviews for different product categories, and include 2,000
labelled reviews per product category and a number of unlabelled reviews, ranging from 3,586
(DVD reviews in MDS) to more than 50,000 (in Webis-CLS-10). Neutral reviews have been filtered
out, and the task is thus defined as a binary sentiment classification problem (Positive vs. Negative).

This has promoted a (somehow unmotivated) partition of transfer learning methods, according to
which most of the methods tested on transductive transfer problems deal with classification by topic,
while most of the methods tested on inductive transfer problems deal instead with classification by
sentiment. The net result is that inductive transfer problems have received comparatively more
attention than their transductive transfer counterparts. In what follows we give a comprehensive
overview of the most important methods in the area, and show that some of them are actually
transductive transfer methods, something that was not to be expected given the characteristics of
the datasets they have been tested on.

Arguably, the most important methods proposed for the inductive transfer problem are Structural
Correspondence Learning (SCL) [7] for cross-domain adaptation, and its cross-lingual version (CL-
SCL) [43]. SCL bridges the gap between the source and target domains by solving intermediate
structural problems defined upon the notion of pivot features (frequent and predictive features that
behave approximately similarly in both domains). Pivots are typically discovered by inspecting
the supervised source set (e.g., by measuring the mutual information between a feature and the
class labels); their distributional properties are mined by inspecting the unlabelled source and
target training sets Trg and TrZ. Other methods that follow similar principles have been described
since then, including further pivot-based approaches like Spectral Feature Alignment (SFA) [37] for
cross-domain adaptation, and Distributional Correspondence Indexing (DCI) [34] for cross-domain
and cross-lingual adaptation. Other methods that similarly rely on mutual information as a means
to quantify semantic correlations among words have been described, as e.g., Sentiment-Sensitive
Thesaurus (SST) [10] does in order to expand a sentiment thesaurus.

Although the concept of “pivot” concerns, strictly speaking, pairs of related words, the same
concept is still present behind many non-negative matrix factorization (NMF) techniques, though
blurred under the notion of “latent topic”. Examples of NMF techniques include Topical Corre-
spondence Transfer (TCT) [63] for cross-domain adaptation, Semi-supervised Matrix Completion
(SSMC) [57], Two-Step Learning (TSL) [56], and the Subspace Learning Framework (CL-SLF) [62]
for cross-lingual adaptation. Very recently, [23] has proposed TKC, a transductive method based
on string kernels that was also evaluated on the MDS dataset.

Yet another group of approaches tested on inductive transfer problems has emerged, fostered
by the recent upsurge of deep learning. We distinguish between deep architectures and word
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embeddings-based approaches. The first approach based on deep architectures was Stacked Denois-
ing Autoencoders (SDA) [18], a method that exploited the autoencoding architecture to enforce a
consistent representation between source and target in cross-domain adaptation. This was followed
by other SDA-based approaches such as Cross-Domain Feature Learning (CDFL) [61], approaches
based on adversarial neural networks such as Domain Adversarial Neural Network (DANN) [17]
and a transductive variant (TransDANN) [2], Cross-Lingual Distillation with Feature Adaptation
(CLDFA) [59], and combinations of adversarial training with attention mechanisms, such as Adver-
sarial Memory Network (AMN) [29] and Hierarchical Attention Transfer Network (HATN) [28].
Finally, methods for learning (monolingual) word embeddings (Sentiment-Sensitive Embeddings
— SSE) [9] for cross-domain adaptation, bilingual word embeddings (Bilingual Model - BM) [58],
bilingual phrase embeddings [41], or for jointly learning bilingual word and document embeddings
(Bilingual Document Representation Learning — BiDRL) [64] for cross-lingual adaptation, have also
been proposed.

Some of the aforementioned methods make use of parallel data (generated via automatic transla-
tion tools as in SSMC [57], CL-SLF [62], BiDRL [64], CLDFA [59], or inspecting already existing
parallel resources as in BM [58]) or counted with a fraction of labelled data from the target domain
(as is the case of SSMC [57]). Somehow surprisingly, it turns out that most of these methods
are actually of the transductive transfer type (and this is something the reader might not expect,
considering the datasets those methods have been tested on, and the baselines they have compared
against); concretely, this affects the methods SSMC [57], CL-SLF [62], BiDRL [64], and CLDFA [59].
The reason is that the parallel data the authors considered in their experiments are the translations
that Prettenhofer and Stein made available for the non-English test documents in Webis-CLS-10.
This means that, even assuming the approaches could have been trained on a different set of parallel
documents (and this is something which incidentally remains unclear), the truth is that the results
they reported are inevitably optimized for the specific test documents (unfairly taken to be the
object set), and can thus not be granted to be representative of the more general inductive transfer
problem. TransDANN [2] and TKC [23] also fall in the “transductive group”, though in these cases
the incursion was deliberated and openly acknowledged.

Methods like SSMC [57], CL-SLF [62], BiDRL [64], and CLDFA [59] thus follow a controversial
approach that, in line with the definitions of Section 2, we could call “ITL-via-TTL”. That is, the
authors of these papers have applied a TTL method to a dataset for testing the accuracy of ITL
methods by (unfairly) assuming the test set Te,gf_ to be an object set Obg_. From a methodological
point of view, the comparison against ITL methods is unfair since the performance of a TTL method
is tailored to (i.e., optimized for) the object set ObY, which is assumed to be unavailable for a proper
ITL method. From a conceptual point of view, the goals that ITL and TTL methods pursue are not
comparable either, since a TTL method does not necessarily learn a general hypothesis, as a true
ITL method is instead expected to.

5 FROM INDUCTION TO TRANSDUCTION: TWO EMPIRICAL CASES

Up to now we have commented on the fundamental differences between ITL methods and TTL
methods. In order to quantify the impact of these differences in terms of effectiveness, we generate
transductive variants of two representative inductive transfer learning methods, Structural Corre-
spondence Learning (SCL) 7, 43] and Distributional Correspondence Indexing (DCI) [34] (Sections 5.1
and 5.2), and we empirically evaluate the difference in performance between the inductive and the
transductive versions (Section 5.3). We have chosen SCL and DCI for several reasons. First, SCL
and DCI cater for both cross-domain adaptation and cross-lingual adaptation, which allows us to
evaluate the impact of the above differences on a variety of transfer learning scenarios. Second, the
code implementing SCL and DCI has been made publicly available by their authors, which eases
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our task. (Implementation details are given in Section 5.3.) Third, SCL and DCI are among the most
representative inductive transfer learning methods in the text classification literature.

While the former method relies on the Structural Correspondence Learning paradigm already
discussed in Section 4.2, DCI relies on the “distributional hypothesis™? to generate a vector space
specifically devised for knowledge transfer. In this vector space, words that play similar roles
across domains are close to each other (e.g., word “read” from the book domain is close to word
“listen” from the music domain, as both play analogous roles in their respective domains) since
word vectors are defined with respect to the pivot words (frequent and highly predictive words
that behave similarly across domains; example pivot words are “excellent” or “poor” in any domain
having to do with product reviews). Both methods consist of two main phases: representation
(Section 5.1) and classification (Section 5.2), which we describe in the next sections.

The transductive variants we generate for the (originally inductive) SCL and DCI methods serve
the sole purpose of evaluating whether the differences in performance between inductive and
transductive versions is significant or not; these transductive variants are rather obvious, and
should not be considered part of our original contribution.

5.1 Document Representation

SCL and DCI bridge the gap between the source domain S = (xs, Fs, ¢s) and target domain
T = (x7, Fy, ¢7), where Fs = R™ and F = R" are two vector spaces (into which documents
are mapped via, e.g., tf-idf weighting), by working out additional representation functions ¢’ :
R™ — R and - R" — Rk that generate document representations in a shared vector space
R* whose dimensions are the above-mentioned pivot words. Here, m and n are the number of
distinct features (i.e., the vocabulary sizes) in the source and target domains, respectively, and k is
a user-defined parameter which specifies the number of dimensions of the shared space, i.e., the
number of pivot words.
The representation functions are implemented as linear mappings

Ps(x) = X' -Zs x € R™, Zg € R™K
(%) =x" - Zg x € R", Zs e R™K

where Zg and Z4 are the projection matrices whose rows are the k-dimensional word profiles (or
embeddings).”” In a domain D, entry Z;; of projection matrix Z quantifies the degree of correlation
between the i-th word in the original vector space and the j-th pivot word.

SCL and DCI implement different criteria for computing this correlation. In SCL, the correlations
between the words and a given pivot in a domain 9 are measured by solving a structural (classifi-
cation) problem in which all words are used as features to predict the presence or absence of the
pivot in a sample of documents from the domain distribution Pg). The correlation of each word
with respect to the pivot is thus taken to be the corresponding coefficient of the hyperplane that
defines the separation. The projection matrix Zy € R™* is defined as the k principal components
of a matrix in R™? containing, as its columns, all p hyperplanes, with p the number of pivots.
When the feature spaces Fs and Fg are not disjoint (that is, when we are not tackling cases of
cross-lingual adaptation), SCL replaces the original vector with a concatenation of the vector
and the projection [7], i.e, X" « [x; $7,(x)]. However, we have obtained much better results by
normalising each component before concatenating them. Specifically, we reduce the dimensionality

12The distributional hypothesis states that words with similar meanings tend to co-occur in the same contexts [21].
3Word profiles that SCL and DCI generate are indeed essentially word embeddings (low-dimensional and dense vectorial
representations of words). However, they are generated by means of simple operations on the co-occurrence matrices, and
are not the products of any neural procedure.
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of x from n to k, in order to match that of ¢7,(x), via principal component analysis, and we then
L2-normalize each component before concatenating them.

In DCI, the correlation Z;; is defined in terms of “distributional correspondence” between the i-th
word and the j-th pivot, and is computed via a distributional correspondence function'* (DCF) f using
a sample of documents from the domain distribution Pg. Each profile dimension is standardized so
that the columns of Z have zero mean and unit variance. Note that, differently from SCL, in DCI
it holds that k = p, since the dimensionality of the matrix is not reduced. In this work we adopt
cosine as the DCF since it outperformed all other DCFs in the experiments reported in [34, 35].

We also use the same pivot selection strategy used in SCL [7, 43] and DCI [34] (a strategy
that has its roots in the principles expoused in [8]), i.e., we select pivots by first filtering out
words that are not frequent enough, and then removing from the remaining words the ones that
are not discriminating enough (according to the mutual information between the word and the
label, as estimated on the training set Tré). In the cross-lingual case, pivot selection involves a
word-translation oracle, i.e., a mapping from source words to target words (see [43]).

The projections Zs and Zg are learnt from documents-by-words matrices of tf-idf normalised
weights. These matrices should be as large as possible in order to effectively capture the distribu-
tional properties of the words. This means that, in scenarios in which the unlabelled sets Trg and
Tr,[r], of sizes q and r, are available, we first represent them as matrices Trg € R?™ and Trg_ e R
and then compute

Zs = Y(Trg, Trg, p)
Zg = y(Trd, TrS, p)

where i/ is either SCL or DCI, and where p is the list of pivot words (properly translated to the
target language in cases of cross-lingual adaptation). In transductive settings where unlabelled sets
are not available, Z s and Z4 are directly modelled on the training samples in Tré. and in the object

samples in ObY, of sizes q’ and r’ (properly converted into matrices Tré € RY>™ and Ob%- e R"m),
as

Zs = y(Tr, Trk, p)
Z7 = y(0bY, ObY, p)

5.2 Learning and Classification

In the transductive modality both ¢’s and ¢7- have to be invoked on Tr&Lg and Obfij_ in order to generate
(labelled and unlabelled) representations in the shared space before training the transductive
classifier. This is required because the transductive classifier directly outputs labels for the elements
in Obg. as part of the learning procedure (the transductive step).

In the inductive settings, SCL and DCI first use ¢’; to represent the training documents in Tré to
train the classifier (the inductive step), while ¢7_ is invoked only at testing time in order to classify
the documents in Te,[;. (the deductive step).

5.2.1 Transductive SVMs. The underlying machine learning algorithm we use for the transductive
versions of SCL and DCI" is Transductive Support Vector Machines (TSVM) [25] with soft margins,
that assign labels for elements in the object set as part of the learning process. TSVMs implement

14DCFs are real-valued functions that quantify the deviation in “correspondence” between two words with respect to the

correspondence that is expected due to chance.
15The non-transductive learners used in experiments are detailed in Section 5.3.
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transduction by attempting to maximize the margin of the hyperplane that separates both the
training and the unlabelled data (instead of the training data alone, as for inductive SVMs). For
the TSVMs we have used the linear kernel, which has consistently delivered good accuracy in text
classification applications so far [24].

The transductive SVM classification problem is stated as the structural risk minimization problem

Minimize over yi,...,yp, W, b, &, En &L
1 n k
SIwlEeCc ) Gvc y 5
i=1 =
subject to Vi cyi(w-X+b) > 1-§
k P e *
Vo ryi(we X +b) 21—
V;lzl : gi >0
k *
Vieg:§ >0

where y; are the binary decisions for the object documents X*; w, b are the parameters (hyperplane
and bias) of the separation functional; &; are the slack variables for the labelled examples; ;" are the
slack variables for the unlabelled examples; and C and C* are two hyperparameters controlling the
trade-off between training error and margin for the labelled and unlabelled examples, respectively.

Note that 7 are the predicted labels for the object documents and, though the algorithm actually
produces a classifier, defined as h(x) = sign(w - X + b), this classifier is not used to (re)classify the
object documents. Indeed, there is no guarantee that the label attributed in the transductive step
coincides with the label that classifier h would assign, that is, h(x;) = y;f does not necessarily hold;
specifically, it is not true for the documents x; for which &7 > 1.

The implementation of TSVMs we have used is the one made available by Thorsten Joachims in
his SVM!#9h* package'® [25].

5.3 Experiments

In this section, we desribe the results of experiments that compare the transductive versions of SCL
(hereafter: TSCL) and DCI (hereafter: TDCI) against the original inductive ones (hereafter: ISCL
and IDCI). The experimental settings we explore account for (i) classification by sentiment and
by topic, (ii) inductive settings and transductive settings, and (iii) cross-domain and cross-lingual
adaptation. In doing so, we deliberately apply TSCL and TDCI also in environments in which
the use of transductive techniques is questionable: the aim of this experimentation is thus that of
providing empirical evidence that confounding the inductive and transductive paradigms can indeed
bring unfair benefits to transductive approaches in terms of performance against their inductive
competitors, and that this improvement is statistically significant. Somehow unconventionally, this
experimentation does not aim at setting a new best performance for a given dataset since, as will
become clear, some of the current best results from the literature have been obtained, as we argue,
unfairly.
The datasets we consider include:

e Reuters-21578'7 : a set of news stories produced by Reuters in 1987. Documents in the
collection are assigned to 5 top-level classes; among these, classes orgs, people, places have
been considered for transfer learning experiments in previous work, leading to three binary
distinctions: orgs vs. people, orgs vs. places, and people vs. places.

8http://svmlight joachims.org/
http://www.cse.ust.hk/TL/dataset/Reuters.zip
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Table 2. Characteristics of the datasets used for transductive transfer learning. TrU indicates the sample
that, in the experiments, sometimes plays the role of Tr¥ and sometimes plays the role of Tr,l;. When the
cardinality of a sample is indicated as an interval, this indicates how this cardinality varies across the various
tasks (indicated in column “Tasks”). The last column indicates the works where this dataset was first used.

Dataset Classification Adaptation Tasks |Tr§| |TrY| |Ob,[;| Ref.

Reuters-21578 by topic cross-domain 3 [1046,1210] 0 [1016,1239] [13, 14]
SRAA by topic cross-domain 2 8000 0 8000 [13, 14]
20Newsgroups by topic cross-domain 6 [3561,4900] 0 [3374,4904] [13, 14]

Table 3. Characteristics of the datasets used for inductive transfer learning. Notational conventions are as in
Table 2.

Dataset Classification Adaptation Tasks |Tr§| [TrY| |Te,(;| Ref.

MDS by sentiment cross-domain = 12 1600  [3586,5945] 400  [7]
Webis-CLS-10 by sentiment cross-lingual 9 2000 [9358,50000] 2000  [42]

e SRAA : a set of Usenet posts about simulated autos, simulated aviation, real autos, and real
aviation. The pairs of classes real vs. simulated, and auto vs. aviation define two cross-domain
transfer learning tasks.

e 20Newsgroups'? : a set of posts from 20 Usenet discussion groups. Previous transfer learning
experiments reported for this dataset considered all binary combinations for the 4 most
frequent top-level classes in the dataset (comp, sci, rec, talk). We adopted the setup proposed
by [13, 14]), in which six datasets are defined by selecting a pair of top categories for each
dataset. One top category of the pair acts as the positive category and the other as the
negative category (e.g., comp vs. sci, rec vs. talk). The subcategories of a top category are then
considered as the different domains on which the transfer learning process is applied (e.g.,
sci.crypt, sci.med for the top category sci).

e MDS? : a set of Amazon product reviews for the four domains Books, DVD, Electronics, and
Kitchen appliances. The preprocessed version contains bags of uni- and bi-grams, and is
labelled according to binary sentiment polarity. There are 2,000 labelled instances for each
domain, which are to be split in 5 folds according to [7] for performance evaluation. This
means that each reported accuracy value is an average across 5 experiments, each of which
considers 1600 training examples from the source domain and 400 test examples from the
target domain. This is the only dataset in which accuracy scores are computed via k-fold
cross-validation.

e Webis-CLS-10?! : a cross-lingual collection for sentiment classification consisting of positive
and negative Amazon product reviews for three domains (Books, DVD, Music) in four lan-
guages (English, German, French, Japanese). English is always used as the source language,
following [42].

Tables 2 and 3 display additional characteristics of the datasets; see also Section 4.2 for further
details.

Bhttp://people.cs.umass.edu/~mccallum/data/sraa.tar.gz

Yhttp://qwone.com/~jason/20Newsgroups/

Dhttp://www.cs.jhu.edu/~mdredze/datasets/sentiment/
Zhttps://www.uni-weimar.de/en/media/chairs/computer-science- department/webis/data/corpus-webis-cls- 10/
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As the evaluation measure we adopt “vanilla” accuracy, i.e.,

TP+TN
A= (1)
TP+FP+FN+TN

where TP, FP, FN, TN are the numbers of true positives, false positives, false negatives, true
negatives, as from the standard 2 X 2 contingency table. Adopting vanilla accuracy (the metric
of choice in previous related work) as the evaluation measure is perfectly reasonable since the
datasets are balanced.

We have implemented TSCL by adapting the publicly available implementation of CL-SCL [43]
made available as part of the NUT package.?? Apart from bypassing the translation of pivot words
when the source and target languages are the same, and apart from implementing the normalised
concatenation described in Section 5.1, the main change we have made concerns the replacement
of the original learning device in charge of the final predictions with SVM!¥9"* 23 TSCL is thus
obtained by having SVM!9"* operate in transductive mode and making the object set (with labels
omitted) available at training time. In previous literature, SCL has been tested on Webis-CLS-10 [43]
and on MDS [7]. For Webis-CLS-10 we thus adopt the configuration proposed in [43] for this
dataset, that uses p = 450 pivots, k = 100 principal components of the shared space, and discards
pivot candidates appearing in fewer than ¢ = 30 support documents. We explore this and other
configurations that have been proposed in past literature for MDS. In particular, we also test the
configuration of this dataset proposed in [7] (that consists of setting p = 100, k = 50, and ¢ = 5),
but we also explore other configurations that worked well for DCI (see [35]) and that consider
a higher number of pivots (up to p = 1000), and thus a higher dimensionality (up to k = 1000).
As done in [43] for Webis-CLS-10, we choose the configuration that works best for the first task
of the dataset (Books-DVD, as typically encountered in most papers); we end up using p = 1000,
k = 1000, and ¢ = 5. We also report results for ISCL and TSCL on the Reuters-21578, SRAA, and
20Newsgroups datasets, for which, to the best of our knowledge, no published results for SCL
existed so far. Similarly, we choose the configuration that yielded the best result in one of the tasks
(we choose comp vs. sci — the first task from the dataset with more tasks), which results in setting
p = 1000, k = 100, and ¢ = 5. We do not consider configurations involving p > 450 in Webis-CLS-10
since translating pivots is assumed to incur a cost; p = 450 has been agreed upon in past literature
as a reasonable cost-effective tradeoff, and setting k > 100 did not yield any better results.

We have implemented TDCI by adapting the PyDCI [35] package®* to use SVM!9% as the
learning device, in place of the scikit-learn implementation of SVMs (which does not cater for
transduction). Those modifications are now integrated as part of the PyDCI package. We set the
number of pivots to p = 450 for Webis-CLS-10 following [42], and to p = 1000 for the other datasets
as proposed in [35].

Since we have adopted a different learner, the accuracy values we report here do not coincide
with those previously reported for SCL in [7, 43], nor with those reported for DCI in [35]. Although
no significant variations exist in the latter case, the differences between SCL and ISCL turn out to
be more pronounced.

We set the parameters C and C* controlling the trade-off between training error and margin, to
the SVM!19h¢ default values in all cases.

Zhttps://github.com/pprett/nut

ZNote that the modification we have made to the NUT software only affects the final classification, and not the generation
of the vector representations in the shared space. These representations depend on the predictions of a set of classifiers that
are tasked to solve the structural problems. The learners we used for solving these intermediate structural problems still
rely on the implementation of Prettenhofer and Stein’s truncated stochastic gradient descent variant made available at
https://github.com/pprett/bolt.

Yhttps://github.com/AlexMoreo/pydci
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Table 4. Cross-domain adaptation on the Reuters-21578 (rows 1-3), SRAA (rows 4-5), and 20Newsgroups
(rows 6-11) datasets. Symbol “4” indicates that the method in the corresponding column has access to the
object set.

[ EEEEKIK [ EEEEKIAEKIEKIEK ¢ ¢
= —
— | = _ =
_lZ|Z|EIE|g|2 | =5
S S x| B
- >, 13) < < < o ] & = —
SIE 2|82 2 2508|505 128/8| ¢ 2
Dataset 2| E|p|B8 |0 |E|E|R|E|C|=|&|&|2]~8 £ =
orgs vs. places || 714 ] 742 [ 924 ]| 683 | .680 | .720 | .752 | .653 | - |.682].768 [ 730 | .742 [ 695 [ .739 [ 756  (+8.7%) | .767  (+3.8%)
orgs vs. people || 742 | .792 | 921 || .671 | 764 | .685 | .696 | .763 | - | .768 | .808 | .792 | .807 || .766 | .802 || .789  (+3.0%) | .817  (+1.9%)
people vs. places || 592 | .614 | .923 || 506 | .826 | .784 | .821 | .805 | - | .798 | .690 | .626 | .690 || .601 | .604 || .636  (+5.9%) | .668 (+10.6%)
real vs. simulated || .684 | .828 | .962 - .880 | .881 | .898 | .889 | - | .812 - - - 719 | .862 811 (+12.9%) | .912  (+5.8%)
auto vs. aviation || 752 | 880 | 969 | - | .932 | .904 | .962 | 947 | - | .880| - - - || 780 | 930 || ..880 (+12.9%) | 941  (+1.2%)
comp vs. sci 713 | 832 | 982 || 830 | 870 | - - |.989].939 902 - |.891|.900 || .704 | 784 || 773  (+9.7%) | 869 (+10.8%)
rec vs. talk 778 | 967 | 995 || .854 | .965 | .920 | .979 | .977 | .925 | .908 | .950 | .962 | .962 | .746 | .940 | .868 (+16.3%) | .966  (+2.8%)
rec vs. sci 807 | 937 | .994 || .885 | .945 | .903 | .987 | .951 | .912 | .876 | .955 | .879 | .955 || .785 | .926 | .833  (+6.0%) | 969  (+4.6%)
sci vs. talk 790 | .905 | .990 || .854 | .946 | .875 | .925 | .962 | .907 | .956 | .937 | .940 | .947 || 776 | .894 | .830  (+6.9%) | 915  (+2.3%)
comp vs. rec 869 | 904 | .992 || 939 | 958 | - - | 951 | .882].958 | - |.940 | .958 || .904 | .966 || .885  (-2.2%) | 905  (-6.3%)
comp vs. talk || .914 | .885 | .994 || .971 | .980 | - - | 977 | 948 | 976 | - | .967 | 967 || .953 | 979 | 884  (-7.3%) | .885  (-9.6%)
[ Average [.784] 875979 - [ 886 ] - | [ 897] - [865] - | - ] - [.766].888 ] 813 (+6.1%) | .898 (+1.2%) |

We compare the performance of TDCI with most of the baselines discussed in Section 4.2° For
TrAdaBoost [14] we report results for TrAdaB (that uses SVM as the learner) and TrAdaB(T) (that
uses instead TSVM). Note that ISCL acts as an alternative implementation of CL-SCL in Webis-
CLS-10 [43], and of SCL in MDS [7]. The accuracy scores for the baseline methods are taken from
the original publications. In all cases, we also report results for (i) ISVM, an (inductive) SVM that
simply classifies the target documents without carrying out any sort of adaptation; (ii) TSVM,
a transductive SVM that trains on the source domain using the target object set as unlabelled
examples (again, without any adaptation); and (iii) UPPER, a SVM that trains and tests in the target
domain; we report the accuracy of a 5-fold cross validation in the object set. In Webis-CLS-10, we
also report (iv) CL-MT, an inductive SVM that trains on the source English documents and tests on
translations of the non-English target documents (we used the translations made available by [42]).
SVM!i9ht js used to generate the classifier in all these baselines

Tables 4, 5, 6 report the accuracy scores of the methods discussed across the various datasets.
Boldface indicates the best score for each dataset; the accuracy scores of the transductive variants
TSCL and TDCI are listed together with the (percentage of) relative accuracy improvement with
respect to the inductive ISCL and IDCI counterparts (positive is better). Methods that access (thus,
optimize for) the object set are marked with the “¢” symbol. This symbol is thus used to establish
which systems can be legitimately compared with each others.

Table 6 is the one mixing more transductive and inductive methods. It looks clear that methods
belonging to the transductive group (those marked with the “¢” symbol) tend to obtain higher
scores than methods from the inductive group (the difference in performance is indeed statistically
significant according to a two-sided t-test for means of two independent samples at a confidence
level of @ = 0.05 — the trivial baselines ISVM, TSVM, Upper and CL-MT were left out of the test for
obvious reasons).

Unsurprisingly, the transductive variants of SCL and DCI bring about a considerable gain in
most cases (up to a relative improvement of 16.5% of accuracy in JAPANESE-DVD for SCL and 10.9%
in comp vs. sci for DCI). There are a few exceptions though, which in some cases (comp vs. rec and
comp vs. talk in 20Newsgroups, and Japanese-Books in Webis-CLS-10) are particularly pronounced.

%5We have left TransDANN [2] out since their results on MDS display much lower figures, likely because the authors have
used a different version of the dataset.
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Table 5. Cross-domain adaptation on the MDS dataset.
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Music || .509 | .597 | .832 | .714 || .773 | 775 | .768 | .765 | .788 | .755 | .765 | .719 | 812 || .808 (+124%) | .831 (+2.3%)
| Average [[ .532 [ .605 [ .838 | .767 [[ .797 [ .801 [ .794 [ 794 | .813 [ 786 [ 811 [[ .746 | .823 [ .798  (+7.0%) [ .829 (+0.8%) |

)
)
)
Books || .800 | .798 | .842 || 797 | 775 | 792 | .807 747 | 825 | 820 | .849 | 788 | 825 || 828 (+5.1%) | 826 (+0.1%)
DVD | Electronics | .754 | .780 | .874 || .741 | 767 | .778 | 802 | .809 | .759 | .809 | 800 | .71 || 725 | 847 | 804 (+11.0%) | .849 (+0.2%)
Kitchen || .776 | .783 | .908 || .814 | .808 | .812 | .835 | .828 | 757 | .849 | .835 | .809 || .768 | .848 | 733  (+8.5%) | .851 (+0.4%)
Books || .715 | .712 | .842 || 754 | 757 | 759 | .768 | .750 | 691 | 774 | 780 | 785 | 722 | 820 || 741  (+2.6%) | .824 (+0.5%)
Electronics | DVD || 742 | 739 | .846 || 762 | 772 | 773 | 777 | 765 | .718 | 781 | .778 | 796 || .738 | .800 || 773 (+4.8%) | .802 (+0.3%)
Kitchen || .858 | .861 | .908 || .859 | .868 | .863 | .902 | .879 | .837 | .881 | .900 | .870 || .848 | .876 | .889  (+4.8%) | 871 (-0.6%)
Books || .737 | .731 | .842 || .686 | .748 | .748 | .724 | .748 | 706 | .718 | .793 | 766 | .730 | 803 || .760  (+4.2%) | .807 (+0.5%)
Kitchen DVD || 750 | .746 | .846 || .769 | .766 | .785 | .803 | .876 | .744 | .789 | 803 | .764 || .741 | 797 || 786  (+6.1%) | .801 (+0.5%)
Electronics || .840 | .851 | .874 || .868 | .851 | .856 | .872 | .861 | .831 | .856 | .820 | .864 || .818 | .855 | .882  (+7.8%) | .856 (+0.1%)
[ Average [ .773].777 ] .868 ]| .780 | 786 | .794 | .812 | .808 [ .759 [ .813 [ .814 [ .806 [ .767 [ .830 [| 812  (+5.9%) [ .831 (+0.1%) |
Table 6. Cross-lingual adaptation on the Webis-CLS-10 dataset.
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Books [|.516 | .610 | .863 | .808 [| .833 [ .819 | .799 | .825 | .841 [ .795 | .840 || .758 | .849 [| .841 (+11.0%) | .857 (+0.9%)
German | DVD || .568 | .621 | .832 | .800 || .809 | .823 | .819 | .815 | .841 | .786 | .831 || .717 | .832 || .810 (+13.0%) | .834 (+0.2%)
Music || .568 | .633 | .845 | .790 || .829 | .813 | .796 | .830 | .847 | .825 | .790 || .774 | .852 || 834  (+7.7%) | .860 (+0.9%)
Books || .527 | .695 | .842 | .820 || .813 | .831 | .826 | .825 | .844 | .843 | .834 || .803 | .817 || .823  (+2.4%) | 831 (+1.7%)
French DVD || 541 | .702 | .849 | .794 || .804 | .827 | .827 | .819 | .836 | .796 | .826 | .744 | .836 || .809  (+8.7%) | .847 (+1.3%)
Music || .558 | .632 | .872 | .764 || .781 | .805 | .802 | .816 | .826 | .801 | .833 || .770 | .820 || .798  (+3.6%) | .829 (+1.1%)
Books || 499 | 419 | 804 | .692 || .770 | .738 | 735 | .709 | .732 | .718 | .774 || .754 | .784 | 672 (-10.9%) | 754 (-3.8%)
Japanese | DVD || .503 | 535 | .808 | .722 || .764 | .776 | .771 | .746 | 768 | .754 | .805 || .677 | .801 || .789 (+16.5%) | .816 (+1.9%)

)
)

Note that in these cases the inductive variant performed very well (actually outperforming all other
competitors in the case of IDCI), which may be an indication that transduction might come at a
risk (this is indeed confirmed by the relative performance between the ISVM and TSVM baselines
in those cases).

The smallest improvements are achieved in the MDS dataset for TDCI. Probably, the reason
is that the contribution of the object set is limited since in this case a 5-fold cross-validation is
adopted for evaluation; this means that in each experiment only 400 object documents documents
are observed, while the number of object documents observed during training is comparatively
higher in other datasets (see Table 3).

TDCI outperforms on average all other competitors in the transductive setting (Table 4) even
considering the comp vs. rec and comp vs. talk anomaly described above. A direct comparison
between the performance of TDCI and the baselines in the inductive settings (Tables 5 and 6) is
to be taken with a grain of salt (that, is indeed a core claim of this paper) since the baselines are
assumed to be inductive (though we argued in Section 4 that some of them are actually transductive).
In particular, SSMC, CL-SLF, BiDRL, CLDFA, and TKC access the test data during training and, not
surprisingly, most of them rank on top of the inductive transfer learning competitors in terms of
performance.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article . Publication date: February 2021.



18 Moreo, Esuli, Sebastiani

Finally, a Wilcoxon signed-rank test reveals the differences in performance between ISCL vs
TSCL and between IDCI vs TDCI to be statistically significant at confidence level 0.05 (with p-values
of 2.4E712 and 5.2E73, respectively), and at a much higher confidence level (p-values of 4.0E~!* and
3.5E7%) if we discard the anomalous cases.

6 CONCLUSIONS

Quite obviously, the accuracy of a classifier improves when the learner knows at training time the
set of documents the classifier will later be evaluated on. Transductive approaches focus on devising
ways of improving the prediction of labels in cases when the specific object sets is available and
known in advance. This improvements comes at the cost of sacrificing the generalization ability
that inductive approaches show off. Inductive and transductive approaches thus pursue radically
different goals, and are thus not interchangeable at will (they are only interchangeable in lab
experiments, by wrongly assuming the test set to play the role of an object set). This is a major
difference that has largely been overlooked in the transfer learning literature, fostered by a misuse
of terminology in the field and leading to unfair comparisons. We have proposed a clarification
of terminology, and shown empirical evidences that there was a need for it. To this aim, we have
produced a transductive variant of two representative inductive methods, SCL and DCI that we
used to deliberately reproduce a wrong experimental practice (imitating past evaluations in the
field), in which we compare the performance of TSCL and TDCI to their inductive counterparts
in inductive transfer learning problems. The goal of this evaluation is to show evidence that
confounding terminology may lead to unfair comparisons, and that the differences in performance
can be statistically significant.
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