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Abstract

In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring
high-order continuity to numerically approximate differential problems of the form ∆pu = f , p ≥ 1. More specifically,
we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic
boundary value problems, and prove an abstract result that states the convergence of the method in the energy norm.
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1. Introduction

In the recent years, there has been a tremendous interest to numerical methods that approximate par-
tial differential equations (PDEs) on computational meshes with arbitrarily-shaped polygonal/polyhedral
(polytopic, for short) elements. A nonexhaustive list of such methods include the Mimetic Finite Difference
method (see e.g., [22,20,4,16,8]), the Polygonal Finite Element Method (see e.g., [43]),the polygonal Discon-
tinuous Galerkin Finite Element Methods (see e.g., [5,26,24,7,11]) the Hybridizable Discontinuous Galerkin
and Hybrid High-Order Methods (see e.g., [31,32]), the Gradient Discretization method (see e.g., [34].[33]),
An alternative approach that is also proved to be very successful is provided by the Virtual Element method
(VEM), which was originally proposed in [14] for the numerical treatment of second-order elliptic prob-
lems [29,28], and readily extended to Cahn-Hilliard equation [3], Stokes equations [2], Laplace-Beltrami
equation [35], Darcy-Brinkam equation [44], discrete topology optimization problems [6], fracture networks
problems [17], eigenvalue problems [38]. The mixed virtual element formulation was proposed in [21]; the
nonconforming Virtual element formulations was proposed for second-order elliptic problems in [12], and
later extended to general advection-reaction-diffusion problems, Stokes equation, the biharmonic problems,
the eigenvalue problems, and the Schrodinger equation in [27,30,48,37,9]. Efficient multigrid methods for the
resulting linear system of equations in [10]. A posteriori error estimates can be found in [25].

In this work, we propose the conforming VEM for the numerical approximation of polyharmonic problems.
A peculiar feature of VEM is the possibility of designing approximation spaces characterized by high-order
continuity properties [15]. This turns out to be crucial when differential operators of order higher than
two have to be considered, as, for example, in the numerical treatment of biharmonic problems (see, e.g.,
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the plate bending problem or the Cahn-Hilliard equation) and polyharmonic problems. The numerical ap-
proximation of polyharmonic problems has been first addressed in the eighties by [18] and, more recently,
in [13,40,45,42,36]. It is worth mentioning an increasing interest in the numerical approximation of models
involving high-order differential operators, e.g., [46,47,41] in the context of sixth order Cahn-Hilliard equa-
tions. To the best of our knowledge, the conforming VEM proposed in this article is the first work addressing
the approximation of arbitrary-order polyharmonic problems on polygonal meshes.

The outline of the paper is as follows. In Section 2, we introduce the continuous polyharmonic problem
involving the differential operator ∆p for any integer p ≥ 1. In Section 3, we introduce the conforming
VEM approximation of arbitrary order. In this case, the global VEM space is made of Cp−1 functions.
As a collateral result, we obtain a virtual element formulation that includes the VEM for the Poisson and
the biharmonic equation, where the basis functions are globally Cr for r ≥ 1. An abstract result proves
the convergence of the method in the energy norm that correspond to the differential operator ∆p. In this
section, we also consider an alternative formulation with virtual element spaces of arbitrarily regular basis
functions by enriching the “bulk” degrees of freedom. In Section 4, we derive the error estimates in different
norms. Finally, in Section 5, we offer our final comments and conclusions.

Notation and technicalities. Throughout the paper, we consider the usual multi-index notation. In partic-
ular, if v is a sufficiently regular bivariate function and ν = (ν1, ν2) a multi-index with ν1, ν2 nonnegative
integer numbers, the function Dνv = ∂|ν|v/∂xν11 ∂x

ν2
2 is the partial derivative of v of order |ν| = ν1 + ν2 > 0.

For ν = (0, 0), we adopt the convention that Dνv coincides with v. Also, for the sake of exposition, we may
use the shortcut notation ∂xv, ∂yv, ∂xxv, ∂xyv, ∂yyv, to denote the first- and second-order partial derivatives
along the coordinate directions x and y; ∂nv, ∂tv, ∂nnv, ∂ntv, ∂ttv to denote the first- and second-order nor-
mal and tangential derivatives of order one and two along a given mesh edge; and ∂mn v and ∂mt v to denote
the normal and tangential derivative of v of order m along a given mesh edge. Finally, let n = (nx, ny) and
τ = (τx, τy) be the unit normal and tangential vectors to a given edge e of an arbitrary polygon K. We
recall the following relations between the first derivatives of v:

∂nv = nx∂xv + ny∂yv, ∂τv = τx∂xv + τy∂yv, (1)

and the second derivatives of v:

∂nnv = nTH(v)n, ∂nτv = nTH(v)τ , ∂ττv = τTH(v)τ , (2)

where matrix H(v) is the Hessian of v, i.e., H11(v) = ∂xxv, H12(v) = H21(v) = ∂xyv, H22(v) = ∂yyv.

2. The continuous polyharmonic problem

Let Ω ⊂ R2 be a convex polygonal domain with boundary Γ. For an integer p ≥ 1, we are interested
in developing the conforming Virtual Element method for the numerical approximation of the following
problem:

∆pu = f in Ω, (3a)

∂jnu = 0 for j = 0, . . . , p− 1 on Γ, (3b)

(recall the conventional notation ∂0
nu = u). Let

V ≡ Hp
0 (Ω) =

{
v ∈ Hp(Ω) : ∂jnv = 0 on Γ, j = 0, . . . , p− 1

}
.

We denote the duality pairing between V and its dual V ∗ by 〈·, ·〉. The variational formulation of (3) reads
as: Find u ∈ V such that

a(u, v) = 〈f, v〉 ∀v ∈ V, (4)

where, for any nonnegative integer `, the bilinear form on the left is given by:
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a(u, v) =


∫

Ω

∇∆`u · ∇∆`v dx for p = 2`+ 1,∫
Ω

∆`u∆`v dx for p = 2`.

(5)

Whenever f ∈ L2(Ω), we may consider the duality pairing between L2(Ω) and itself given by the L2-inner
product:

〈f, v〉 = (f, v) =

∫
Ω

fvdx. (6)

The existence and uniqueness of the solution to (4) follows from the Lax-Milgram lemmabecause of the
continuity and coercivity of the bilinear form a(·, ·) with respect to ‖·‖V := | · |p,Ω which is a norm on Hp

0 (Ω).
Moreover, since Ω is a convex polygon, from [39] we know that u ∈ H2p−m(Ω) ∩ Hp

0 (Ω) if f ∈ H−m(Ω),
m ≤ p and it holds that ||u||2p−m ≤ C ||f ||−m. In the following, we denote the coercivity and continuity
constants of a(·, ·) by α and M , respectively.

3. The conforming Virtual Element approximation

3.1. Abstract framework

Let
{

Ωh
}
h

be a sequence of decompositions of Ω where each mesh Ωh is a collection of nonoverlapping
polygonal elements K with boundary ∂K, and let Eh be the set of edges e of Ωh. Each mesh is labeled
by h, the diameter of the mesh, defined as usual by h = maxK∈Ωh

hK , where hK = supx,y∈K |x − y|. We

denote the set of vertices in Th by Vh = V ih ∪V Γ
h , where V ih and V Γ

h are the subsets of interior and boundary
vertices, respectively. Accordingly, V Kh is the set of vertices of K. The symbol hv denotes the average of
the diameters of the polygons sharing the vertex v. For functions in ΠK∈Ωh

Hp(K), we define the seminorm

||v||2h =
∑
K∈Ωh

aK(v, v), being aK(·, ·) the restriction of a(·, ·) to K.

The formulation of the Virtual Element method for solving problem (4) only requires three mathematical
objects: the finite dimensional conforming Virtual Element space V ph,r ⊂ V , the bilinear form ah(·, ·), and
the linear functional 〈fh, ·〉. Their definition is the topic of this section. Using such objects, we formulate
the VEM as: Find uh ∈ V ph,r such that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ V ph,r. (7)

The well-posedness of the VEM given in (7), which implies existence and uniqueness of the solution uh, is
a consequence of the Lax-Milgram lemma. An abstract convergence result is available, which depends only
on the following assumptions:
(H1) for each h and an assigned integer number r ≥ 2p− 1 we are given:

(i) the global Virtual Element space V ph,r with the following properties:

- V ph,r is a finite dimensional subspace of Hp
0 (Ω);

- its restriction V ph,r(K) to any element K of a given mesh Ωh, called the local Virtual Element space,
is a finite dimensional subspace of Hp(K);

- Pr(K) ⊂ V ph,r(K) where Pr(K) is the space polynomials of degree up to r ≥ 1 defined on K

(ii) the symmetric and coercive bilinear form ah : V ph,r × V
p
h,r → R admitting the decomposition

ah(uh, vh) =
∑
K∈Ωh

aKh (uh, vh) ∀uh, vh ∈ V ph,r,

where each local summation term aKh (·, ·) is also a symmetric and coercive bilinear form;

(iii) an element fh of the dual space V ∗h , which allows us to define the continuous linear functional 〈fh, ·〉.
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(H2) for each h and each mesh element K ∈ Ωh, the local symmetric bilinear form aKh (·, ·) possesses the
two following properties:
(i) r-Consistency: for every polynomial q ∈ Pr(K) and function V ph,r(K) we have:

aKh (vh, q) = aK(vh, q); (8)

(ii) Stability: there exist two positive constants α∗, α
∗ independent of h and K such that for every

vh ∈ V ph,r(K) it holds:

α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh). (9)

To apply the Lax-Milgram lemma we need ah(·, ·) to be coercive and continue. The coercivity of ah(·, ·)
follows from the coercivity of a(·, ·) and the stability property (H2) (with coercivity constant α∗α). The
continuity of ah(·, ·) follows from its symmetry, assumption (H2) and the continuity of a(·, ·) (with continuity
constant α∗M). Denoting by Pr(Ωh) the space of piecewise (possibly discontinuous) polynomials defined
over the mesh Ωh, the following abstract convergence result hold.

Theorem 3.1 Let u be the solution of the variational problem (4). Then, for every Virtual Element ap-
proximation uI in V ph,r and any piecewise polynomial approximation uπ ∈ Pr(Ωh) of u we have:

||u− uh||V ≤ C
(
||u− uI ||V + ||u− uπ||h + ||fh − f ||V ∗

h,r

)
, (10)

where C is a constant independent of h that may depend on α, α∗, α
∗, M , and r, and,

||f − fh||V ∗
h,r

= sup
vh∈V p

h,r
\{0}

〈f − fh, vh〉
||vh||V

(11)

is the approximation error of the right-hand side given in the norm of the dual space V ∗h,r.
Proof. The proof of this theorem is similar to the proofs of the convergence theorem in the energy norm for
the Virtual Element approximation of lower-order elliptic problems [14,23]. We briefly sketch how the proof
works for completeness of exposition. First, an application of the triangular inequality implies that:

||u− uh||V ≤ ||u− uI ||V + ||uI − uh||V . (12)

Let δh = uh − uI . Starting from the definition of || · ||V , we find that:

α∗ ||δh||2V = α∗a(δh, δh)
[
use (9)

]
≤ ah(δh, δh)

[
use δh = uh − uI

]
≤ ah(δh, uh)− ah(δh, uI)

[
use (7)

]
≤ 〈fh, δh〉 −

∑
K∈Ωh

aKh (δh, uI) [add ±uπ
]

≤ 〈fh, δh〉 −
∑
K∈Ωh

(
aKh (δh, uI − uπ) + aKh (δh, uπ)

) [
use (8)

]
≤ 〈fh, δh〉 −

∑
K∈Ωh

(
aKh (δh, uI − uπ) + aK(δh, uπ)

)
[add ±u

]
≤ 〈fh, δh〉 −

∑
K∈Ωh

(
aKh (δh, uI − uπ) + aK(δh, uπ − u) + aK(δh, u)

) [
use (4)

]
= 〈fh − f, δh〉 −

∑
K∈Ωh

(
aKh (δh, uI − uπ) + aK(δh, uπ − u)

)
.

Then, we use (9), add and subtract u, use the continuity of aK , sum over all the elements K, divide by
||δh||V , take the supremum of the right-hand side error term on V ph,r\{0}, and obtain

α∗ ||δh||V ≤ sup
vh∈V p

h,r
\{0}

|〈fh − f, vh〉|
||vh||V

+M (α∗ ||uI − u||V + (1 + α∗) ||u− uπ||h) . (13)
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The assertion of the theorem follows by using (13) in (12) and suitably defining constant the C.

Let K ⊂ R2 be a polygonal element and set

aK(u, v) =


∫
K

∇∆`u · ∇∆`v dx for p = 2`+ 1,∫
K

∆`u∆`v dx for p = 2`.

For an odd p, i.e., p = 2`+ 1, a repeated application of the integration by parts formula yields

aK(u, v) =−
∫
K

∆pu v dx+

∫
∂K

∂n(∆`u) ∆`v ds

+
∑̀
i=1

(∫
∂K

∂n(∆p−iu) ∆i−1v ds−
∫
∂K

∆p−iu ∂n(∆i−1v) ds

)
, (14)

while, for an even p, i.e., p = 2`, we have

aK(u, v) = −
∫
K

∆pu v dx+
∑̀
i=1

(∫
∂K

∂n(∆p−iu) ∆i−1v ds−
∫
∂K

∆p−iu ∂n(∆i−1v) ds

)
. (15)

3.2. Virtual element spaces

For p ≥ 1 and r ≥ 2p− 1, the local Virtual Element space on element K is defined by

V ph,r(K) =
{
vh ∈ Hp(K) : ∆pvh ∈ Pr−2p(K), Dνvh ∈ C0(∂K), |ν| ≤ p− 1,

vh ∈ Pr(e), ∂invh ∈ Pr−i(e), i = 1, . . . , p− 1 ∀e ∈ ∂K
}
, (16)

with the conventional notation that P−1(K) = {0}. The Virtual Element space V ph,r(K) contains the space
of polynomials Pr(K), for r ≥ 2p−1. Moreover, for p = 1, it coincides with the conforming Virtual Element
space for the Poisson equation [14]; for p = 2, it coincides with the conforming Virtual Element space for
the biharmonic equation [23].

We characterize the functions in V ph,r(K) through the following degrees of freedom:

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p− 1 for any vertex v of K;

(D2) h−1
e

∫
e

qvh ds for any q ∈ Pr−2p(e) and any edge e of ∂K;

(D3) h−1+j
e

∫
e

q∂jnvh ds for any q ∈ Pr−2p+j(e), j = 1, . . . , p− 1 and any edge e of ∂K;

(D4) h−2
K

∫
K

qvh ds for any q ∈ Pr−2p(K).

Here, as usual, we assume that P−n(·) = {0} for n ≥ 1. In (D3), the index j starts from 1 instead of 0
since for j = 0 we would find the degrees of freedom that are already listed in (D2) (recall that ∂jnvh = vh
for j = 0). We note that for any sufficiently regular two-dimensional domain Ω we have the embedding
Cm(Ω) ⊂ Hp(Ω) if m ≤ p− 1. This regularity is reflected by the previous choice of the degrees of freedom,
which allows us to reconstruct the trace of vh and the derivatives ∂jnvh ∈ Pr−j(e) on each edge of ∂K. Since
these polynomial traces on a given edge only depend on the edge degrees of freedom, the traces are the same
from inside the two mesh elements sharing that edge. To interpolate vh ∈ Pr(e) we need r + 1 conditions
for each edge e. Let vA and vB denote the vertices of edge e and use the shortcut notation: vA = vh(vA),
∂nvA = ∂nvh(vA), etc. Then,
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p = 3, r = 5 p = 3, r = 6

Fig. 1. Triharmonic problem: edge degrees of freedom of the Virtual Element space Vh,r(K). Here, p is the order of the partial

differential operator and p = 3 corresponds to the triharmonic case; r = 5, 6 are the integer parameters that specify the
maximum degree of the polynomial subspace Pr(K) of the VEM space Vh,r(K). The (green) dots at the vertices represent the

vertex values and each (red) vertex circle represents an order of derivation. The (black) dot on the edge represents the moment

of vh|e; the arrows represent the moments of ∂nvh|e; the double arrows represent the moments of ∂nnvh|e.

– the degrees of freedom (D1) provides vA, vB , ∂kτ vA and ∂kτ vB for k = 1, . . . , p − 1, i.e., 2p degrees of
freedom, which are enough to interpolate vh|e in Pr(e) if r = 2p − 1. When r > 2p − 1 the remaining
(r+ 1)− 2p conditions required to interpolate vh|e in Pr(e) are provided by the degrees of freedom (D2).

The tangential derivatives ∂kτ vh|e in Pr−k(e) for k = 1, . . . , r− 1 can be obtained by deriving k times the
interpolated polynomial vh|e along e;

– similarly, for each j = 1, . . . , p− 1, the degrees of freedom (D1) provides 2(p− j) conditions, i.e., ∂kτ ∂
j
nvA

and ∂kτ ∂
j
nvB , for k = j, . . . , p−1. The remaining r+ 1−2(p− j) conditions to interpolate ∂jnvh in Pr−j(e)

are provided by the (r − 2p + j) + 1 degrees of freedom (D3). The tangential derivatives ∂kτ ∂
j
nvh|e in

Pr−j−k(e) for k = 1, . . . , r − j − 1 can be obtained by deriving k times the interpolated polynomial ∂jnvh
along e.

Figure 1 illustrates the degrees of freedom on a given edge e for p = 3 (triharmonic case) and r = 5, 6.
Finally, we note that the internal degrees of freedom (D4) make it possible to define the orthogonal poly-
nomial projection of vh onto the space of polynomial of degree r − 2p.

The dimension of V ph,r(K) is

dimV ph,r(K) =
p(p+ 1)

2
NK +NK

p−1∑
j=0

Pr−2p+j(e) + dimPr−2p(K)

=
p(p+ 1)

2
NK +NK

p−1∑
j=0

(r − 2p+ j + 1) +
(r − 2p+ 1)(r − 2p+ 2)

2
,

where NK is the number of vertices, which equals the number of edges, of K.

The following lemma ensures that the above choice of degrees of freedom is unisolvent in V ph,r(K).

Lemma 3.2 The degrees of freedom (D1)-(D4) are unisolvent for V ph,r(K).
Proof. To ease the presentation, we first consider the lowest order space (r = 5) for the triharmonic problem
(p = 3). A counting argument implies that the cardinality of the set of degrees of freedom (D1) − (D3) is
equal to the dimension of V 3

h,5 (note that in this specific case (D4) is empty as there is no volumetric integral

in the right-hand side of (14)). Then, we are left to prove that a function vh in V 3
h,5 is zero if its degrees of

freedom are zero. From the previous discussion on the degrees of freedom, we know that the edge polynomial
interpolation of the traces of vh, ∂nvh, ∂nnvh and ∂ττvh, and, hence, ∆vh = ∂ttvh + ∂nnvh, must be zero if
the degrees of freedom of vh are zero. Hence, from (14) with ` = 1, we find that ‖∇(∆vh)‖2L2(K) = 0 inside
K, which implies that ∆vh is constant in K. Using the Divergence Theorem we find that:

∆vh|K| =
∫
K

∆vh dx =

∫
∂K

∂nvh ds = 0.

Therefore, vh is the solution of the boundary value problem ∆vh = 0 in K with boundary conditions vh = 0
on ∂K, and, thus, vh = 0 in K.
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The case of a generic p can be treated analogously by properly employing relations (14) (odd p) and (15)
(even p) in combination with the following observations:
(a) the polynomial trace ∆νvh|e = ∂αn∂

β
τ vh for every integers α, β, and ν (with ν ≥ 1) such that α+β = 2ν

must be zero if the degrees of freedom (D1)− (D3) of vh are zero;
(b) the volumetric integrals in (14) and (15) are zero if the degrees of freedom (D4) are zero;
(c) aK(vh, vh) is a norm on Hp

0 (K).

To define the elliptic projection Π∇,Kr : V ph,r(K) → Pr(K), we first need to introduce the vertex average

projector Π̂K : V ph,r(K)→ P0(K), which projects any smooth enough function defined on K onto the space
of constant polynomials. Let ψ be a continuous function defined on K. The vertex average projection of ψ
onto the constant polynomial space is defined as:

Π̂Kψ =
1

NK

∑
v∈∂K

ψ(xv), (17)

where xv is the position of vertex v. Finally, we define the elliptic projection Π∇,Kr : V ph,r(K) → Pr(K) as
the solution of the finite dimensional variational problem

aK(Π∇,Kr vh, q) = aK(vh, q) ∀q ∈ Pr(K), (18)

Π̂KDνΠ∇,Kr vh = Π̂KDνvh |ν| ≤ p− 1. (19)

Such operator has two important properties:

(i) it is a polynomial-preserving operator in the sense that Π∇,Kr q = q for every q ∈ Pr(K).

(ii) Π∇,Kr vh is computable using only the degrees of freedom of vh. In fact, in view of the integration by
parts formulas (14) and (15), the right-hand side of (18) takes the form (depending on the parity of p):

aK(vh, q) =−
∫
K

∆pq vh dx+

∫
∂K

∂n(∆`q) ∆`vh ds

+
∑̀
i=1

{∫
∂K

∂n(∆p−iq) ∆i−1vh ds−
∫
∂K

∆p−iq ∂n(∆i−1vh) ds

}
, (20)

or

aK(vh, q) = −
∫
K

∆pq vh dx+
∑̀
i=1

{∫
∂K

∂n(∆p−iq) ∆i−1vh ds−
∫
∂K

∆p−iq ∂n(∆i−1vh) ds

}
. (21)

In (20) and (21), ∆p−iq, and ∆pq are easily computable from q. The volumetric integral on K can be
expressed using the degrees of freedom (D5) since it is the moment of vh against ∆pq, which is a polynomial
of degree r − 2p. The edge traces of ∆`vh, ∂n(∆i−1vh) and ∆i−1vh are computable from the degrees of
freedom (D1)− (D4) of vh by solving suitable polynomial interpolation problems.

Building upon the local spaces V ph,r(K) for all K ∈ Ωh, the global conforming Virtual Element space V ph,r
is defined on Ω as

V ph,r =
{
vh ∈ Hp

0 (Ω) : vh|K ∈ V ph,r(K) ∀K ∈ Ωh

}
. (22)

We remark that the associated global space is made of Cp−1 functions. Indeed, the restriction of a Virtual
Element function vh to each element K belongs to Hp(K) and glues with Cp−1-regularity across the internal
mesh faces. The global degrees of freedom induced by the local degrees of freedom are listed as follows:

- h
|ν|
v Dνvh(v), |ν| ≤ p− 1 for every interior vertex v of Ωh;

7



- h−1
e

∫
e

qvh ds for any q ∈ Pr−2p(e) and every interior edge e ∈ Eh;

-

∫
e

q∂nvh ds for every q ∈ Pr−5(e) and every interior edge e ∈ Eh;

- h−1+j
e

∫
e

q∂jnvh ds for any q ∈ Pr−2p+j(e) i = 1, . . . , p− 1 and every interior edge e ∈ Eh;

- h−2
K

∫
K

qvh ds for any q ∈ Pr−2p(K) and every K ∈ Ωh.

Remark 3.3 For p = 3 (triharmonic case) we can also consider the following modified lowest order space

Ṽh,5(K) =
{
vh ∈ H3(K) : ∆3vh = 0, vh, ∂nvh, ∂nnvh ∈ C0(∂K),

vh ∈ P5(e), ∂nvh ∈ P3(e), ∂nnvh ∈ P2(e) ∀e ∈ ∂K
}

with associated dofs

(D1′) h
|ν|
v Dνvh(v), |ν| ≤ 2 for any vertex v of ∂K;

(D2′) he

∫
e

∂nnvh ds for any edge e of ∂K.

Using the same argument of the proof of Lemma 3.2, we can still prove that (i) the degrees of freedom (D1′)

and (D2′) are unisolvent in Ṽh,5(K); (ii) the space of polynomials of degree 4 are a subspace of Ṽh,5(K);
(iii) the elliptic projection of vh is still computable from this choice of degrees of freedom; (iv) the associated
global space

Ṽh,5 =
{
vh ∈ H3

0 (Ω) : vh|K ∈ Ṽh,5(K) ∀K ∈ Ωh

}
, (23)

which is obtained by gluing together all the elemental spaces Ṽh,5(K), is still made of C2 functions. Analo-
gously, in the general case one can build the following modified lowest order spaces (containing the space of
polynomials of degree 2p− 2 )

Ṽ ph,2p−1(K) =
{
vh ∈ Hp(K) : ∆pvh = 0, Dνvh ∈ C0(∂K), |ν| ≤ p− 1,

vh ∈ P2p−1(e), ∂invh ∈ P2p−2−i(e), i = 1, . . . , p− 1 ∀e ∈ ∂K
}
, (24)

with associated dofs

(D1′) h
|ν|
v Dνvh(v), |ν| ≤ p− 1 for any vertex v of ∂K;

(D2′) h−1+j
e

∫
e

q∂invh ds for any q ∈ Pi−2(e) and any edge e of ∂K, i = 1, . . . , p− 1.

3.3. Construction of the bilinear form

We write the symmetric bilinear form ah : V ph,r × V
p
h,r → R as the sum of local terms

ah(uh, vh) =
∑
K∈Ωh

aKh (uh, vh), (25)

where each local term aKh : V ph,r(K)× V ph,r(K)→ R is a symmetric bilinear form. We set

aKh (uh, vh) = aK(Π∇,Kr uh,Π
∇,K
r vh) + SK(uh −Π∇,Kr uh, vh −Π∇,Kr vh), (26)

where SK : V ph,r(K)× V ph,r(K)→ R is a symmetric positive definite bilinear form such that

σ∗a
K(vh, vh) ≤ SK(vh, vh) ≤ σ∗aK(vh, vh) ∀vh ∈ V ph,r(K) with Π∇,Kr vh = 0, (27)

for two some positive constants σ∗, σ
∗ independent of h and K. The bilinear form aKh (·, ·) has the two

fundamental properties of consistency and stability stated by the following lemma.
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Lemma 3.4 The bilinear form aKh (·, ·) defined in (26) possesses both (i) r-stability and (ii) consistency
properties stated in (8) and (9), respectively, as required by assumption (H2).
Proof. The r-consistency property follows by noting that the stability term in (26) is zero when one of its
entries is a polynomial of degree r as Π∇,Kr is a polynomial-preserving operator. The stability property is
easily established by applying (9) to definition (26) and setting α∗ = min(σ∗, 1) and α∗ = max(σ∗, 1), where
σ∗ and σ∗ are the constants defined in (27).

Furthermore, aKh (·, ·) is V -elliptic and continuous for every K, and so is the global bilinear form ah(·, ·).
The V -ellipticity of aKh (·, ·) is indeed a consequence of the left inequality in (9). Since aKh (·, ·) is symmetric
and coercive, it is a scalar product on Vh,r(K) and satisfies the Cauchy-Schwarz inequality. Using the right
inequality in (9) we (easily) prove the continuity of aKh (·, ·) with respect to norm || · ||V,K :

aKh (uh, vh) ≤
(
aKh (uh, uh)

) 1
2
(
aKh (vh, vh)

) 1
2 ≤ α∗

(
aK(uh, uh)

) 1
2
(
aK(vh, vh)

) 1
2

≤ α∗M ||uh||V,K ||vh||V,K ∀uh, vh ∈ V ph,r(K). (28)

Collecting together the local terms, we can formulate the global V -ellipticity and continuity properties as
follows:

α∗a(vh, vh) ≤ ah(vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ V ph,r (29)

ah(uh, vh) ≤ α∗M ||uh||V ||vh||V,K ∀uh, vh ∈ V ph,r. (30)

3.4. Construction of the load term

We denote by fh the piecewise polynomial approximation of f on Ωh given by

fh|K = Π0,K
r−pf, (31)

for r ≥ 2p− 1 and K ∈ Ωh. Then, we set

〈fh, vh〉 =
∑
K∈Ωh

∫
K

fhvh dx. (32)

Using the definition of the L2-orthogonal projection we find that

〈fh, vh〉 =
∑
K∈Th

∫
K

Π0,K
r−pf vh dx =

∑
K∈Th

∫
K

Π0,K
r−p fΠ0,K

r−pvh dx =
∑
K∈Th

∫
K

f Π0,K
r−pvh dx. (33)

The right-hand side of (33) is computable by using the degrees of freedom (D1) − (D5) and the enhanced
approach [1].

Remark 3.5 An alternative formulation that does not require the enhancement is given by taking r =
max(0, r − 2p) for r ≥ 2p− 1 and fh = Π0,K

r f . The resulting approximation is suboptimal.

3.5. VEM approximation of polyharmonic problems with basis functions of arbitrary degree of continuity

In this last section we briefly sketch the construction of global Virtual Element spaces with higher order of
continuity. More precisely, let us consider the local Virtual Element space defined as before, for r ≥ 2p− 1:

V ph,r(K) =
{
vh ∈ Hp(K) : ∆pvh ∈ Pr−2p(K), Dνvh ∈ C0(∂K), |ν| ≤ p− 1,

vh ∈ Pr(e), ∂jnvh ∈ Pr−j(e), j = 1, . . . , p− 1 ∀e ∈ ∂K
}
. (34)

Differently from the previous section, we make the degrees of freedom depend on a given parameter t with
0 ≤ t ≤ p− 1. For a given value of t we choose the degrees of freedom of V K,rh as follows
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(D1) h|ν|Dνvh(v), |ν| ≤ p− 1 for any vertex v of K;

(D2) h−1
e

∫
e

vhq ds for any q ∈ Pr−2p(e), for any edge e of ∂K;

(D3) h−1+j
e

∫
e

∂jnvhq ds for any q ∈ Pr−2p+j(e), j = 1, . . . , p− 1 for any edge e of ∂K;

(D4′) h−2
K

∫
K

qvh ds for any q ∈ Pr−2(p−t)(K);

where as usual we assume P−n(·) = {0} for n = 1, 2, 3, . . ..

In view of the above choice of the degrees of freedom, the following properties hold true:
(i) the dofs are unisolvent. Indeed, proceeding as before, it is enough to use (14) or (15) and observe that

∆ivh|e = ∂αn∂
β
τ vh with α+ β = 2i is a polynomial uniquely identified by the values of the dofs;

(ii) Pr(K) ⊂ V K,rh , for r ≥ 2p− 1;
(iii) the choice (D4′) instead of (D4) still guarantees that the associated global space is made of Cp−1

functions, but now (D1)-(D4′) can be employed to solve a differential problem involving the ∆p−t

operator by employing Cp−1(Ω) basis functions. For instance:
(a) Choosing p and t such that p − t = 1 we obtain Cp−1 conforming VEM for the solution of the

Laplacian problem. For example, for p = 3, t = 2 and r = 5, the local space V 3
h,5(K) endowed with

the corresponding degrees of freedom (D1)− (D4′) can be employed to build a global space made
of C2 functions for the approximation of the Laplace problem. It is worth mentioning that the
new choice (D4′) (differently from the original choice (D4)) is essential for the computability of
the elliptic projection (see (18)-(19)) with respect to the bilinear form aK(·, ·) =

∫
K
∇(·)∇(·)dx.

(b) Choosing p and t such that p − t = 2 we get Cp−1 conforming VEM for the solution of the
Bilaplacian problem. For example, for p = 3, t = 1 and r = 5, similarly to the previous case,
the space V 3

h,5(K) together with (D1) − (D4′) gives rise to a global space made of C2 functions
that can be employed for the solution of the biharmonic problem. Again, the particular choice
(D4′) makes possible the computability of the ellliptic projection with respect to the bilinear form
aK(·, ·) =

∫
K

∆(·)∆(·)dx.

4. Convergence analysis

4.1. Mesh regularity and polynomial interpolation error estimates

We consider the following mesh regularity assumptions:

(M) There exists a positive constant γ independent of h (and K) such that {Ωh}:
(i) K is star-shaped with respect to every point of a ball of radius γhK , where hK is the diameter of K;

(ii) for every edge e of the cell boundary ∂K of every cell K of Ωh, it holds that he ≤ γhK , where he
denotes the length of e.

We refer to γ as the mesh regularity constant.

In view of assumptions M(i)-M(ii) on Ωh, we define, for every smooth enough function w the Virtual
Element interpolant wI , which is the function in Vh,r uniquely identified by the same degrees of freedom
of w. More precisely, if χi(w) denotes the i-th global degree of freedom of w, there exists a unique Virtual
Element function wI ∈ Vh,r such that χi(w − wI) = 0. Combining the Bramble-Hilbert Lemma and scaling
arguments as in the finite element framework (see, e.g., [14]and [19]) we can prove that for every K ∈ Ωh
and every function w ∈ Hβ(K), it holds

‖w − wI‖s,K ≤ Chmin(β,r+1)−s
K |w|β,K s = 0, 1, . . . , p (35)

for some positive constant C independent of h.
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Under the same assumptions and using similar techniques, we can also prove that the existence of a
piecewise polynomial approximation wπ ∈ P`(Ωh) such that the local estimate holds

‖w − wπ‖s,K ≤ Chmin(β,`+1)−s
K |w|β,K s = 0, 1, . . . , p, 1 ≤ β ≤ `+ 1, (36)

for some positive constant C independent of h and every mesh element K. The elliptic projection Π∇,K` w

and the L2-ortogonal projection Π0,K
` w of w are both instances of wπ for which estimate (36) holds.

4.2. Convergence in the energy norm

By using standard estimates for the interpolation error, we can derive the convergence rate of the approx-
imation error in the energy norm. First, we need a technical lemma that estimates the approximation error
of the load term.

Lemma 4.1 Consider a function f ∈ Hr−(p−1)(Ω) and its L2-orthogonal projection on the space of polyno-

mials of degree r− p, denoted by fh = Π0,K
r−p. Then, there exists a positive constant C, which is independent

of h, such that
〈f − fh, vh〉 ≤ Chr+1 |f |r−(p−1) |vh|p ∀vh ∈ V ph,r. (37)

Proof. First, we note that
(
I−Π0,K

r−p
)
f is orthogonal to the polynomials of degree r−p (recall that r ≥ 2p−1)

and that vh belongs to Hp
0 (Ω). We employ the Cauchy-Schwarz inequality (twice) and use (35) (with w = f

and wπ = Π0,K
r−pf) to obtain the estimate:

〈f − fh, vh〉 =
∑
K∈Ωh

∫
K

(
I −Π0,K

r−p
)
f
(
I −Π0,K

p−1

)
vh dx ≤

∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣

0,K

∣∣∣∣∣∣(I −Π0,K
p−1

)
vh

∣∣∣∣∣∣
0,K

≤ C
∑
K∈Ωh

h
r−(p−1)
K |f |r−(p−1),K hpK |vh|p,K ≤ Ch

r+1 |f |r−(p−1) |vh|p ,

where C denotes a positive constant independent of h.

Theorem 4.2 Let f ∈ Hr−p+1(Ω) and let u be the solution of the variational problem (4) and uh ∈ V ph,r be
the solution of the Virtual Element problem (7). Under the mesh regularity assumption (M), we find that

||u− uh||V ≤ Ch
r−(p−1)

(
|u|r+p+1 + |f |r−p+1

)
. (38)

Proof. The assertion of the theorem follows by estimating each term of the right-hand side of (10) separately
and using interpolation estimate (35) and Lemma 4.1, cf. inequality (37).

4.3. Convergence in lower order norms

We first prove a technical lemma that will be useful in the error analysis of the next subsections.
Lemma 4.3 Let f ∈ Hr−p+1(Ω) and let u be the solution of the variational problem (4) and uh ∈ V ph,r be

the solution of the Virtual Element problem (7). Then, for any function ψ ∈ Hβ(Ω) ∩ Hp
0 (Ω) (β > p) it

holds that

a(ψ, u− uh) ≤ Ch(r−(p−1))+min(β,r+1)−p
(
|u|r+p+1 + |f |r−p+1

)
||ψ||β , (39)

for some positive constant C independent of h.
Proof. To derive (39), we add and substract the Virtual Element interpolant of ψ denoted by ψI to the
left-hand side of (39), and, then, use (3) and (7), and obtain:

a(ψ, u− uh) = a(u− uh, ψ − ψI) + a(u− uh, ψI)

= a(u− uh, ψ − ψI) + 〈f − fh, ψI〉+ ah(uh, ψI)− a(uh, ψI)

= T1 + T2 + T3. (40)
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To estimate term T1, we use the continuity of a(·, ·) with respect to the norm || · ||V = | · |p, the estimate
in the energy norm (38), and interpolation error estimate (35) (s = p)

T1 ≤ ||u− uh||V ||ψ − ψI ||V ≤ Ch
r−(p−1)

(
|u|r+p+1 + |f |r−(p−1)

)
|ψ − ψI |p (41)

≤ Ch(r−(p−1))+(min(β,r+1)−p)
(
|u|r+p+1 + |f |r−(p−1)

)
|ψ|β . (42)

To estimate term T2, we first note that
(
I −Π0,K

r−p
)
f is orthogonal to the polynomials of global degree up

to r − p defined on K and that ψI ∈ Hp(Ω). Then, we apply the Cauchy-Schwarz inequality (twice) and
obtain:

〈f − fh, ψI〉 =
∑
K∈Ωh

∫
K

(
I −Π0,K

r−p
)
f
(
I −Π0,K

p−1

)
ψI dx ≤

∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣

0,K

∣∣∣∣∣∣(I −Π0,K
p−1

)
ψI

∣∣∣∣∣∣
0,K

≤

( ∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣2

0,K

) 1
2
( ∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
p−1

)
ψI

∣∣∣∣∣∣2
0,K

) 1
2

.

The first term on the right is bounded by using local estimate (36):∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣

0,K
≤ Chr−(p−1)

K |f |r−(p−1),K .

The second term on the right is transformed by applying estimate (36) (with w = ψI and wπ = Π0,K
p−1ψI),

adding and subtracting ψ and applying estimate (35):∣∣∣∣∣∣(I −Π0,K
p−1)ψI

∣∣∣∣∣∣
0,K
≤ Chp |ψI |p,K ≤ Ch

p
(
|ψ|p,K + |ψI − ψ|p,K

)
≤ Chp

(
|ψ|p,K + hmin(β,r+1)−p |ψ|β,K

)
.

Collecting all the local terms, using the Cauchy-Schwarz inequality, and the assumption that β ≥ p (so
hp ≥ hmin(β,r+1)) yields:

T2 ≤ Chr−(p−1) |f |r−(p−1)

(
hp |ψ|p + hp+(min(β,r+1)−p) |ψ|β

)
≤ Chr+1 |f |r−(p−1) |ψ|β . (43)

To bound T3, we first split it in the summation of local terms. Then, we use the r-consistency and stability
property of ah, and the continuity property of a and ah, and we obtain

T3 =
∑
K∈Ωh

(
aKh (uh, ψI)− aK(uh, ψI)

)
=
∑
K∈Ωh

(
aKh (uh − uπ, ψI)− aK(uh − uπ, ψI)

)
=
∑
K∈Ωh

(
aKh (uh − uπ, ψI − ψπ)− aK(uh − uπ, ψI − ψπ)

)
≤ C ||uh − uπ||V ||ψI − ψπ||V . (44)

Adding and subtracting u and using the estimate in the energy norm (38) and the estimate for the polynomial
interpolation (36), we find that

||uh − uπ||V ≤ ||uh − u||V + ||u− uπ||V ≤ Ch
r−(p−1). (45)

Adding and subtracting ψ, and, then, using estimates (35) and (36) we find that

||ψI − ψπ||V ≤ ||ψI − ψ||V + ||ψ − ψπ||V ≤ Ch
min(β,r+1)−p ||ψ||β . (46)

The bound on T3 following by using (45) and (46) in (44):

T3 ≤ Ch(r−(p−1))+min(β,r+1)−p ||ψ||β . (47)

The assertion of the lemma follows by subtituting (42), (43), and (47), in (40).
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In view of this lemma, we can readily state and prove the convergence theorems for the four possible
combinations of even and odd p and even and odd norm indices.
Theorem 4.4 (Even p, even norms) Let f ∈ Hr−p+1(Ω) and let u be the solution of the variational
problem (4) with p = 2` and uh be the solution of the Virtual Element method (7). Then, there exists a
positive constant C independent of h such that

|u− uh|2i ≤ Ch
r+1−2i

(
|u|r+p+1 + |f |r−(p−1)

)
, (48)

for every integer i = 0, . . . , `− 1.
Proof. For i = 0, . . . , `− 1, let ψ ∈ H2(p−i)(Ω) ∩Hp−i

0 (Ω) be the solution of the problem

∆p−iψ = ∆i(u− uh) ∈ L2(Ω), (49)

with the stability property

||ψ||2(p−i) ≤ C |u− uh|2i . (50)

We use (49) and integrate by parts to obtain:

|u− uh|22i =
∣∣∣∣∆i(u− uh)

∣∣∣∣2
0

=
(
∆i(u− uh), ∆i(u− uh)

)
=
(
∆p−iψ, ∆i(u− uh)

)
=
(
∆`ψ, ∆`(u− uh)

)
= a(ψ, u− uh)

where we employed the fact that |v|2i =
∣∣∣∣∆iv

∣∣∣∣
0

for any v ∈ Hp
0 (Ω). The assertion of the theorem follows

from an application of Lemma 4.3 (use β = 2(p−i) together with r ≥ 2p−1) and the stability property (50).

Theorem 4.5 (Even p, odd norms) Let f ∈ Hr−p+1(Ω) and let u be the solution of the variational
problem (4) with p = 2` and uh be the solution of the Virtual Element method (7). Then, there exists a
positive constant C independent of h such that

|u− uh|2i+1 ≤ Ch
(r+1)−(2i+1)

(
|u|r+p+1 + |f |r−(p−1)

)
, (51)

for every integer i = 0, . . . , `− 1.
Proof. For i = 0, . . . , `− 1, let ψ ∈ H2(p−i)−1(Ω) ∩Hp−i

0 (Ω) be the solution of the problem:

−∆p−iψ = ∆i+1(u− uh) ∈ H−1(Ω), (52)

with the stability property

||ψ||2(p−i)−1 ≤ C |u− uh|2i+1 . (53)

We use (52) and integrate by parts to obtain:

|u− uh|22i+1 =
∣∣∣∣∇∆i(u− uh)

∣∣∣∣2
0

=
(
∇∆i(u− uh), ∇∆i(u− uh)

)
=
(
∇∆i+1(u− uh), ∇∆i(u− uh)

)
=
(
∆p−iψ, ∆i(u− uh)

)
=
(
∆`ψ, ∆`(u− uh)

)
= a(ψ, u− uh)

where we employed the fact that |v|2i+1 =
∣∣∣∣∇∆iv

∣∣∣∣
0

for any v ∈ Hp
0 (Ω).

The assertion of the theorem follows from an application of Lemma 4.3 (use β = 2(p − i) together with
r ≥ 2p− 1) and the stability property (53).

Theorem 4.6 (Odd p, even norms) Let u be the solution of the variational problem (4) and let uh be
the solution of the Virtual Element method (7). Then, there exists a positive constant C independent of h
such that

|u− uh|2i ≤ Ch
(r+1)−2i

(
|u|r+p+1 + |f |r−(p−1)

)
, (54)

for every integer i = 0, . . . , `− 1.
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Proof. For i = 0, . . . , `, let ψ ∈ H2(p−i)(Ω) ∩Hp−i
0 (Ω) be the solution of the problem

−∆p−iψ = ∆i(u− uh) ∈ L2(Ω) (55)

with the stability property

||ψ||2(p−i) ≤ C |u− uh|2i . (56)

We use (58) and integrate by parts to obtain:

|u− uh|22i =
∣∣∣∣∆i(u− uh)

∣∣∣∣2
0

=
(
∆i(u− uh), ∆i(u− uh)

)
=
(
−∆p−iψ, ∆i(u− uh)

)
=
(
−∆`+1ψ, ∆`(u− uh)

)
=
(
∇∆`ψ, ∇∆`(u− uh)

)
= a(ψ, u− uh).

The assertion of the theorem follows from an application of Lemma 4.3 (use β = 2(p − i) together with
r ≥ 2p− 1) and the stability property (56).

Theorem 4.7 (Odd p, odd norms) Let u be the solution of the variational problem (4) and let uh be the
solution of the Virtual Element method (7). Then, there exists a positive constant C independent of h such
that

|u− uh|2i+1 ≤ Ch
(r+1)−(2i+1)

(
|u|r+p+1 + |f |r−(p−1)

)
, (57)

for every integer i = 0, . . . , `− 1.
Proof. For i = 0, . . . , `, let ψ ∈ H2(p−i)−1(Ω) ∩Hp

0 (Ω) be the solution of the problem:

−∆p−iψ = ∆i+1(u− uh) ∈ H−1(Ω), (58)

with the stability property

||ψ||2(p−i)−1 ≤ C |u− uh|2i+1 . (59)

We use (58) and integrate by parts to obtain:

|u− uh|22i+1 =
∣∣∣∣∇∆i(u− uh)

∣∣∣∣2
0

=
(
∇∆i(u− uh), ∇∆i(u− uh)

)
=
(
∇∆i+1(u− uh), ∇∆i(u− uh)

)
=
(
−∆p−iψ, ∆i(u− uh)

)
=
(
−∆`+1ψ, ∆`(u− uh)

)
=
(
∇∆`ψ, ∇∆`(u− uh)

)
= a(ψ, u− uh)

where again we employed the fact that |v|2i+1 =
∣∣∣∣∇∆iv

∣∣∣∣
0

for any v ∈ Hp
0 (Ω). The assertion of the theorem

follows from an application of Lemma 4.3 (use β = 2(p− i)− 1 together with r ≥ 2p− 1) and the stability
property (59).

5. Conclusions

In this paper, we developed the conforming Virtual Element discretization of arbitrary order for polyhar-
monic problems, which requires the discretization of operator like ∆pu for integer p ≥ 1. To this end, we
introduced local and global Virtual Element approximation spaces together with suitable discrete bilinear
forms for odd and even p. The convergence of the method has been proved and optimal error estimates
derived in suitable norms. The numerical implementation of the current method deserves a careful study
because of the severe ill-conditioning of the polyharmonic differential operator and the need of high order
polynomials, whose degree should be at least 5 in the simplest case p = 3. For this reason, the implementation
of this conforming VEM is under investigation and will be addressed in a forthcoming publication.
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