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Abstract – The synergic utilization of data from dif-
ferent sources, either ground-based or spaceborne, can
lead to effectively monitor fishing activities in close
proximity of managed areas, and help tackle the prob-
lem of global overfishing. To this end, the integration of
spaceborne Synthetic Aperture Radar (SAR) data and
cooperative Automatic Identification System (AIS) in-
formation has the appealing potential to provide a bet-
ter picture of what is happening at sea by detecting ves-
sels that are not reporting their positioning data (in-
tentionally or not) and, on the other side, by validat-
ing ships detected in satellite imagery. In this context,
this paper deals with the investigation of "suspicious"
AIS data gap and the integration of SAR-based ship de-
tection by a point-to-point and a point-to-line types of
association. Time-filtered and classified AIS transmis-
sions (according to the gear in use) are used to predict
SAR positions, with the next step being to search/match
corresponding SAR-based targets. A case study is an-
alyzed, in which the method is tested in proximity of
managed areas characterized by significant AIS black-
outs, using occasional Sentinel-1 images of the central
Adriatic Sea and AIS data.

I. INTRODUCTION

Improving the Maritime Situational Awareness (MSA)

and the sustainable use of oceans, seas and marine re-

sources is nowadays of paramount importance [1] and re-

quires monitoring tools which can provide long-term ob-

servations of fish stocks and fishing fleets’ activity [2] [3].

The latter can now be monitored by several systems

that can be broadly classified as cooperative or non-

cooperative. Cooperative systems rely on the ships report-

ing information about themselves (e.g., identification, po-

sition, and speed), as it happens with Automatic Identifica-

tion System (AIS), Long Range Identification and Track-

ing (LRIT) and Vessel Monitoring System (VMS). While

these systems are powerful tools to track the self-reporting

vessels, they only give a partial picture of the situation.

Most small vessels do not need to carry AIS or LRIT, and

small or even all fishing vessels do not carry VMS depend-

ing on the region. Moreover, positions reports can drop out

for many reasons, such as weak signals, signal interference

in crowded areas or intentionally turning off/tampering

when entering port or in close proximity of fishery forbid-

den areas [4].

On the other hand, non-cooperative systems employ

radar and optical sensors (coastal, shipborne, airborne, and

spaceborne) to detect the ships from the background sea

clutter without relying on their cooperation [5] [6] [7].

Compared with optical remote sensing, satellite Synthetic

Aperture Radar (SAR) imaging appears more suited for

maritime traffic surveillance in operational contexts, as it

allows ship detection over wide swaths without being crit-

ically affected by weather conditions and day-night cycles

[8] [9] [10] [11].

Obviously, the synergic exploitation of the above men-

tioned different data sources represents a breakthrough ap-

proach to strongly improve maritime situational awareness

and effectively monitor of fishing activities [12] [13]. In-

deed, ship-related information gathered by both coopera-

tive and non-cooperative systems could result in the quan-

tification and additional mapping of the non-reporting ship

traffic, giving a more complete picture of vessels’ activity,

including Illegal, Unreported and Unregulated (IUU) fish-

ing [14].

Considering the above, this study focuses on AIS black-

outs in close-proximity of fishery managed areas, and use

open-source Sentinel-1 SAR data to seek and additionally

map non reporting ships that could be involved in suspect

behaviour.

II. MATERIALS AND METHOD

Terrestrial AIS data (poll rate: 5 minutes) are first pro-

cessed to map transmission gaps, and investigate their

overlay with known managed areas, such as the 3 nautical

mile zone where the use of towed gears shall be prohib-

ited (as defined by Article 13 of EU Council Regulation

1967/2006).

According to the management measure under investiga-

tion and the gear type that is likely to be illegally used,

only some AIS report positions are retained (i.e. the ones

broadcasted by trawlers) and a distance criteria is applied
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to match them with ship positions from SAR images. To

this end, a classification process is carried out to pre-assign

AIS transmissions to specific fishing gears.

A. AIS Data and Processing

Fig. 1. Aggregated AIS black-outs (1kmx1km grid).

The Maritime Mobile Service Identity (MMSI) is used

to create a tracking layer and values of duration and speed

are computed for each segment from the difference be-

tween consecutive pings. Tracks with a duration exceed-

ing a predefined threshold of 30 minutes are kept and con-

sidered as black-out tracks and gaps in AIS data cover-

age. Annual black-outs are aggregated intersecting the

over mentioned tracks with a 1-km grid, spatial joining

each cell with overlapping track portions, and summing

relative duration values (hours, Fig. 1)

For each vessel individual trips are first identified, from

the time vessels leave ports until they return, and then char-

acterized by a machine learning approach with a boosting

algorithm (Fig. 2) that identifies the type of fishing when

it occurs, according to pre-defined gear classes: bottom ot-

ter trawl (OTB), beam trawl (TBB), pelagic trawl (PTM),

purse seine (PS), longline (LL), and other (including cargo

and cruise vessels). The Fourier transformation is applied

on position and course data and the performance improved

by subdividing the spectrum twice into 20 and 100 power

sub-bands from which additional features (median, max-

imum and area) can be extracted. The classification ap-

proach extends what already developed for towed gears in

Galdelli et al., (2019) [15] with the aim to identify addi-

tional gear classes such longlines and purse seines.

Trip by trip, the classification algorithm is executed to

label single trips according to the gear class showing the

highest accuracy index.

B. SAR Data and Processing
The Constant False Alarm Rate (CFAR) approach devel-

oped by Mancini et al., (2013) [16] for ship detection and

CosmoSkyMed data, is adapted to Sentinel-1 images. The

approach is based on the use of integral images and allows

to directly manage the presence of masked pixels/invalid

data while reducing the computational time. It signifi-

cantly boosts he performance up to 50x even in case of

very high resolution images and large kernels.

The output of the data-processor is a list of georefer-

enced centroids of the detected ship pixels (Fig. 3), with

an estimation of the vessel size. This length estimation is

used to filter out targets that are likely too long to be a fish-

ing vessel.

C. AIS-SAR Matching and Data Integration
To integrate AIS and SAR data, a point-to-point type of

association is used to assess if a vessel detected by SAR is

correlated with an AIS position within a given time-frame,

while a point-to-line type of association is attempted in

case of AIS black-outs. We identify the following main

cases:

• Case #1: The SAR-based estimated vessel location is

within a buffer area centered on AIS data. The buffer

distance is calculated considering the distance trav-

elled in the time frame of N AIS pings at v speed.

• Case #2: A SAR target is detected but with no AIS re-

port available. This could be caused by a transmission

problem or a voluntary switching off. An attempt is

done to associate the SAR target to the nearest black

track, by connecting the SAR detection with the latest

before the switching off and the first available ping

after the power on (the connection could consider a

series of N missed pings).

• Case #3: A SAR target is missed even if AIS data is

available. It is due to the failure of the vessel detection

algorithm.

The value of N is also function of the typical speed / class

of the vessel (e.g. 2.5-3.5 kn for trawlers during the fish-

ing activity). Values of N too large could generate wrong

results.
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Fig. 2. Classification Vessel Algorithm.

Fig. 3. Example of Sentinel-1 image (Central Adriatic
coast, July 2020) and ship detection by CFAR. Land mask
is overlaid with stretched SAR amplitude data, while green
pixels represent detected ships.

While Case #1 validates the performance of the SAR-

based detection algorithm, Case #2 discriminates collab-

orative and non-collaborative ships, playing a key-role to

detect potential suspect behaviours in a given area.

Of course from a single satellite image is not possible to

state that a given fishing vessel is really performing suspect

activities. Nevertheless, the positions detected by SAR can

be correlated with AIS black-outs to reveal previously un-

monitored dark vessels.

III. RESULTS

As case study it was chosen an area in the central Adri-

atic Sea (south coast of the Marche Region), because of the

presence of many offshore installations and associated 500

m safety zones within which, under the Italian law, it is for-

bidden to anchor, fish or navigate. Fig. 5 is related to the

above mentioned area and shows the overlay of a portion

of a Sentinel-1 image (2017-03-20 at 16:56:52 UTC) and

the corresponding AIS transmissions that were selected ac-

cording to the time window straddling the SAR acquisition

time (+/- 10 minutes). Once classified, all AIS report po-

sitions were retained (regardless of the type of gear in use)

and consisted in 91 pings transmitted by 20 different ves-

sels (unique MMSI). For 8 of these vessels the switch-off

rate exceeds 40% during the single trip. These selected

vessels were mainly classified as trawlers (8 OTB, 5 PTM

and 3 TBB), while only 3 vessels were labelled as "other"

(cruise/cargo).

Applying the CFAR algorithm, 22 objects were auto-

matically detected, consisting of 19 ships and 3 fixed off-

shore platform targets. They all fell within Case #1 since

it was possible to correlate them with AIS pings or plat-

form positions downloaded from the EMODnet - Human

Activities portal1 (Fig. 6).

The 19 ships identified in the Sentinel-1 image are be-

tween 16 and 27 meters in length, while one vessel was

too small to be detected (Case #3). This small ship was

self-reporting during the time window straddling the SAR

acquisition time (orange ping located in port in Fig. 5) and

was classified as cargo/cruise by the Classification Vessel

Algorithm. Its monthly plotted AIS tracks confirmed that

it acted as a platform supply vessel (Fig. 4).

Fig. 4. Case #3 with the small platform supply vessel
broadcasting AIS signals (blue points) during March 2017.

Lengths ranging from 16 to 27 meters are compliant

with the available resolution of satellite imagery even if in

1https://www.emodnet-humanactivities.eu
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harsh environmental condition the detection could be neg-

atively affected.

A close up view of the post-matching phase is shown in

Fig. 7, where it is depicted that one vessel is close to the

500m safety zone surrounding the offshore platforms (on

the top-left, and hereafter named as vessel 1), while a sec-

ond vessel navigates at a distance of 1.4 kilometers from

one of the managed areas (on the top-right, and hereafter

named as vessel 2). Even if the AIS data gaps for these

2 vessels exceed 50% of their trip duration, they do not

switch-off near the platforms allowing the point-to-point

type of association foreseen by Case #1.

Fig. 5. Sentinel-1 image and selected AIS transmissions
under analysis. Pings are categorized by MMSI.

Fig. 6. AIS-SAR matching Case #1 and close up view
with SAR targets classified as gas platforms (red circles)
and vessels (red triangles). AIS pings are categorized by
MMSI.

Lastly, since no significant black-outs were present in

the area chosen as case study, Case #2 was simulated, omit-

ting few AIS pings transmitted by vessel 1 in close prox-

imity to the platform .

Fig. 7. Zoom detail of Fig. 6. Three gas platforms and
two vessels are identified and marked with red circles and
triangles respectively. The light blue and green circles are
the AIS pings related to the 2 different ships (vessel 1 and
vessel 2, respectively).

Figure 8 shows a graphical representation of a simula-

tion where pings are not available in a short period due to

blackout. The blue makers are the pings before and after

the blackout period, while the green solid line represents

the segment that connects the two above mentioned pings.

Red circles are centered on the gas platforms p1, p2 and p3

with a radius of 500m. The cyan markers are the contact

points between the circles and the minimal route that ves-

sel 1 could follow to enter in the forbidden area. Dashed

green lines represent these (potential) routes.

Figure 9 could help investigate the behaviour of vessel

1 during the blackout period. Each row of the table corre-

sponds to the ratio between the potential travelled distance

during the blackout period at different speeds over the min-

imum distance to reach and exit the forbidden area (cyan

marker shown in Figure 8) of a given platform considering

as starting point the ping before the blackout and the end

point as the first ping after the blackout. This ratio could be

used to evaluate if a ship performed some kind of activity

(e.g. fishing).

IV. DISCUSSION AND CONCLUSIONS

In this paper we presented preliminary results to use

both AIS and SAR data to monitor fisheries: a pilot study

in the Adriatic Sea was also presented with a focus on

the detection of potential illegal activities in critical area

(e.g. gas platforms). Even if the quality of AIS-SAR data

matching strongly depends on the density of the ships in

the area of interest and on the time lag between AIS and

SAR data collection, preliminary results suggest that the

proposed approach could help monitor fishing activity and

rate the effectiveness of fishery-regulated areas, which is

critical in the context of the global over-fishing problem.
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Fig. 8. Graphical representation of a simulated scenario
where the green blackout line connects 2 consequent AIS
pings broadcasted by vessel 1 (EPSG:32633).
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