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Abstract

We study the thermodynamic properties of a spin-1 Bose gas across the Bose—Einstein condensation
transition. We present the theoretical description of the thermodynamics of a trapped ideal spin-1
Bose gas and we describe the phases that can be obtained in this system as a function of the temperature
and of the populations in the different spin components. We propose a simple way to realize a
‘synthetic magnetization’ that can be used to probe the entire phase diagram while keeping the real
magnetization of the system fixed. We experimentally demonstrate the use of such method to explore
different phases in a sample with zero total magnetization. Our work opens up new perspectives to
study isothermal quenching dynamics through different magnetic phases in spinor condensates.

1. Introduction

Spinor Bose gases and spinor Bose—FEinstein condensates (BECs) are characterized by the fact that their
constituent particles have an internal degree of freedom: their spin. For example, in alkali atoms if the total spin
of the atoms is F and m denotes its magnetic quantum number, the different Zeeman states of one hyperfine
manifold coexist in such systems. Concerning spinor BECs, the combination of magnetic ordering and
superfluidity makes them interesting systems to study phenomena involving spontaneous symmetry breaking
[1, 2], spin superfluidity [3], vortex dynamics [4], or collective magnetic excitations [5]. Of particular interest are
the understanding of spin dynamics and the characterization of the ground states properties of these systems,
which are determined by collisional processes [6]. Collisions between the different internal states of the atoms
allow spin-changing collisions that have been studied in detail in [7-10]. These collisions can notably be
employed to generate spin squeezing [ 11-13], that can be used to overcome the quantum shot noise limit
[14—18]. Spinor dynamics was also studied in two dimensional systems [15], and in the presence of periodic
potentials and across the superfluid to Mott insulator transition [19].

Here, we focus on spin-1 bose gases, and in particular on alkali atoms in the hyperfine F = 1 state, where the
three magnetic Zeeman substates mp = 1,0, —1 coexist. Spin-1 gases can display ferromagnetic or
antiferromagnetic character depending on the sign of the spin-dependent contact interaction term
¢ = [47/%(ay — ag)]/3m, where apare the s-wave scattering lengths for the two allowed spin collisional
channels F = 0and F = 2, and m is the atomic mass [20]. The rotational symmetry of s-wave collisional
processes (provided that dipolar interactions are negligible) implies that the total magnetization of the system,
definedas M = N,; — N_;with N, the populations in the mr = £1 Zeeman substates, is a conserved
quantity. Extensive work has been done to study the phases and mean-field ground states of both ferromagnetic
[20-24] and antiferromagnetic [25-27] spin-1 condensates.

While the ground state properties of spinor Bose gases have attracted substantial interest, their finite
temperature behavior has not been investigated thoroughly. The additional internal degree of freedom makes
these systems richer than single component Bose gases, and a large number of different thermodynamic phases
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can be observed. To date, only the thermodynamics of antiferromagnetic systems has been studied, where step-
wise condensation of the spin components was observed as a function of the initial magnetization and the
external magnetic field [28].

In this work, we study the thermodynamics of a spin-1 Bose gas using the relevant non-interacting theory for
anideal trapped gas, extending the work presented in [29]. We classify the different magnetic phases of this
system, and demonstrate that it is possible to induce a ‘synthetic magnetization’ by exploiting a spin-dependent
trapping potential. We use such method to experimentally explore the phase diagram of a symmetric polar (SP)
Bose gas of *’Rb, which is characterized by zero total magnetization and equal population of the three spin states
Ny = N;; = N_;. We show that our method can be used to realize highly magnetized condensates while keeping
the total magnetization of the system to zero.

Due to their rich phase diagram, spinor Bose gases have recently been promoted as an optimal system to
study non-equilibrium dynamics. For example thermal quenches were used to cross over the BEC transition
[30, 31], and microwave dressing allowed to operate selectively on the Zeemen energy levels [32]. Our work
opens new possibilities in performing isothermal quenches across different phases using the synthetic
magnetization, a method that could be exploited in future experiments to study out-of-equilibrium physics in
spinor systems.

This paper is organized as follows: in section 2 we present the non-interacting model for a spin-1 Bose gas,
highlighting the presence of up to three critical temperatures and classifying the corresponding magnetic phases.
In section 3, we describe our method to experimentally generate the synthetic magnetization, we present the
details of our experiment and the results on the experimental exploration of the phase diagram of the ' Rb SP
Bose gas. Finally, section 4 is devoted to the conclusions.

2. Theory of ideal spin-1 Bose gases

In this section, we present the theory describing the condensation dynamics of an F = 1 ideal Bose gas within the
grand canonical ensemble formalism. We extend the theory presented in [29] to the more general situation when
not only the total atom number and the magnetization is fixed but also the number of atoms in the mp = 0
Zeeman component. We will give analytical expressions for the critical temperatures and we will classify the
different magnetic phases that can be realized with this kind of systems.

Let us consider an ideal, trapped, dilute spin-1 Bose gas in the presence of a magnetic field. In the case of
alkali atoms, the effect of a non-zero magnetic field B along the Z direction, which sets the quantization axis, can
be expressed analytically through the Breit—Rabi formula [23]. The contribution to the total energy of the system
can be decomposed into linear and quadratic parts Ezeeman &~ —pMB — gN,B?, with p = g j15,and
q= ,u123 (g + g])2 / (16En) ~ h  x  71.75 Hz/G* for ¥ Rb atoms, where g grare the gyromagnetic ratios of
the electron and nucleus, E}, is the hyperfine energy splitting for zero magnetic field, yp is the Bohr magneton
and we skipped constant terms. The linear contribution is irrelevant as it is proportional to the magnetization M
which is a constant of motion. The quadratic part is of the main importance in the lowest order approximation,
even for a realistic system composed of interacting atoms. The presence of the spin-mixing collisional processes
makes the linear part of this effect irrelevant for the dynamics. In other words, the chemical equilibrium required
by the spin-changing collisional processes |1, 1) + |1, —1) < 2 X |1, 0) implies that the effective chemical
potentials of the individual species in the condensate are constrained by the relation p1; + gy = 2. The
consequence of this is that condensing at a fixed magnetization has the same effect as condensing under the effect
of an effective external magnetic field. Therefore, the applied magnetic field can be viewed as an effective
magnetization of the sample.

Given these preliminary considerations, the Hamiltonian of a trapped spin-1 ideal Bose gas can be written as

H=73_ ein,, i — pN — nM — 4N, (1)

mp, 1

where e7 = L /g + 1, Jaw, + 1, faw,, [ = (I L, Iyand I, = 0, 1, 2,...(a = x, y, ). In the above Hamilto-
nian, the chemical potential y, the linear Zeeman shift 7, and y are Lagrange multipliers that enforce all the
constrains in our system i.e the conservation of the total number ofatoms N = 3°, 7 n,, 7, the magnetization
M =3, 7 men,, 7,and the population of the N state Ny = 377 7. The Zeeman energy is included in the
Lagrange multipliers. In other words, the Lagrange multipliers are shifted by the non-zero magnetic field, i.e.

n — n, + pBand y — ~, + qB%. The energy spectra for the three spin components are therefore

Ej=er—pn—mn (2a)

Eyr=er—p—1 (2b)




10P Publishing

NewJ. Phys. 21 (2019) 043024 D Benedicto Orenes et al

E j=¢er—pu+n (20)

Assuming equal trapping energies €7 for all three Zeeman components, it is clear that a state with the lowest
energy will be determined by the interplay between the external magnetic field parametrized by v and the effect
of fixed magnetization parametrized by 1. We will distinguish two limits for non-negative magnetization: (a)
~ > n, when Ej is the lowest energy state; (b) v < 7, when the lowest energy state is E,. Using the above
Hamiltonian, we can write the grand canonical partition function of the system as

E= > Qumn zlf’ zé\/f Z,{,\]U, where Qumn, = Y e PEmri g 3)

N,M,Ny Mg, T

and § = 1/kg T with kg being the Boltzmann constant and T the temperature. The particular fugacities are
z, = e, z, = €M, z, = e”. According to the rules of grand canonical formalism, we can derive the ensemble
average population
1 0InE  zy, e PEmpT
BOE, ;i 1— zye Hmi ’

4

My, T =
in which the effective fugacities are zy = z,z,, 2o = 2,2+, 2-1 = 2, zn_l. In the thermodynamic limit, following

the standard derivation we can write the condensate fraction in the my Zeeman component as

Zm,
NmF)O = M, T=0 = - (5)
1 — zp,

while the number of thermal atoms in each component can be expressed

1
NmF, h = Mg, T =—=¢ (Zm;.-): (6)
t l% ' By

where @ = (wWywyw, )!/3 and g5(x) is the Bose function.

2.1.In the large magnetic field limit when~y > 7

First, we will focus on the limit of v > 1), i.e. when the energy associated to the quadratic Zeeman effect
dominates over the mean-field energy associated to the fixed magnetization. In this regime it is the mp = 0
component that condenses first, leading mathematically to y — —v,zp—1land z; — z 1zn, z—zy 12,]’1. The
number of thermal atoms in each Zeeman state reads

vy

¢3)
No,w(T) = oy (7a)
gs(zw_lz,])
Ny (T) = 22 -2, b
Lin(T) iy (7b)
gz 'z
N_y,w(T) = S(ﬁ”T);, (7¢)

where ((3) is the Euler—Riemann zeta function and the number of condensed atoms are N1; ¢ — 0and
Noo(T) = Ny — Ny, (T). Following the arguments in [29], the first critical temperature T . for the my = 0
state is defined by Ny = Ny, (To,.) which gives

koToe _ (&)“3
T q€)

because the number of atoms in the mz = 0 component is fixed.
The second phase transition occurs when 7 — +. At this point it is the mp = 1 component which condenses,
leading to the following relations for the number of thermal atoms:

®)

Noan(T) = (52))3, (%)

Ny (T) = (5(7?))3, (9b)
gz

N = 5 )

and the number of condensed atoms Ny o > 1,N_; o > land Ny o(T) = N; — Ny, (T). The second critical
temperature T . is defined as




10P Publishing

NewJ. Phys. 21 (2019) 043024 D Benedicto Orenes et al
foTie _ (N~ Not )" (10)
fie 20(3) '
The third phase transition occurs when v — 0. Assuming thaty = g + -, as above, the transition is
possible when v, — —qand then one can define the third critical temperature T, . for the mp = —1as
kT 1. (N-No—M)" an
fiw 2¢03) '
Notice that when the value of magnetizationis zero then T} . = T_; .andbothmp = land mp = —1

components condense at the same temperature. Moreover, in the symmetric case for Ny = N/3 the three
components condense simultaneously. In addition, the second and third phase transition can be defined also
whenn — —yand then the role of mg = 1and mr = —1 components exchange. This case corresponds to
negative values of magnetization.

2.2.In the low magnetic field limit when v < 7
In the case when the effect of fixed magnetization dominates it is the myr = 1 component that condenses first,
leading to t — —mnand the mathematical relations among fugacities z; — 1, zy — z,, 2, the

1 —
Zr\//, zZ_1 = Z7] )
number of thermal atoms

n

q¢)

Nwm(T) = (57)3’ (12a)
-1
Nouw(T) = % (12b)
-2
Noya(T) = f;(;)i , (120)

the condensate fractions Ny, N_1y — 0 and the sharp grow of the N ((T) value above the critical point. The
first critical temperature T; . for the mp = 1 state can be defined as

kshe [N ~ N+ M)“

e 236 1

The magnetization of condensed atoms is zeroat T = T ,, but it starts grow up above T} .. The second phase
transition occurs whenn — yand Ny > 1. The second critical temperature in this situation, Ty .can be
defined from the constraint of the number of atoms in the 1 = 0 component

ke To,c :( No )“ ’
w o \¢®))

At T, . the magnetization of condensed atoms is already non-zero but still some thermal atoms contribute in
order to take into account its fixed value

(14)

(3) — &(z,?)

M = Ni(To,0) + (15)
(B/i)°
The third phase transition takes place when y — 0 as we consider the limit g — 0. Now, the mp = —1 starts to
condense. The third critical temperature T_; . can be defined as
kT, (N-No—M)" 16
= 203 '

What is more interesting, one can show thatat T_; . the value of magnetization is determined by condensed
atoms only as the contribution of thermal atoms compensate each other :

M = Nio(T-1,0). 17)

An evidence of the third transition is the relative magnetization of condensed atoms equal to one,

M. (T_,,) /N, = 1whichisa characteristic feature of the low magnetic field region. The behavior of the three
normalized critical temperatures t,,, = T, ./ T., with . = /(N /((3))!/? asa function of Ny/Nand M/Nis
reported in figure 1.

2.3.Magnetic BEC phases
From the theoretical model just described, a F = 1 spinor Bose gas with fixed magnetization features one, two,
or three critical temperatures depending on the balance between the Zeeman populations of the sample. The

4
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M. i g 0.2 M
N N

Figure 1. Normalized critical temperatures t, (orange-red), t; (blue—green) t_; (purple-white) as a function of the normalized
population in the my = 0 state and the normalized total magnetization M /N = (N;; — N_;)/N.

a) < b) r=n c) =1
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Figure 2. Normalized critical temperatures t, (red), t; (blue) and ¢_; (green) as a function of the normalized magnetization M/N in the
three regions: (a) y < 7, (b) ¥y = nand (c)y > 7. The crosses correspond to the case M = 0 and t; = t_;, while the dot to the SP case,
when the three critical temperatures coincide. The roman numbers indicate the different magnetic phases of the condensate: (I)
magnetized BEC, (II) axisymmetric BEC, (III) transverse magnetized BEC, (IV) polar BEC and (V) spinor BEC.

presence of three different critical temperatures gives rise to a number of different phases of the condensed part
of the spinor gas. In particular, for T, . > T > Ty, T, . we have that only the mp = +1 component is
condensed, therefore we label this phase as magnetized BEC (I). Wheninstead T; ., T_; . > T > Ty . both the
mr = land mg = —1 components are condensed, and we label this phase as axisymmetric BEC (I1). The case in
which T ., Ty, > T > T_;, corresponds to a situation when the mr = 0 and mp = 1 components are
condensed,therefore this phase corresponds to transverse magnetized BEC (III). When Ty . > T > T, ., T_; .
only the mp = 0 state is condensed and we have a polar BEC (IV), whilewhen T, , T, T_;,. > T all the spin
components are condensed and therefore this phase corresponds to a spinor BEC (V). In figure 2 we report the
different phases as a function of the total magnetization of the system for the three different cases of y > 7,

v = nand~y < 7. In case of zero magnetization (n = 0) we havethat T, . = T ; .. The SPstate (n = v = 0,
indicated as a dot in figure 2) is the only one for which the three critical temperatures coincide and thereisa
direct transition from normal gas to spinor BEC.

3. Exploring the phase diagram

Experimentally, it is possible to access the different thermodynamic phases of a spin-1 Bose gas by adjusting the
populations in the three states and changing the temperature of the sample, as it was done in [28]. A different
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method, that we employ in this work, is to use a spin-selective trapping potential that induces a ‘synthetic
magnetization’. This allows us to control the thermodynamic properties of the system and explore the phase
diagram without the need of changing the populations in the three spin components. This method opens up the
possibility of performing isothermal quenches across the different thermodynamic phases, with the additional
benefit that the process can be reversible.

Details about our experimental sequence and methods can be found in [33]. In brief, we load 87Rb atoms
froma 3D MOT into a bichromatic crossed dipole trap made by two lasers with wavelengths \; = 1064 nm and
A, = 1550 nm. At the beginning of the evaporation, the atoms are evenly distributed among the three Zeeman
states of the F = 1 ground state. This means that the total magnetization M is zero (within our experimental
error bars). Since no coherences are present in the system, this state is the SP = (N/3, N/3, N/3) state. We then
start the evaporative cooling process, that equally removes atoms from the three Zeeman states, thus preserving
the magnetization and the symmetry of the state at every temperature. In other words, in our experiment we
preserve the SP state at every temperature. We stop the evaporation at different times, corresponding to different
final temperatures in the range 250—0 nK (with 0 nK we indicate a BEC with no measurable thermal
component). The trapping frequencies at the end of the evaporation, i.e. when we have a pure BEC, are
27 X (284;284;60) Hz. For each temperature, we let the system thermalize and equilibrate for 5 s, longer than
reported in previous experimental works [24, 28]. This time is needed to ensure that any spin dynamics in the
system has evolved towards its equilibrium state. To detect each component separately, we switch off the
trapping potential and we let the atomic cloud fall during a time of flight of 30 ms. During this time, we apply a
magnetic field gradient that spatially separates the three Zeeman substates. This allows to image the three clouds
independently and to fit each of them using independent routines, extracting the temperature, the number of
atoms and the condensate fraction.

3.1. Synthetic magnetization
As it can be observed in figure 2, the SP state would normally feature a single critical temperature and the sample
would undergone a one-step transition from normal gas to spinor condensate (V). However, for trapped
samples, it is possible to induce a ‘synthetic magnetization’ also for the SP state by selectively acting on the
external trapping potential of the three spin components.
Let us consider the Hamiltonian for an SP state (y = 1 = 0) with spin-selective trapping potentials:
H= Z Emp T el — 1N (18)
mp, 1
A way to achieve such configuration is to use a dipole trap with elliptical polarization, indeed for alkali atoms, in
case of large detunings and negligible saturation, the dipole potential is given by [34]

U() =

2 2 P 1 — P
mel (24 Beprmr g”mF]I(r), (19)

3 3
2 AZ,sz Al le

with cthe speed of light, I the atom decay rate, I(r) the intensity profile of the laser, gr the Landé factors, w; and
w, the frequencies of the D, and D, atomic transition, A pand A, pthe corresponding detunings of the laser
light and P the laser polarization (P = 0 for linear polarizations and P = =1 for o™ polarizations). Clearly, in
case of o polarized light the same laser beam produces a different potential for the three spin states, while a
linearly polarized or unpolarized light produces a potential that is not state dependent. In case the polarization of
the light is either 0 or 0, the corresponding energy spectra are

Ej=gr—n=¢ci—nFnH (20a)
Eyr=ceor — =26y — (20b)
E r=e f—pn=¢g7—pxi (20¢)

where it is apparent that the difference in the three trapping potentials acts as if there was a synthetic
magnetization in the system. Indeed for large detunings the shift of the trapping potential for the my = 1 state
with respect to the potential for the mp = 0 state is with very good approximation opposite to the shift for the
mp = —1 state. Therefore, by controlling the polarization of the light from circular to linear—or not defined—
we can control the synthetic magnetization and access different regions of the phase diagram. In our experiment,
we achieve this by rotating the quantization axis of the system.

In the absence of any compensation field, in our setup there is a small horizontal magnetic field B, ~ 0.13 G.
Our trapping lasers propagate also in the horizontal plane and the one at 1064 nm have an excess of
polarization of ~15%. At the beginning of the evaporation, we adiabatically ramp the current in a pair of vertical
coils arranged in Helmholtz configuration, that sets the magnitude of the vertical magnetic field B,. Therefore,
by increasing the current in the Helmholtz coils we rotate the direction of the magnetic field. Accordingly, the
quantization axis of the system rotates from horizontal to vertical (see the inset in figure 3), and the polarization

6
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Figure 3. Absolute value of the difference between the trap depth for atoms in the mp = +£1 state and atoms in the myz = Ostateasa
function of the applied magnetic field for our trapping laser and particular experimental conditions. The insets illustrate qualitatively
how the rotation of the quantization axis of the system affects the trapping potential. When the external magnetic field is directed
almost vertical, the polarization of the light is no longer well defined and the trapping potential becomes spin-independent.

mg=1 mg=0 mg=-1
oL
=
'_
0 1 2 3 3 50 1 2 3 4 50 1 2 3 4 5
B, (G)

Figure 4. Measured condensate fraction for the three spin components N,,;;. o, as a function of the temperature and the applied vertical
magnetic field B,. Each data point corresponds to the average of at least three experimental runs. The condensate fractions are
measured from independent bimodal fits performed on atomic clouds separated in time of flight by a magnetic field gradient. The
white arrow indicates the value of B, for which we observe an anomalous reduction of the number of atoms in the mr = 1 component.

of the light changes from elliptical to undefined. In other words, P in equation (19) goes from a finite value to
zero and therefore U goes from being spin-dependent to be spin-independent. In figure 3, we plot the difference
|AU4| = fjasafunction of the applied magnetic field B,, calculated using equation (19) with our experimental
parameters. The difference in trap depth goes from a maximum of ~25 nK when the magnetic field is horizontal,
to zero when the quantization axis is almost vertical. In our experiment, the dipole potential becomes state
independentwhen B, > 3G.

3.2. Experimental results
In figure 4 we show the measured condensed fractions of the three spin components N, as a function of the
temperature of the system and the applied magnetic field B,. At 210 nK, which is the highest temperature shown,
we have ~5 x 10*atoms in each spin component. As we proceed with the forced evaporation towards lower
temperatures, the number of atoms progressively decreases. At 50 nK we have ~1.5 — 2 x 10*atoms in each
spin component. We observe that for low magnetic fields the three components condense at different
temperatures, while for higher values of B, the three critical temperatures coincide. At =3 G (white arrow) we
observe an anomalously low number of atoms in the mr = 1 component. The origin of such feature is not
completely clear, however our trapping laser at 1064 nm is intrinsically modulated in amplitude at some specific
frequencies. The spectrum contains a peak at ~20 MHz that at this value of the magnetic field could induce two-
photon transitions to an s-wave bound state located 24.37 MHz from the atomic threshold [35]. The process is
similar to the one studied in [36] and its detailed study will be the subject of future works.

For low values of B,, where we observe three different critical temperatures, we have the highest difference
between the three trapping potentials and therefore the highest value of the synthetic magnetization. As the

7



10P Publishing

NewJ. Phys. 21 (2019) 043024 D Benedicto Orenes et al

i (nK)
24.0 2.3 1.0 0.4

200-E)]
180
160
140
120
100
80
60
40
20

Total Magnetization

BEC Magnetization

<Synthetic magnetization I

T (nK)

B, (G) B, (G)

Figure 5. (a) Total measured magnetization of our spinor Rb sample for different values of the temperature and of the vertical
magnetic field B,. (b) The same but for the magnetization of the condensate fraction of the sample M,. The upper horizontal axis
indicates the value of the calculated trapping depth difference 7 as a function of the applied magnetic field B,, as in figure 3. The roman
numbers indicate the different regions of the phase diagram. The vertical arrow indicates the magnetic field value for which we detect
lower atom number in the mp = 1 state.

temperature is decreased, the first atoms to condense are those in the my = 1 state, therefore realizing the
magnetized BEC phase (I). In this phase the magnetization of the condensate fraction is indeed

M, = (N1p — N_10) /> Ny..0 = 1. Further decreasing the temperature, the atoms in the mnr = 0 condense,
realizing a transverse magnetized BEC (III), where 1 > M, > 0. Atlower temperatures, also the atoms in the

mp = —1 condense and we enter the spinor condensate phase (V). The difference between T; .and Ty . is larger
than the difference between Tj .and T_; . even if the difference in the trapping potentials is the same. This is due
to the mean-field potential exerted by the atoms already condensed that ‘flattens’ the potential for the non-
condensed atoms, an effect not included in the non-interacting theory.

As we increase the field, we rotate the quantization axis of the system and we therefore reduce the synthetic
magnetization. We observe that the critical temperature T} . progressively decreasesuntil T, , = Ty = T, .at
23 G. This corresponds to the situation in which the quantization axis of the system is almost completely
vertical, and the trapping potential becomes effectively spin-independent. In this regime we observe the direct
transition from the normal gas to spinor BEC.

Itis important to remark that for every value of B, the total real magnetization of our spinor gas is always
zero, as shown in figure 5(a). Within our error bars, the system as a whole, i.e. accounting for the condensed and
non-condensed parts of the system, remains unmagnetized and the SP state is conserved. As discussed, the use of
the spin-selective potential allows us to generate a synthetic magnetization that manifests itself in the onset of
different magnetic phases for the condensed part of the sample, as shown in figure 5(b). By changing the
direction of the external magnetic field from horizontal to vertical and by controlling the temperature of the
sample, we are able to explore the whole phase diagram reported in the central panel of figure 2. Increasing B,
corresponds indeed to decreasing the (synthetic) magnetization and therefore to moving from right to left in
figure 2(b).

4. Conclusions and outlook

In this work, we presented the non-interacting thermodynamic theory of a trapped spin-1 Bose gas. We
classified the different magnetic phases of the condensed part of the system, and we derived analytic expressions
for the critical temperatures of the three Zeeman substates T,,,, .. We proposed a method to induce a synthetic
magnetization in these systems using a spin-dependent trapping potential, and we presented a simple way to
control such potential combining static magnetic fields and optical traps made with elliptically polarized light. In
addition, we demonstrated experimentally that controlling the synthetic magnetization we were able to explore
the phase diagram of a spin-1 Bose gas using an atomic sample with total zero magnetization. The extension of
the technique presented in this work opens new exciting possibilities to study out-of-equilibrium physics in
ferromagnetic spinor gases after a sudden (isothermal) quench of the synthetic magnetization, a situation that
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remains unexplored in the burgeoning field of quenched spinor BECs, that is attracting increasing interest both
theoretically [37, 38] and experimentally [39].
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