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Abstract
We study the thermodynamic properties of a spin-1 Bose gas across the Bose–Einstein condensation
transition.We present the theoretical description of the thermodynamics of a trapped ideal spin-1
Bose gas andwe describe the phases that can be obtained in this system as a function of the temperature
and of the populations in the different spin components.We propose a simple way to realize a
‘syntheticmagnetization’ that can be used to probe the entire phase diagramwhile keeping the real
magnetization of the systemfixed.We experimentally demonstrate the use of suchmethod to explore
different phases in a samplewith zero totalmagnetization. Ourwork opens up newperspectives to
study isothermal quenching dynamics through differentmagnetic phases in spinor condensates.

1. Introduction

Spinor Bose gases and spinor Bose–Einstein condensates (BECs) are characterized by the fact that their
constituent particles have an internal degree of freedom: their spin. For example, in alkali atoms if the total spin
of the atoms is F andmF denotes itsmagnetic quantumnumber, the different Zeeman states of one hyperfine
manifold coexist in such systems. Concerning spinor BECs, the combination ofmagnetic ordering and
superfluiditymakes them interesting systems to study phenomena involving spontaneous symmetry breaking
[1, 2], spin superfluidity [3], vortex dynamics [4], or collectivemagnetic excitations [5]. Of particular interest are
the understanding of spin dynamics and the characterization of the ground states properties of these systems,
which are determined by collisional processes [6]. Collisions between the different internal states of the atoms
allow spin-changing collisions that have been studied in detail in [7–10]. These collisions can notably be
employed to generate spin squeezing [11–13], that can be used to overcome the quantum shot noise limit
[14–18]. Spinor dynamics was also studied in two dimensional systems [15], and in the presence of periodic
potentials and across the superfluid toMott insulator transition [19].

Here, we focus on spin-1 bose gases, and in particular on alkali atoms in the hyperfine F=1 state, where the
threemagnetic Zeeman substatesmF=1, 0,−1 coexist. Spin-1 gases can display ferromagnetic or
antiferromagnetic character depending on the sign of the spin-dependent contact interaction term

p= -[ ( )]c a a m4 32
2

2 0 , where aF are the s-wave scattering lengths for the two allowed spin collisional
channels F=0 and F=2, andm is the atomicmass [20]. The rotational symmetry of s-wave collisional
processes (provided that dipolar interactions are negligible) implies that the totalmagnetization of the system,
defined as = -+ -M N N1 1withN±1 the populations in themF=±1 Zeeman substates, is a conserved
quantity. Extensive work has been done to study the phases andmean-field ground states of both ferromagnetic
[20–24] and antiferromagnetic [25–27] spin-1 condensates.

While the ground state properties of spinor Bose gases have attracted substantial interest, their finite
temperature behavior has not been investigated thoroughly. The additional internal degree of freedommakes
these systems richer than single component Bose gases, and a large number of different thermodynamic phases
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can be observed. To date, only the thermodynamics of antiferromagnetic systems has been studied, where step-
wise condensation of the spin components was observed as a function of the initialmagnetization and the
externalmagnetic field [28].

In this work, we study the thermodynamics of a spin-1 Bose gas using the relevant non-interacting theory for
an ideal trapped gas, extending thework presented in [29].We classify the differentmagnetic phases of this
system, and demonstrate that it is possible to induce a ‘syntheticmagnetization’ by exploiting a spin-dependent
trapping potential.We use suchmethod to experimentally explore the phase diagramof a symmetric polar (SP)
Bose gas of 87Rb, which is characterized by zero totalmagnetization and equal population of the three spin states

= =+ -N N N0 1 1.We show that ourmethod can be used to realize highlymagnetized condensates while keeping
the totalmagnetization of the system to zero.

Due to their rich phase diagram, spinor Bose gases have recently been promoted as an optimal system to
study non-equilibriumdynamics. For example thermal quenches were used to cross over the BEC transition
[30, 31], andmicrowave dressing allowed to operate selectively on the Zeemen energy levels [32]. Ourwork
opens newpossibilities in performing isothermal quenches across different phases using the synthetic
magnetization, amethod that could be exploited in future experiments to study out-of-equilibriumphysics in
spinor systems.

This paper is organized as follows: in section 2we present the non-interactingmodel for a spin-1 Bose gas,
highlighting the presence of up to three critical temperatures and classifying the correspondingmagnetic phases.
In section 3, we describe ourmethod to experimentally generate the syntheticmagnetization, we present the
details of our experiment and the results on the experimental exploration of the phase diagramof the 87Rb SP
Bose gas. Finally, section 4 is devoted to the conclusions.

2. Theory of ideal spin-1Bose gases

In this section, we present the theory describing the condensation dynamics of an F=1 ideal Bose gas within the
grand canonical ensemble formalism.We extend the theory presented in [29] to themore general situationwhen
not only the total atomnumber and themagnetization isfixed but also the number of atoms in themF=0
Zeeman component.Wewill give analytical expressions for the critical temperatures andwewill classify the
differentmagnetic phases that can be realizedwith this kind of systems.

Let us consider an ideal, trapped, dilute spin-1 Bose gas in the presence of amagnetic field. In the case of
alkali atoms, the effect of a non-zeromagneticfieldB along the ẑ direction, which sets the quantization axis, can
be expressed analytically through the Breit–Rabi formula [23]. The contribution to the total energy of the system
can be decomposed into linear and quadratic parts » - -E pMB qN BZeeman 0

2, with m=p gI B, and

m= + ´( ) ( )q g g E h16 71.75 HzI JB
2 2

hfs /G2 for 87Rb atoms, where gJ, gI are the gyromagnetic ratios of
the electron and nucleus, Ehfs is the hyperfine energy splitting for zeromagnetic field,μB is the Bohrmagneton
andwe skipped constant terms. The linear contribution is irrelevant as it is proportional to themagnetizationM
which is a constant ofmotion. The quadratic part is of themain importance in the lowest order approximation,
even for a realistic system composed of interacting atoms. The presence of the spin-mixing collisional processes
makes the linear part of this effect irrelevant for the dynamics. In otherwords, the chemical equilibrium required
by the spin-changing collisional processes ñ + - ñ « ´ ñ∣ ∣ ∣1, 1 1, 1 2 1, 0 implies that the effective chemical
potentials of the individual species in the condensate are constrained by the relationμ1+μ−1=2μ0. The
consequence of this is that condensing at afixedmagnetization has the same effect as condensing under the effect
of an effective externalmagnetic field. Therefore, the appliedmagnetic field can be viewed as an effective
magnetization of the sample.

Given these preliminary considerations, theHamiltonian of a trapped spin-1 ideal Bose gas can bewritten as

å e m h g= - - -


  ( )H n N M N , 1
m l

l m l
,

, 0

F

F

where   e w w w= + + l l ll x x y y z z , =


( )l l l l, ,x y z and a= =a ( )l x y z0, 1, 2 ,... , , . In the aboveHamilto-
nian, the chemical potentialμ, the linear Zeeman shift η, and γ are Lagrangemultipliers that enforce all the
constrains in our system i.e the conservation of the total number of atoms = å  N nm l m l, ,F F

, themagnetization
= å  M m nm l F m l, ,F F

, and the population of theN0 state = å N nl l0 0, . The Zeeman energy is included in the
Lagrangemultipliers. In other words, the Lagrangemultipliers are shifted by the non-zeromagnetic field, i.e.
h h + pBz and g g + qBz

2. The energy spectra for the three spin components are therefore

e m h= - -  ( )E a, 2l l1,

e m g= - -  ( )E b, 2l l0,

2

New J. Phys. 21 (2019) 043024 DBenedictoOrenes et al



e m h= - +-
  ( )E c. 2l l1,

Assuming equal trapping energies el for all three Zeeman components, it is clear that a state with the lowest
energywill be determined by the interplay between the externalmagnetic field parametrized by γ and the effect
offixedmagnetization parametrized by η.Wewill distinguish two limits for non-negativemagnetization: (a)
γ>η, whenE0 is the lowest energy state; (b) γ<η, when the lowest energy state isE1. Using the above
Hamiltonian, we canwrite the grand canonical partition function of the system as

å åX = =m h g
b-



  ( )Q z z z Q, where e 3
N M N

N M N
N M N

N M N
n

E n

, ,
, , , ,

mF l

mF l mF l

0

0
0

0

,

, ,

and b = k T1 B with kB being the Boltzmann constant andT the temperature. The particular fugacities are
= = =m

bm
g

bg
h

bhz e z e z e, , . According to the rules of grand canonical formalism,we can derive the ensemble
average population

b
= -

¶ X
¶

=
-

b

b

-

-






 ( )n
E

z

z

1 ln e

1 e
, 4m l

m l

m
E

m
E,

,
F

F

F
mF l

F
mF l

,

,

inwhich the effective fugacities are = = =m h m g m h-
-z z z z z z z z z, ,1 0 1

1. In the thermodynamic limit, following
the standard derivationwe canwrite the condensate fraction in themFZeeman component as

º =
-=

 ( )N n
z

z1
5m m l

m

m
,0 , 0F F

F

F

while the number of thermal atoms in each component can be expressed


å b w

º @
¹




( ¯ )
( ) ( )N n g z

1
, 6m

l
m l m,th

0
, 3 3F F F

where w w w w=¯ ( )x y z
1 3 and g3(x) is the Bose function.

2.1. In the largemagneticfield limit whenγ>η
First, wewill focus on the limit of γ>η, i.e. when the energy associated to the quadratic Zeeman effect
dominates over themean-field energy associated to thefixedmagnetization. In this regime it is themF=0
component that condenses first, leadingmathematically toμ→−γ, z0→1 and  g h

-z z z1
1 ,  g h-

- -z z z1
1 1. The

number of thermal atoms in each Zeeman state reads



z
b w

=( ) ( )
( ¯ )

( )N T a
3

, 70,th 3

b w
= g h

-

( )
( )

( ¯ )
( )N T

g z z
b, 71,th

3
1

3

b w
= g h

-

- -

( )
( )
( ¯ )

( )N T
g z z

c, 71,th
3

1 1

3

where ζ(3) is the Euler–Riemann zeta function and the number of condensed atoms areN±1,0→0 and
= -( ) ( )N T N N T0,0 0 0,th . Following the arguments in [29], thefirst critical temperatureT0,c for themF=0

state is defined by = ( )N N T c0 0,th 0, which gives

w z
=

⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )k T N

3
, 8cB 0, 0

1 3

because the number of atoms in themF=0 component isfixed.
The second phase transition occurs when η→γ. At this point it is themF=1 componentwhich condenses,

leading to the following relations for the number of thermal atoms:



z
b w

=( ) ( )
( ¯ )

( )N T a
3

, 90,th 3



z
b w

=( ) ( )
( ¯ )

( )N T b
3

, 91,th 3

b w
= g

-

-

( )
( )

( ¯ )
( )N T

g z
c91,th

3
2

3

and the number of condensed atomsN0,0?1,N−1,0?1 and = -( ) ( )N T N N T1,0 1 1,th . The second critical
temperatureT1,c is defined as

3
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w z
=

- +⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )k T N N M

2 3
. 10cB 1, 0

1 3

The third phase transition occurs when γ→0. Assuming that γ=q+γz as above, the transition is
possible when γz→−q and then one can define the third critical temperatureT−1,c for themF=−1 as

w z
=

- -- ⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )k T N N M

2 3
. 11cB 1, 0

1 3

Notice that when the value ofmagnetization is zero thenT1,c=T−1,c and bothmF=1 andmF=−1
components condense at the same temperature.Moreover, in the symmetric case forN0=N/3 the three
components condense simultaneously. In addition, the second and third phase transition can be defined also
when η→−γ and then the role ofmF=1 andmF=−1 components exchange. This case corresponds to
negative values ofmagnetization.

2.2. In the lowmagneticfield limitwhen g h<
In the case when the effect offixedmagnetization dominates it is themF=1 component that condenses first,
leading toμ→−η and themathematical relations among fugacities z1→ 1,  h g

-z z z0
1 , = h-

-z z1
2, the

number of thermal atoms



z
b w

=( ) ( )
( ¯ )

( )N T a
3

, 121,th 3

b w
= h g

-

( )
( )

( ¯ )
( )N T

g z z
b, 120,th

3
1

3

b w
= h

-

-

( )
( )

( ¯ )
( )N T

g z
c, 121,th

3
2

3

the condensate fractions -N N, 00,0 1,0 and the sharp grow of theN1,0(T) value above the critical point. The
first critical temperatureT1,c for themF=1 state can be defined as

w z
=

- +⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )k T N N M

2 3
. 13cB 1, 0

1 3

Themagnetization of condensed atoms is zero atT=T1,c, but it starts growup aboveT1,c. The second phase
transition occurs when η→γ andN0,0?1. The second critical temperature in this situation,T0,c can be
defined from the constraint of the number of atoms in themF=0 component

w z
=

⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )k T N

3
. 14cB 0, 0

1 3

AtT0,c themagnetization of condensed atoms is already non-zero but still some thermal atoms contribute in
order to take into account itsfixed value



z

b w
= +

- g
-

( )
( ) ( )

( ¯ )
( )M N T

g z3
. 15c1 0,

3
2

3

The third phase transition takes placewhen γ→0 as we consider the limit q→ 0.Now, themF=−1 starts to
condense. The third critical temperatureT−1,c can be defined as

w z
=

- -- ⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )k T N N M

2 3
. 16cB 1, 0

1 3

What ismore interesting, one can show that atT−1,c the value ofmagnetization is determined by condensed
atoms only as the contribution of thermal atoms compensate each other :

= -( ) ( )M N T . 17c1,0 1,

An evidence of the third transition is the relativemagnetization of condensed atoms equal to one,
=-( )M T N 1c c c1, which is a characteristic feature of the lowmagnetic field region. The behavior of the three

normalized critical temperatures =t T Tm m c c,F F
, with w z= ¯ ( ( ))T N 3c

1 3 as a function ofN0/N andM/N is
reported infigure 1.

2.3.Magnetic BECphases
From the theoreticalmodel just described, a F=1 spinor Bose gas withfixedmagnetization features one, two,
or three critical temperatures depending on the balance between the Zeeman populations of the sample. The

4
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presence of three different critical temperatures gives rise to a number of different phases of the condensed part
of the spinor gas. In particular, for > > -T T T T,c c c1, 0, 1, wehave that only themF=+1 component is
condensed, therefore we label this phase asmagnetized BEC (I).When instead > >-T T T T,c c c1, 1, 0, both the
mF=1 andmF=−1 components are condensed, andwe label this phase as axisymmetric BEC (II). The case in
which > > -T T T T,c c c1, 0, 1, corresponds to a situationwhen themF=0 andmF=1 components are
condensed,therefore this phase corresponds to transversemagnetized BEC (III).When > > -T T T T,c c c0, 1, 1,

only themF=0 state is condensed andwe have a polar BEC (IV), while when >-T T T T, ,c c c1, 0, 1, all the spin
components are condensed and therefore this phase corresponds to a spinor BEC (V). Infigure 2we report the
different phases as a function of the totalmagnetization of the system for the three different cases of γ>η,
γ=η and γ<η. In case of zeromagnetization (η=0)we have that = -T Tc c1, 1, . The SP state (η=γ=0,
indicated as a dot infigure 2) is the only one forwhich the three critical temperatures coincide and there is a
direct transition fromnormal gas to spinor BEC.

3. Exploring the phase diagram

Experimentally, it is possible to access the different thermodynamic phases of a spin-1 Bose gas by adjusting the
populations in the three states and changing the temperature of the sample, as it was done in [28]. A different

Figure 1.Normalized critical temperatures t0 (orange–red), t1 (blue–green) t−1 (purple–white) as a function of the normalized
population in themF=0 state and the normalized totalmagnetization = -+ -( )M N N N N1 1 .

Figure 2.Normalized critical temperatures t0 (red), t1 (blue) and t−1 (green) as a function of the normalizedmagnetizationM/N in the
three regions: (a) γ<η, (b) γ=η and (c) γ>η. The crosses correspond to the caseM=0 and t1=t−1, while the dot to the SP case,
when the three critical temperatures coincide. The romannumbers indicate the differentmagnetic phases of the condensate: (I)
magnetized BEC, (II) axisymmetric BEC, (III) transversemagnetized BEC, (IV) polar BEC and (V) spinor BEC.

5
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method, that we employ in this work, is to use a spin-selective trapping potential that induces a ‘synthetic
magnetization’. This allows us to control the thermodynamic properties of the system and explore the phase
diagramwithout the need of changing the populations in the three spin components. Thismethod opens up the
possibility of performing isothermal quenches across the different thermodynamic phases, with the additional
benefit that the process can be reversible.

Details about our experimental sequence andmethods can be found in [33]. In brief, we load 87Rb atoms
froma 3DMOT into a bichromatic crossed dipole trapmade by two lasers withwavelengthsλ1=1064 nmand
λ2=1550 nm.At the beginning of the evaporation, the atoms are evenly distributed among the three Zeeman
states of the F=1 ground state. Thismeans that the totalmagnetizationM is zero (within our experimental
error bars). Since no coherences are present in the system, this state is the SP=(N/3,N/3,N/3) state.We then
start the evaporative cooling process, that equally removes atoms from the three Zeeman states, thus preserving
themagnetization and the symmetry of the state at every temperature. In other words, in our experiment we
preserve the SP state at every temperature.We stop the evaporation at different times, corresponding to different
final temperatures in the range 250−0 nK (with 0 nKwe indicate a BECwith nomeasurable thermal
component). The trapping frequencies at the end of the evaporation, i.e. whenwe have a pure BEC, are
2π×(284; 284; 60)Hz. For each temperature, we let the system thermalize and equilibrate for 5 s, longer than
reported in previous experimental works [24, 28]. This time is needed to ensure that any spin dynamics in the
systemhas evolved towards its equilibrium state. To detect each component separately, we switch off the
trapping potential andwe let the atomic cloud fall during a time offlight of 30ms.During this time, we apply a
magnetic field gradient that spatially separates the three Zeeman substates. This allows to image the three clouds
independently and tofit each of themusing independent routines, extracting the temperature, the number of
atoms and the condensate fraction.

3.1. Syntheticmagnetization
As it can be observed infigure 2, the SP state would normally feature a single critical temperature and the sample
would undergone a one-step transition fromnormal gas to spinor condensate (V). However, for trapped
samples, it is possible to induce a ‘syntheticmagnetization’ also for the SP state by selectively acting on the
external trapping potential of the three spin components.

Let us consider theHamiltonian for an SP state (γ=η=0)with spin-selective trapping potentials:

å e m= -


  ( )H n N . 18
m l

m l m l
,

, ,

F

F F

Away to achieve such configuration is to use a dipole trapwith elliptical polarization, indeed for alkali atoms, in
case of large detunings and negligible saturation, the dipole potential is given by [34]

p
w w

=
G +

D
+

-

D

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )U

c Pg m Pg m
Ir r

2

2 1
, 19F F

F

F F

F

2

2, 2
3

1, 1
3

with c the speed of light,Γ the atomdecay rate, I(r) the intensity profile of the laser, gF the Landé factors, w1 and
w2 the frequencies of theD1 andD2 atomic transition,Δ1,F andΔ2, F the corresponding detunings of the laser
light andP the laser polarization (P= 0 for linear polarizations and P=±1 forσ± polarizations). Clearly, in
case ofσ polarized light the same laser beamproduces a different potential for the three spin states, while a
linearly polarized or unpolarized light produces a potential that is not state dependent. In case the polarization of
the light is eitherσ+ orσ−, the corresponding energy spectra are

e m e m h= - = -    ˜ ( )E a, 20l l l1, 1, 0,

e m e m= - = -   ( )E b, 20l l l0, 0, 0,

e m e m h= - = - - -
   ˜ ( )E c, 20l l l1, 1, 0,

where it is apparent that the difference in the three trapping potentials acts as if therewas a synthetic
magnetization in the system. Indeed for large detunings the shift of the trapping potential for themF=1 state
with respect to the potential for themF=0 state is with very good approximation opposite to the shift for the
mF=−1 state. Therefore, by controlling the polarization of the light from circular to linear—or not defined—
we can control the syntheticmagnetization and access different regions of the phase diagram. In our experiment,
we achieve this by rotating the quantization axis of the system.

In the absence of any compensation field, in our setup there is a small horizontalmagnetic field B 0.13h G.
Our trapping lasers propagate also in the horizontal plane and the one at 1064 nmhave an excess ofσ+

polarization of;15%.At the beginning of the evaporation, we adiabatically ramp the current in a pair of vertical
coils arranged inHelmholtz configuration, that sets themagnitude of the verticalmagnetic fieldBz. Therefore,
by increasing the current in theHelmholtz coils we rotate the direction of themagnetic field. Accordingly, the
quantization axis of the system rotates fromhorizontal to vertical (see the inset infigure 3), and the polarization

6
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of the light changes from elliptical to undefined. In other words, P in equation (19) goes from afinite value to
zero and thereforeU goes frombeing spin-dependent to be spin-independent. Infigure 3, we plot the difference

hD =∣ ∣ ˜U 1 as a function of the appliedmagnetic fieldBz, calculated using equation (19)with our experimental
parameters. The difference in trap depth goes from amaximumof;25 nKwhen themagnetic field is horizontal,
to zerowhen the quantization axis is almost vertical. In our experiment, the dipole potential becomes state
independent whenBz�3G.

3.2. Experimental results
Infigure 4we show themeasured condensed fractions of the three spin components Nm ,0F

as a function of the
temperature of the system and the appliedmagnetic fieldBz. At 210 nK, which is the highest temperature shown,
we have;5×104 atoms in each spin component. Aswe proceedwith the forced evaporation towards lower
temperatures, the number of atoms progressively decreases. At 50 nKwe have;1.5−2×104 atoms in each
spin component.We observe that for lowmagnetic fields the three components condense at different
temperatures, while for higher values ofBz the three critical temperatures coincide. At;3 G (white arrow)we
observe an anomalously lownumber of atoms in themF=1 component. The origin of such feature is not
completely clear, however our trapping laser at 1064 nm is intrinsicallymodulated in amplitude at some specific
frequencies. The spectrum contains a peak at;20MHz that at this value of themagnetic field could induce two-
photon transitions to an s-wave bound state located 24.37 MHz from the atomic threshold [35]. The process is
similar to the one studied in [36] and its detailed studywill be the subject of future works.

For low values ofBz, wherewe observe three different critical temperatures, we have the highest difference
between the three trapping potentials and therefore the highest value of the syntheticmagnetization. As the

Figure 3.Absolute value of the difference between the trap depth for atoms in the = m 1F state and atoms in themF=0 state as a
function of the appliedmagnetic field for our trapping laser and particular experimental conditions. The insets illustrate qualitatively
how the rotation of the quantization axis of the system affects the trapping potential.When the externalmagnetic field is directed
almost vertical, the polarization of the light is no longerwell defined and the trapping potential becomes spin-independent.

Figure 4.Measured condensate fraction for the three spin components Nm ,0F , as a function of the temperature and the applied vertical
magnetic fieldBz. Each data point corresponds to the average of at least three experimental runs. The condensate fractions are
measured from independent bimodal fits performed on atomic clouds separated in time of flight by amagnetic field gradient. The
white arrow indicates the value ofBz for whichwe observe an anomalous reduction of the number of atoms in themF=1 component.
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temperature is decreased, thefirst atoms to condense are those in themF=1 state, therefore realizing the
magnetized BEC phase (I). In this phase themagnetization of the condensate fraction is indeed

= - å =-( )M N N N 1c m1,0 1,0 ,0F
. Further decreasing the temperature, the atoms in themF=0 condense,

realizing a transversemagnetized BEC (III), where 1>Mc>0. At lower temperatures, also the atoms in the
mF=−1 condense andwe enter the spinor condensate phase (V). The difference betweenT1,c andT0,c is larger
than the difference betweenT0,c andT−1,c even if the difference in the trapping potentials is the same. This is due
to themean-field potential exerted by the atoms already condensed that ‘flattens’ the potential for the non-
condensed atoms, an effect not included in the non-interacting theory.

Aswe increase the field, we rotate the quantization axis of the system andwe therefore reduce the synthetic
magnetization.We observe that the critical temperatureT1,c progressively decreases untilT1,c=T0,c=T−1,c at
;3G. This corresponds to the situation inwhich the quantization axis of the system is almost completely
vertical, and the trapping potential becomes effectively spin-independent. In this regimewe observe the direct
transition from the normal gas to spinor BEC.

It is important to remark that for every value ofBz the total realmagnetization of our spinor gas is always
zero, as shown infigure 5(a).Within our error bars, the system as awhole, i.e. accounting for the condensed and
non-condensed parts of the system, remains unmagnetized and the SP state is conserved. As discussed, the use of
the spin-selective potential allows us to generate a syntheticmagnetization thatmanifests itself in the onset of
differentmagnetic phases for the condensed part of the sample, as shown infigure 5(b). By changing the
direction of the externalmagnetic field fromhorizontal to vertical and by controlling the temperature of the
sample, we are able to explore thewhole phase diagram reported in the central panel offigure 2. IncreasingBz
corresponds indeed to decreasing the (synthetic)magnetization and therefore tomoving from right to left in
figure 2(b).

4. Conclusions and outlook

In this work, we presented the non-interacting thermodynamic theory of a trapped spin-1 Bose gas.We
classified the differentmagnetic phases of the condensed part of the system, andwe derived analytic expressions
for the critical temperatures of the three Zeeman substatesTm c,F

.We proposed amethod to induce a synthetic
magnetization in these systems using a spin-dependent trapping potential, andwe presented a simple way to
control such potential combining staticmagnetic fields and optical trapsmadewith elliptically polarized light. In
addition, we demonstrated experimentally that controlling the syntheticmagnetizationwewere able to explore
the phase diagramof a spin-1 Bose gas using an atomic sample with total zeromagnetization. The extension of
the technique presented in this work opens new exciting possibilities to study out-of-equilibriumphysics in
ferromagnetic spinor gases after a sudden (isothermal) quench of the syntheticmagnetization, a situation that

Figure 5. (a)Totalmeasuredmagnetization of our spinor Rb sample for different values of the temperature and of the vertical
magnetic fieldBz. (b)The same but for themagnetization of the condensate fraction of the sampleMc. The upper horizontal axis
indicates the value of the calculated trapping depth difference h̃ as a function of the appliedmagnetic fieldBz, as infigure 3. The roman
numbers indicate the different regions of the phase diagram. The vertical arrow indicates themagneticfield value forwhichwe detect
lower atomnumber in themF=1 state.
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remains unexplored in the burgeoning field of quenched spinor BECs, that is attracting increasing interest both
theoretically [37, 38] and experimentally [39].
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