Consiglio Nazionale delle Ricerche

£

N

-BReM (V1o

o

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

s |

How many paths are needed
for branch testing?

Antonia Bertolino and Martina Marré

Nota Interna B4 - 41
November 1994

How many paths are needed for branch
testing?

Antonia Bertolino

Istituto di Elaborazione della Informazione, CNR, Pisa, Italy. ¢

Martina Marré #.4

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.!

Abstract

The number of test cases needed to achieve branch coverage is important
to evaluate the effort needed to test a given program. However, the bounds
proposed so far in the literature are not effective to measure testing effort.

In this paper, we introduce a new, meaningful lower bound on the number

*Corresponding author’s address: Antonia Bertolino, IEI-CNR, via S. Maria, 46, 56126 Pisa,

Italy. Phone: +39 50 593478 E-mail: bertolino@iei.pi.cnr.it
tResearch performed while this author was at Dipartimento di Informatica, Universita di Pisa,

Italy, and at North Carolina State University, USA.

of test cases needed to achieve branch coverage. We first identify the set
of unconstrained arcs in a ddgraph. This is the minimum set of arcs such
that a set of paths that exercises these arcs covers all the branches in the
program. In general, a path may cover more than one unconstrained arc:
the strategy we use to combine more unconstrained arcs into one path deter-
mines the cardinality of the set of test paths thus obtained, i.e., the bound
we are looking for. It is now commonly accepted that the real problem in
branch testing is to derive an executable set of test paths. Therefore, we will
consider those control flow paths containing a low number of decisions as
being meaningful, since they are more likely to be feasible. We formalize this
notion by introducing the weak incomparability relation between ddgraph
arcs. We then define the new, meaningful bound as the maximum number
of unconstrained arcs in a ddgraph that are mutually weakly incomparable.
Furthermore, we discuss interesting properties of this new bound. We ana-
lyze the bound with respect to Weyuker’s axioms for complexity measures
(Weyuker, 1988), and we show that the bound fits into the testability model

of Bache and Miillerburg (Bache and Miillerburg, 1990).

1 Introduction

Testing a software system consists of executing it over a suitable sample of
input data and then checking if the output produced matches what was expected.
Testing is widely used to enhance software quality (Deutsch and Willis, 1988), and,
specifically, to uncover bugs that are inevitably introduced during the software
development process.

Testing activities consume a considerable fraction of the time and resources
spent to produce a software product (Beizer, 1990), and therefore it would be
useful to have a way to estimate this testing effort. Knowing in advance how mych
effort will be needed to test a given program is essential to the manager to plan
the software process. Ultimately, this would allow to predict a measure, expressed
in dollars, for example, which quantifies the overall cost of the testing phase. Of
course, this is very hard to achieve, due to the multiplicity of factors involved in the
testing process, many of which, e.g tester’s expertise, or even tester’s commitment,
are not objectively measurable. What can be done instead is to derive and to refer
to a range of measures that capture significant, quantifiable attributes (Fenton,
1991) of the testing process, such as the number of tests to be performed, or the
number of errors expected per line of code. The number of tests to be executed is
an important and useful attribute of the entity testing effort.

In order to select a suitable and finite subset of tests from the potentially infinite

execution domain, different strategies can be followed, based on program specifica-

tion or on program structure. Whatever strategy is selected, measures of structural
coverage (Miller, 1984; Rapps and Weyuker, 1985) can be used to predict the num-
ber of test cases needed to guarantee a particular coverage, and to determine how
thorough the executed test cases have been. Therefore, the number of tests to be
executed on a given program can be evaluated by measuring the minimum number
of test paths to be exercised to achieve a certain structural coverage.

In particular, branch coverage, i.e. exercising each edge in the program flow-
graph at least once, is commonly accepted as a “minimum mandatory testing re-
quirement” (Beizer, 1990). Thus, the minimum number of test paths needed to
achieve branch coverage can be regarded in a sense as a measure of the mznznfzum
mandatory effort to test a given program, regardlesé of the particular strategy used
in the selection of test data.

The computation of a lower bound on the number of test cases needed to achieve
branch coverage has already been addressed in the testing literature. McCabe’s
number (McCabe, 1976) is often (mis)used as such a bound. This widely used
approach is however criticizable (Beizer, 1990). In fact, McCabe’s number properly
provides the number of tests needed to satisfy his “structured testing” strategy
(McCabe, 1982) and it is not related to any other structural testing strategy.

Ntafos and Hakimi (Ntafos and Hakimi, 1979) tackled this problem by taking
a network-theory approach. By generalizing Dilworth’s theorem (Dilworth, 1950)
to an arbitrary flowgraph, they state that the number of paths in a minimum path

cover is equal to the maximum number of mutually incomparable edges in the

flowgraph.

Ntafos (Ntafos, 1988) established also an upper bound on the number of tests
required by several structural strategies: in particular for branch testing, this bound
is a function of the number of segments in the program. However, the number of
test cases needed in practice is usually considerably less than what is implied by
this bound.

More recently, Bache and Miillerburg used the hierarchical metrics approach to
solve this problem (Bache and Millerburg, 1990). By using prime decomposition
(Fenton and Whitty, 1986), they show how to calculate the minimum number of
test paths for a family of control flow testing strategies, including branch test%ng.
However, when the minimum number of test paths is used as a lower bound on
the branch testing strategy, the presence of loops in a program reduces the num-
ber of test cases required. This goes against our intuition: the introduction of a
loop would increase the control flow complexity and hence should require a higher
testing effort. This is not the case if we use the minimum number of test paths.
For example, if a program consists of a loop with a very complex body, the theo-
retical minimum number of paths needed to branch-cover it is always one. Hence,
Bache and Miillerburg conclude that branch testing is “insufficient” (Bache and
Millerburg, 1990). While this unquestionably follows from the use of the mini-
mum number of test cases as a measure of the testability of a program, branch
testing is in practice among the more widely used strategies (Yates and"Malevris,

1989). Hence, the use of this bound implies that one of the most used strategy is

insufficient.

In conclusion, the earlier development of measures for the number of test paths
required to achieve branch coverage has not taken into account the expected use
of this number in practice. Thus, a different, more useful approach should be
taken to count the number of test cases needed for branch testing a program. We
believe that a clear specification not only of what attribute is being measured, but
also of why it is being measured must be stated prior to the definition of such a
measure. Correspondingly, in this paper we introduce a new method to evaluate a
new, meaningful lower bound on the number of test cases needed to achieve branch

#
coverage.

We argue that the set of test paths that should be planned to satisfy the branch
coverage criterion is not the mathematical minimum set, whose cardinality would be
obtained as in (Bache and Millerburg, 1990) or in (Ntafos and Hakimi, 1979), but
it is a meaningful set. By meaningful we mean both corresponding to a presumed
usage of the program and, most importantly, feasible. In fact, it is now commonly
accepted that the real problem in branch testing is to derive an ezecutable set of test
paths (Hedley and Hennell, 1985): some recent work (Yates and Malevris, 1989)
has given statistical evidence to the very intuitive notion that paths with a low
number of predicates are more likely to be feasible. This agrees with the belief that
it is better to test many simple paths than a few complicated ones (Beizer, 1990).

We introduce here the following notions. We use a particular flowgraph called

ddgraph to represent a program’s control flow structure. Given a ddgraph G =

(V, E), there exists a minimum set of arcs, the set UE C E of unconstrained arcs
(Bertolino, 1993), with the property that a set of paths which exercises them covers
all the branches in the program. Hence, of course, the number of test cases needed
to achieve branch coverage is < |UE|. However, for an arbitrary ddgraph, an entry-
exit path may, in general, cover more than one unconstrained arc: the strategy by
which we combine together more unconstrained arcs into one path affects both
the properties and the cardinality of the set of test paths thus obtained. We can
minimize the number of test paths by combining into each path the largest number
of unconstrained arcs. However, this may not be meaningful from a practical point
of view. Instead, we shall consider meaningful those paths containing a low nunﬁ)er
of decisions. In particular, such paths do not combine together unconstrained arcs
requiring to enter different loops (obviously excluding the case of nested loops),
and if a loop is entered, then it will be iterated just once. In our approach, we
capture this intuitive notion of combining unconstrained arcs to form meaningful
paths within a rigorous, mathematical framework by introducing the notion of
weak incomparability. The latter, enlarging the notion of incomparability between
arcs, used in (Ntafos and Hakimi, 1979), allows us to formally state the notion of
meaningfulness of test paths introduced above.

In the next Section, we set some preliminary background. In Section 3 we
introduce our bound by intuitively defining what we count and discussing its rela-
tionship with earlier work. In Section 4 we formally define the Byranch bound and

outline a computation methodology. In Section 5 we evaluate the metric according

to axiomatic properties provided in the literature (Weyuker, 1988) and we show the
relation between our approach and Bache and Millerburg general method. Finally,

we give conclusions and suggest future developments in Section 6.

2 Preliminary Background

In this section, some basic notions used through the paper are briefly introduced.

More material on flowgraphs can be found in (Hecht, 1977).

2.1 Ddgraphs

A program structure is conveniently analyzed by means of a directed graph, called
flowgraph, that gives a graphical representation of the program control flow. A
directed graph or digraph G = (V, E) consists of a set V of nodes or vertices, and a
set E of directed edges or arcs, where an arc e = (T'(¢), H(e)) is an ordered pair of
adjacent nodes, called Tail and Head of e, respectively. We say that e leaves T'(e)
and enters H(e). If H(e) = T(¢'), e and ¢’ are called adjacent arcs. For a node n
in V, indegree(n) is the number of arcs entering and outdegree(n) the number of
arcs leaving it. The digraph G’ = (V', E') is a subgraph of a digraph G = (V, E) if
E'C FE and H(e),T(e) € V' C V for each arce € E.

A path P of length ¢ in a digraph G is a sequence P = e, €y, ...,€,; Where
T(eiy1) = H(e;) for ¢ = 1,...,¢ — 1. P is said to be a path from e; to ¢, or
from T(e;) to H(e,). A subpath P’ of P is a sequence P' = e, ..., ¢;,, where

{31,232} € {1,...,q}. The path of length 0 (empty sequence of arcs) is the empty

path. An arc e reaches an arc e’ (a node n reaches a node n’) if there exists a
path in G from e to e’ (from n to n’). On the contrary, two arcs (two nodes)
are incomparable if there does not exist a path in the ddgraph containing both of
them, i.e., if each of these arcs (nodes) does not reach the other. A set S of arcs
(nodes) is said an incomparable arc (node) set if any two distinct arcs (nodes) in S
are incomparable.

A path P in a digraph G is simple if all its nodes are distinct. A path P =
€1, €z..., €4 is a cycle if T(e1) = H(e,y). A simple cycle is a cycle in which all nodes,
except the first and the last, are distinct. An acyclic digraph is a digraph that has
no cycles. #

A program control flow may be mapped onto a flowgraph in different ways.
In this paper, we use a flowgraph representation called ddgraph (for decision-to-
decision graph), which is particularly suitable for the purposes of branch testing. In
fact, each arc in a ddgraph directly corresponds to a program branch; thus, program

branch coverage is immediately measured in terms of ddgraph arc coverage. The

following is a formal definition of ddgraph.

Definition 1 Ddgraph

A ddgraph is a digraph G = (V, E) with two distinguished arcs eq and e; (the
unique entry arc and the unique exit arc, respectively), such that any other arc in
E is reached by eo and reaches e, and such that for each node n € V, n # T(eo),
n # H(ex), (indegree(n) + outdegree(n)) > 2, while indegree(T(eo)j’ = 0 and

outdegree(T(ep)) = 1, indegree(H(ex)) = 1 and outdegree(H(er)) = 0.

Figure 1: G..

In Figure 1 we present the ddgraph G., with distinguished arcs eg and ey4.

A ddgraph node can be associated to a decision (a program point at which
the control flow diverges) or a junction (a program point at which the control low
merges). A ddgraph arc is associated with a strictly sequential set of program state-
ments uninterrupted by either decisions or junctions, i.e., a sequence of program
statements not containing alterations of the control flow. However, in some cases,
an arc is introduced that does not correspond to a program segment, but never-
theless represents a possible course of the program control flow (e.g., the implicit

ELSE part of an IF statement).

10

2.2 Unconstrained Arcs

We use the relations of dominance and implication (elsewhere called inverse dom-
inance or post-dominance) between the arcs of a ddgraph. Intuitively, an arc e;
dominates another arc e; if any path from the entry arc to e; must pass through

arc e;.

Definition 2 Dominance
Let G = (V,E) be a ddgraph with distinguished arcs eo and ex. An arc e;

dominates an arc e; if every path P from entry arc eg to e; contains e;.

By applying the dominance relation between the arcs of a ddgraph G, we obfain
a tree (whose nodes represent the ddgraph arcs) rooted at ep. This is called the
dominator tree DT(G). For each pair (e;,e;) of adjacent nodes in the dominator
tree, e; = Parent(e;) is the immediate dominator of e;. The immediate dominator
e; of an arc e; is a dominator of e; with the property that any other dominator of
e; also dominates e;. Note that each arc (different from eg) has just one immediate
dominator.

Next, we introduce the “dual” relation of implication between two arcs in a
ddgraph. Intuitively, an arc e; implies another arc e; if each path from arc e; to

the exit arc must pass through arc e;.

Definition 3 Implication
Let G = (V, E) be a ddgraph with distinguished arcs eo and ex. An arc e; implies

an arc e; if every path P from e; to exit arc ex contains e;.

11

By applying the implication relation between the arcs of a ddgraph G, we obtain
a tree (whose nodes represent the ddgraph arcs) rooted at e;. This is called the
implied tree IT(G). For each pair (ej,e;) of adjacent nodes in the implied tree,
e; = Parent(e;) is the arc immediately implied by e;. An arc e; is immediately
implied by an arc e; if e; implies e; and any other arc that is implied by e; is also
implied by e;. Note that each arc (different from ex) is immediately implied by just
one arc.

Dominance and implication allow us to identify a subset of ddgraph arcs which
is very useful for branch testing: the set of unconstrained arcs (Bertolino, 1993).
The fundamental property of unconstrained arcs is that a path set that coverg'all
the unconstrained arcs of a ddgraph also covers all the arcs in the ddgraph, and the
unconstrained arcs form the minimum set of arcs with that property. This property

is proved in (Bertolino, 1993). Let us introduce the definition of unconstrained arc.

Definition 4 Unconstrained Arcs
An arc e, is unconstrained if e, dominates no other arc and is implied by no

other arc in G.

In other words, an arc e in a ddgraph G is unconstrained if for any other arc e’
in G there is at least one path from e, to e, containing e’ and not containing e.

We can immediately find the set of unconstrained arcs by using the dominator
tree and the implied tree of a ddgraph G (Bertolino, 1993). In fact, by definition,

we can obtain the set UE(G) of unconstrained arcs of G as DTL(G) N ITL(G),

12

where DT L(G) is the set of leaves of DT(G) and ITL(G) is the set of leaves of
IT(G).

Thus, for the ddgraph G., we have:

DT L(Ger) = {e2, €3, €4, €6, €7, €3, €11, €12, €13, €14},

ITL(Gez) = {eo, €1, €2, €4, €5, €6, €7, €10, €11, €12}

and then the set of unconstrained arcs of Ge, is:

UE(GCI) = DTL(GG,;) N ITL(GC;,;) = {62, €4,€g6,€7, €11, 612}.

2.3 Path Covers ¥

Branch testing, which requires to exercise every program branch at least once,
is commonly accepted as the “minimum mandatory testing requirement” (Beizer,
1990). A set of paths such that each branch in the program is covered by at least

one path in the set is called a path cover.

Definition 5 Path Cover
Let G = (V, E) be a ddgraph. A set of paths p = {Py,..., P,} is a path cover for

G if for each arc e € E there ezists at least one path in p containing e.

In particular, a path cover p for a ddgraph G is called a minimum path cover
if there is no path cover g’ for G with! |p| < |p|- A path cover p = {Pi,..., P,} is

called a simple path cover if for 7 € {1,..,n}, P; is a simple path.

1The cardinality of a set S, denoted by |S|, gives the number of elements in S.

13

By definition, a path cover satisfies the branch testing criterion (of course, pro-
vided that the paths in the path cover are executable). And, by the fundamental
property of unconstrained arcs, a set of paths which covers the unconstrained arcs

of a ddgraph is a path cover.

3 The Problem and Related Work

How many test cases should be planned to achieve branch coverage in practical
software development? This question, addressed in this paper, is an important one,
because managers and testers need such a bound to plan their work. In fact, very
often are measures of coverage used to evaluate testing thoroughness, and therefore
the number of test cases needed to achieve branch coverage is useful to estimate
the testing effort needed, as an important part of the development effort.

In this section, we first discuss earlier work in the evaluation of a lower bound on
the number of test cases needed for branch coverage. After showing why proposed
measures are not useful from a practitioner’s viewpoint, we introduce our new,
meaningful bound at an intuitive level.

Several years ago, McCabe (McCabe, 1976) proposed the use of the cyclomatic

number v(G) of the program flowgraph G = (V, E), with

v(G) = |E| - V] +2,

14

not only to measure the structural complexity of the program considered, but also
as the basis for a testing methodology. Indeed, v(G) gives the number of maximal
linearly independent paths in a flowgraph G, i.e., every path in G' can be obtained
by a linear combination of v(G) independent paths in a basis set. Specifically,
McCabe’s number gives a lower bound on the number of test cases needed for
his structured testing strategy (McCabe, 1982). However, this number is often
(mis)used (Beizer, 1990) as a lower bound on the number of test cases needed for
branch-testing a program.

This is not exactly the number we are looking for. Consider for example a
simple program (Figure 2A) consisting of a number r of cascading ifs. Throﬁgh
direct inspection, we can see that a total of two test cases are needed to achieve
branch coverage, but v(G) is r+1. In his paper (McCabe, 1976), McCabe considered
two cascading ifs and explained why the cyclomatic number (yielding 3) and the
“actual complexity” 2 (yielding 2) differ. This happens because the program we
actually test by exercising only two paths can be represented by a less complex
flowgraph. This flowgraph is obtained by removing one decision, for example as
in Figure 2B. However, this argument is not sufficient to convince us that r +1
test cases should be planned in practice to branch-test the program in Figure 2A.
Branch testing should cover all of the possible branches in the program, and this

can be done by planning just two test cases.

2McCabe defines actual complezity as the number of paths tested to achieve branch coverage.

15

o
€
1 3
(1
3 €4
€
g

A . B

Figure 2: Number of test cases: Cascading ifs

Some years later, the problem of finding a path cover with the minimum number
of paths has been addressed by Ntafos and Hakimi (Ntafos and Hakimi, 1979), using
a network-theory approach. In their paper, they generalized Dilworth’s theorem
(Dilworth, 1950) for acyclic digraphs to arbitrary digraphs. That theorem states
that the minimum number of paths in a path cover for a digraph G is equal to the
cardinality of the largest incomparable node set of G. They also give two methods
for finding this number. This number provides a sound mathematical minimum
bound. However, we argue that this is not the real bound on branch coverage.
This problem is further discussed after introducing a more recent approach, that
coincides with Ntafos and Hakimi with respect to branch coverage.

A unified theory has been introduced by Bache and Millerburg (Bache and

Millerburg, 1990) to measure testability, the number of test cases needed not only

16

for branch testing, but for a wide family of control-flow based test strategies. They
applied the results of Fenton-Whitty theory of program decomposition (Fenton and
Whitty, 1986). The building blocks of the well-known Fenton-Whitty approach to
control flow analysis are the prime flowgraphs, e.g. the IF-THEN-ELSE prime, the
WHILE-DO prime, the 2-EXIT-LOOP prime, etc... Any flowgraph that is not a
prime can always be created from the repeated sequencing and nesting of primes.
Conversely, every flowgraph has a unique decomposition into a hierarchy of primes,
which describes how the flowgraph is built by sequencing and nesting primes. Con-
sequently, we can construct “hierarchical measures” by simply assigning a value
m(G) to each prime and then defining how to calculate m(G) for the sequenging
and nesting functions. Using the prime decomposition, the resulting function m
then extends to a function over all flowgraphs.

By using prime decomposition, Bache and Miillerburg compute the minimum
number of test cases required to satisfy various structural testing strategies (Mc-
Cabe’s structured testing and branch testing strategies, among others). Thus, they
define the number of test cases needed to satisfy each test strategy considered on
each of the primes in a basic set. Then, applying the decomposition property of
flowgraphs, they define how to calculate testability for n flowgraphs in sequence
and for flowgraphs nested onto each of the basic primes. Let us observe that the
number they thus calculate to measure the testability for the branch testing strat-
egy is exactly equal to the bound set by Ntafos and Hakimi in their generalization

of Dilworth’s theorem. This i§ so since their definition of testability for branch

17

testing strategy for each prime considered is consistent with Ntafos and Hakimi’
notion of incomparability.

For example, let us consider again the program in Figure 2A, obtained by se-
quencing r IF-THEN-ELSE primes. For branch coverage, each IF-THEN-ELSE
prime requires two test cases, and the sequencing function for r flowgraphs Fy, ..., F.
holds the maximum value of testability among the flowgraphs in sequence. Hence,
the number of test cases needed would be two, as one would intuitively think.

However, even though this measure is correct from a theoretical point of view,
we believe that problems arise in practice if we want to branch-test programs with
loops. To see why, it suffices to consider as an example their measure of testa,bﬁity
for a flowgraph obtained by nesting a flowgraph of arbitrary complexity onto a
WHILE-DO prime. The testability always gives one, i.e. only one test case is
required for branch coverage. More generally, when a set of tests of minimum
cardinality is used to measure program testability, the presence of loops will reduce
the number of required test cases, without reflecting the number of cases needed in
practice.

To summarize, we have examined existing branch coverage measures, and we
have concluded that they do not fulfill their purposes, mainly because they represent
a mathematical measure without an associated “testing” meaning, i.e., they have
not been developed taking into account the use of this number in practice. The real
problem is to determine the smallest number of test cases we must plan in order to

measure testing effort.

18

A B

Figure 3: Number of test cases: Simple programs with loops
8

To introduce our approach, let us now consider the two simple cases of a WHILE-
DO prime and an IF-THEN-ELSE prime both nested onto a WHILE-DO prime
(Figures 3A and 3B). How many test cases should we plan for them? McCabe would
say three for both cases, and Bache and Millerburg (with Ntafos and Hakimi) would
say one for both cases.

We say that planning one test case is sufficient for the flowgraph in Figure 3A. In
fact, a test path which exercises the inner WHILE-DO loop would cover any other
arc (note that this is the only unconstrained arc for this ddgraph). And, conversely,
it must be necessarily exercised at least once to achieve total branch coverage. So,
in this example, we agree with the theoretical minimum number. Instead, for the
flowgraph in Figure 3B, we say that two test cases should be realistically planned:

one covering the THEN part and the other covering the ELSE part of the nested

19

IF-THEN-ELSE statement. It is true that only one path would suffice in theory,
but this in practice would require finding a test input that forces the control-flow
execution to enter the WHILE-DO loop at least twice, passing once by the THEN
part and once by the ELSE part. This path may be feasible, but possibly it may be
not (i.e., no input data might exit to execute this path). More pragmatically, we
would say that two sets of test input should be found, one to exercise the THEN
part and another one to exercise the ELSE part. And, deriving the test inputs for
these two simple paths, or determining if either of them is unfeasible, is certainly
easier than for a complex path iterating the cycle.

In the rest of this paper, we shall present a measure of the testing effort bdsed
on meaningful properties that a set of test paths that achieves branch coverage
should satisfy. Let us first describe our approach intuitively: given a ddgraph
G = (V, E), there exists a minimum set of arcs, the set UE of unconstrained arcs,
which guarantees branch coverage. Then, of course, the number of test cases needed
to achieve branch coverage is < |UE|. However, for an arbitrary ddgraph, an entry-
exit path may, in general, cover more than one unconstrained arc: the strategy by
which we combine together more unconstrained arcs into one path affects both the
properties and the cardinality of the set of test paths thus obtained. Trying to
combine into each path the more unconstrained arcs would minimize the number
of test paths. However, this may not be meaningful from a practical point of view,

as Figure 3B illustrates.

20

The intuitive notion of combining unconstrained arcs to form meaningful paths
is captured within a rigorous, mathematical framework by introducing the notion
of weak incomparability. The latter, enlarging the notion of incomparability be-
tween arcs (used by Ntafos and Hakimi), allows us to formally state the notion of
meaningfulness of test paths introduced above: we shall consider meaningful those
paths containing a low number of decisions. For example, a meaningful path does
not combine together unconstrained arcs belonging to two cycles in sequence, nor
unconstrained arcs belonging to a same cycle but that can be covered by a same
path only by entering the cycle at least twice.

Obviously, for this bound to be meaningful, we should know how to calculatié it.
A method that exploits Ntafos and Hakimi results is introduced in the next section.
Moreover, in Section 5, we also relate our bound to Bache and Miillerburg’ theory
and we show how we can apply their method to measure testability according to

our “meaningful” branch coverage strategy.

4 The Byrqn, Bound

4.1 Definition of the G.4,.x Bound

In this section we formalize the notions introduced above. We are looking for
the cardinality of a set of paths that is useful to guarantee branch coverage. It
must be a meaningful set of minimal cardinality. For this purpose, we look for

a set of paths that covers the set of unconstrained arcs; in fact, the fundamental

21

property of unconstrained arcs guarantees that this set of paths covers every branch
in the ddgraph. More precisely, we search a set of paths p that groups the set of
unconstrained arcs in a meaningful way; i.e., we assume that a path in p may
cover more than one unconstrained arc, only if some precise conditions are met. In
particular, if a path P € p covers an unconstrained arc e belonging to a cycle, the
path P cannot enter the cycle more than once, and it cannot enter another cycle
in the ddgraph, with the obvious exception of nested cycles.

Now we shall define when two arcs in G cannot be covered by the same path.
In this case we shall call them two weakly incomparable arcs. Intuitively, two arcs

are weakly incomparable if: g

1. each of them can be covered by a simple path, but they both cannot be

covered by the same simple path, or

2. one of them can be covered by a simple path and the other cannot be covered

by a simple path, or

3. they belong to the same cycle in G and one reaches the other only by entering

the cycle at least twice, or
4. they belong to different (not nested one within the other) cycles in G.
For example, in the ddgraph G., of Figure 1:
e arcs e; and e4 are (weakly) incomparable (according to point 1);

e arcs e; and e; are weakly incomparable (according to point 2);

22

® arcs e;; and e;; are weakly incomparable (according to point 3), but are not

incomparable: one reaches the other entering the cycle twice;

e arcs e;; and e;3 are not weakly incomparable, since they belong to the same

cycle but e;; reaches e entering the cycle just once;
e arcs e; and e;; are weakly incomparable (according to point 4);

We now define formally this relation with reference to a subset of E, since we

shall use it later on the set of unconstrained arcs to define our Byrancn bound.

Definition 6 Weakly Incomparable
£
Let G = (V,E) be a ddgraph. Let e,e' € AC E and e # €. Arcs e and ¢’ will

be called two weakly incomparable arcs in A if:

e there does not exist a simple path from ey to er in G containing both e and

e, and

e for any (not simple) path which contains both e and €', it is always possible
to derive a subpath containing only one of them that is a path in G from eo

to eg.

Note that if G is an acyclic ddgraph, e,e' € A C E and e # ¢/, then e and €’
are weakly incomparable if and only if they are incomparable.

Now, let us analyze in general how many paths we need to cover all the arcs in
a subset A C E. We are interested in the case A = UE. Let us suppo:se that we

have identified a largest set of weakly incomparable arcs L in A, i.e., any two arcs

23

in L are weakly incomparable, and every arc in A — L is not weakly incomparable
with some arc in L. Then, we can construct a set p of |L| paths, such that each arc
in L is covered by a different path in p. In particular, if A = UE, this set of paths
is a meaningful path cover. A formal definition of a largest weakly incomparable

arc set follows:

Definition 7 Largest Weakly Incomparable Arc Set
Let G = (V,E) be a ddgraph, A C E. LWI(A) is a largest weakly incomparable

arc set for A in G if it is a subset of A satisfying:
o for each e,e’ € LWI(A), e # €, then e and ¢’ are weakly incomparable, #

o [LWI(A)| = maz{|E'|: E' C A and for each e e’ € E', if e # ¢ then ¢ and

¢’ are weakly incomparable}.

Notice that given a ddgraph and a non empty subset of arcs A, there is at
least one largest weakly incomparable set of arcs for A, and possibly it is not
unique. For example, LWI(E); = {e1, ez, eq,¢€6,€r,€11,€12} and LWI(E); =
{e2, €3, €4, €6, €7, €11, €12} are largest weakly incomparable arc sets for E in the dd-
graph G, of Figure 1. LWI(UE) = {ez, €4, €6, €7, €11, €12} is the only largest weakly
incomparable set for UE in Ge..

Now, bringing together the notions of unconstrained arcs and of weakly incom-
parable arcs, we introduce a formal definition of the Byrancn bound, as /the max-

imum number of unconstrained arcs that are mutually weakly incomparable. In

24

other words, this bound considers a different path in a path cover for each arc in

|ILWI(UE)|.

Definition 8 Birqnch
Let G = (V,E) be a ddgraph, UE the set of unconstrained arcs of G. Then

Biranch s defined as the cardinality of a largest weakly incomparable arc set

|LWI(UE)| for UE in G.

For example, Biranch(Gez) = |[LWI(UE)| = |{es, €4, €6, €7, €11, €12} = 6.

4.2 Computation of the Gy.4n.n Bound #.

Now we outline a method to calculate the value of Byranch for a given ddgraph G.

For this purpose, we observe the two following facts.

1. Suppose that there exists a simple path cover for G: p = {Pi,..., P.}. Then,
the minimum number of paths needed to cover all the arcs in UE (and thus all
arcs in G) can be calculated by solving an associated minimum flow problem
(MIN-FLOW)?3. In particular, suppose that we associate a minimum capacity
constraint of value one to each arc in the set UE, and a minimum capacity
constraint of value zero to the arcs in £ — UE. Then, the value of a solution
to MIN-FLOW with those constraints will be the number of arcs in a largest

weakly incomparable arc set for UE.

3We can solve a MIN-FLOW problem in O(|V||E|) time using a simple modification of the

algorithms used to solve the maximum flow problem (Ford and Fulkerson, 1962)

25

2. Now, suppose that a simple path cover for G does not exist. Then, there is
a subset of arcs that can only be covered by visiting a cycle in G (i.e., any
path from eg to e; containing an arc e in this subset is a not simple path).
We can decompose the ddgraph G into a connected digraph G* that contains
only those arcs that can be covered by simple paths, and a set of maximal

connected subgraphs Gy, ..., G, of G that do not contain arcs in G°.

These two facts allow us to design a procedure to calculate the value of Bsranch, by
decomposing a ddgraph G into a “weakly simple” subgraph (i.e., a subgraph having
a simple path cover) and a set of cyclic components. By visiting the ddgraph we gan
identify the arcs that cannot be covered by a simple path. Then, we consider the
subgraph G® of G containing only those arcs that can be covered by simple paths.
We derive the set UE N E%, i.e. the subset of the unconstrained arcs of G which
are arcs in G®. We can calculate the maximum number of weakly incomparable
arcs in UE N E%, by solving an associate MIN-FLOW problem. On the other hand,
we derive the maximal cyclic components Gy, ..., G, of G that are not contained in
G*. Analogously, for each of them we derive the set UE N E;, i.e., the subset of
the unconstrained arcs of G which are arcs in G;. We can calculate the maximum
number of weakly incomparable arcs for the set UE N E; for each G;, by recursively
applying the same procedure. Finally, we just sum the values calculated for every
component of G and obtain the Byranchn corresponding to the ddgraph G./‘Formally:

ILWI(UE)| = |LWI(UE N E®)| + |[LWI({UE N Ey)| + ... + | LIWI(UE N E,)|.

26

Gl G2 &0 Ga
el0

el ell el2

el3

Figure 4: Decomposition of Ge

As an example, let us consider the ddgraph G.; and its decomposition presented
in Figure 4, and A = UE. We have:
UE N E, = {ey}, then [LWI(UEN E,)| = 1;
UE N E, = {e11, €12}, then |[LWI(UE N E;)| = 2;
UENE® = {ey, e6,€7}, then |LWI(UE N E®)| = 3;
In fact, we already know that

|ILWI(UE)| = 6.

27

5 Discussion

In this section we discuss the characteristics of the Bironcn bound. We eval-
uate the new bound with respect to Weyuker’s properties (Weyuker, 1988) and
we analyze the relationship between the new bound and the testability numbers
introduced by Bache and Miillerburg (Bache and Millerburg, 1990).

First, we note that our bound can be considered, in some sense, as a measure
of the complexity of a program’s control-flow structure. Therefore, we evaluate the
bound with respect to Weyuker’s axioms (Weyuker, 1988), which are nine desirable
properties that a general software complexity measure should satisfy. These axigms
have been designed as a basis for the wide class of syntactic complexity measures.
In our case, we consider one particular complexity measure: the complexity of the
decision structure of the program. Therefore, some axioms do not apply to this
particular case. Our bound, if regarded as a complexity metric, does not satisfy
Axioms 2 and 9. According to citation (Weyuker, 1988):

Aziom 2: Let ¢ be a nonnegative number. Then there are only finitely many
programs of complezity c.

This property allows to distinguish between a program that performs very little
computation and a program that performs massive amounts of computation, even
though they have the same decision structure. However, in our case Brranch 18
related to branch coverage and then, it only depends on the decision structure

of the program. For example, it is reasonable to associate Biranch = 1 with all

28

programs with sequential control flow.

Axiom 9 reads:

Aziom 9: There exist program segments X and Y such that the complezity of
the code X;Y is greater than the sum of the complezities of X and Y.

Again, we are analyzing the control flow complexity of the program. Then, it
is reasonable to think that the control flow complexity of the program obtained
by sequencing X and Y is not greater than the sum of the single control flow
complexities of the segments X and Y.

However, By anch satisfies the properties that a reasonable measure of the control
flow complexity of a program should satisfy. Therefore, we conclude that our botind
is a good metric of the complexity of a program’s control flow structure.

Second, we observe that our approach can be considered as a new test cov-
erage strategy, which we will refer to as “meaningful branch testing”. Then, it
should be possible to compute the testability for this strategy through Bache’s and
Miillerburg’s method. To do this, we need to know how to compute Byrancn for
the primes considered as well as for sequencing and nesting. For each prime, we
state that Byranch is given by the sum of two values: ¢+ [. Informally, in the largest
weakly incomparable set of unconstrained arcs whose cardinality is given by Branch,
¢ corresponds to the number of arcs in the set that are incomparable and ! to the
number of remaining arcs that are weakly incomparable, but not incomparable.

Thus, Table 1 defines ¢ and [for the basis set of primes considered by Bache

and Miillerburg. In the table, P; corresponds to the trivial flowgraph; Do to the

29

P, | Dy | Dy |Cp{Dy| D3| Dy Lo

1,012020|»,01}0,10,10,1]2,1

Table 1: ¢,! values for primes

Fy; . F,

¢ | max(c(F), ..., c(Fr))

U IE) + o+ 1(F)

Table 2: Sequencing function
IF-THEN prime; D; to the IF-THEN-ELSE prime; C, to the CASE-OF-n pri?ne;
D; to the WHILE-DO prime; D3 to the REPEAT-UNTIL prime; D4 to the EXIT-
FROM-MIDDLE prime and L, to the 2-EXIT-LOOP prime. Thus, for instance,
for the IF-THEN-ELSE prime: ¢ = 2 and [= 0, yielding Bsrancs = 2+ 0 =2, and
for the WHILE-DO prime: ¢ = 0 and | = 1, yielding Birancs =0+ 1=1.

Table 2 defines the sequencing function for flowgraphs Fj, .., F,. The compu-
tation is performed separately for the values of ¢ and ! and then Biranch is derived
by adding the two values together. Thus, for example, if an IF-THEN-ELSE prime
and a WHILE-DO prime are combined in sequence, then ¢ = maz(2,0) = 2,
I=0+4+1=1, yielding Bsrancs =2+ 1=3.

Table 3 defines the nesting function for each prime considered. For example,
if we nest two flowgraphs F; and F; onto an IF-THEN-ELSE prime, tﬁe value of

c is the sum of the values ¢; and ¢; for the two nested flowgraphs, and the value

30

Do(F) Dy(Fy, Fy) Cu(Fyy..., Fy)

c|c(F)+1|c(F1)+c(F2) | e(F)+ ... + c(Fn)

L (R | WF)+UE) | (F) + ..+ I(F,)

D,(F) Dy(F) Dy(Fy, F) Ly(Fr, Fa)

c 0 c(F) c(F1) o(F)+1

U IF)+e(F) | (F)+1 | I(F) + I(F) + (Fy) | I(Fy) + U(F) + o(Fy)

Table 3: Nesting function é

of [is the sum of the values I; and /; for the two nested flowgraphs. If we nest a
flowgraph F' onto a WHILE-DO prime, the value of ¢ is zero (which is equal to the
value of ¢ for the WHILE-DO prime) and the value of ! is equal to the value of
¢ + Iy for the nested flowgraph.

Thus, applying Bache’s and Miillerburg’s method, we can now recursively com-

pute the Byrancn bound from the decomposition tree of any flowgraph. 4,

4Note that the sequencing and nesting functions given in Table 2 and Table 3 respectively, do
not apply to the trivial flowgraph. For it, Table 1 must be considered instead, i.e., the sequencing

or nesting of P onto any flowgraph G does not change the value of ¢ and I of the flowgraph G.

31

6 Conclusions and Further Work

In this paper we have analyzed the problem of establishing a lower bound on
the number of test cases needed for branch testing. This is an important problem
for various reasons. On one hand, measures of structural coverage are often used
to evaluate testing thoroughness. On the other hand, branch coverage is commonly
accepted as a minimum mandatory testing requirement. Then, a lower bound on
branch testing can be useful to predict how much effort should be expected to be
necessary for testing a given program.

We have shown that existing bounds on branch coverage are not adequate, sigxce
the use of this number in practice has been ignored during the development of the
bounds. Then, by combining the notions of unconstrained arcs and of weakly in-
comparable arcs, we have introduced a new, meaningful lower bound on the number
of test cases to be planned for branch coverage. The dominance and implication
relations establish two partial orderings over the arcs of a ddgraph G, represented
by the trees DT(G) and IT(G), respectively. These relations allow us to identify
the unconstrained arcs, that is,'the minimum subset of the set of ddgraph arcs
such that a set of paths covering the arcs is a path cover for the ddgraph. More-
over, the notion of weak incomparability captures the intuitive idea of combining
unconstrained arcs to create meaningful paths.

Recent work (Yates and Malevris, 1989) has given statistical evidepce to the

intuitive notion that the lower the number of predicates in a path, the more likely

32

it is for the path to be feasible. Our bound, by covering at most one (outermost)
cycle with a path, takes into account this notion. Thus, the bound addresses
the real problem in branch testing: to find an executable path cover. We have
also provided a method to compute the new bound. We have evaluated the By,qncn
bound according to Weyuker’s axioms (Weyuker, 1988), a set of desirable properties
that a general software complexity measure should satisfy. We have concluded that
our bound can also be considered a good metric for the complexity of a program
control-flow structure. We have also analyzed the relation between our approach,
considered as a new, different testing strategy, and the unified testability theory
of Bache and Miillerburg. We have then shown how the Biqncn bound can alsg'be
computed recursively from the decomposition tree of any flowgraph.

Our future research will be devoted to extending the measure of meaningful
bounds to other structural testing strategies. Calculation of the bound on other
testing strategies would require finding a minimum set of entities notion analogous
to the unconstrained arcs for branch testing, which ensures the coverage criterion
considered. On the other hand, the notion of weak incomparability should be
generalized. This notion must represent the concept of meaningfulness in each
particular case. In other words, for each testing strategy, an abstraction of the
properties of the relevant entities must be identified. This abstraction will be used
to select the subset of entities of interest. We shall try to extend these notions
to include a complete family of lower-bounds on the number of test cases needed

to achieve various kinds of coverages, for example data flow cover or predicate

33

condition cover. Finally, we intend to generalize these results to integration testing
as well. We believe that it is also important to evaluate the performance of the

new bounds through experimentation.

Acknowledgements

The authors wish to express their gratitude to Dr. Boris Beizer for his precious

comments and suggestions.

34

References

R. Bache, R., and M. Miillerburg, Measures of Testability as a Basis for Quality
Assurance, Software Engineering Journal, 86-92, March 1990,

Beizer, B., Software Testing Techniques, Second Edition, Van Nostrand Reinhold, New
York, 1990.

Bertolino, A., Unconstrained Edges and Their Application to Branch Analysis and
Testing of Programs, Journal of Systems and Software, 20 (2), 125-133 (1993).

Deutsch, M. S., and Willis, R. R., Software Quality Engineering: A Total Technical
and Management Approach, Prentice-Hall, Englewood Cliffs, New J ersey, 1988.

Dilworth, R. P., A Decomposition Theorem For Partially Ordered Sets, Annals Math.,
51 (1), 161-166 (1950).

Fenton, N. E., Software Metrics: a Rigorous Approach, Chapman & Hall, London,
1991.

Fenton N. E. and Whitty, R W. , Axiomatic Approach to Software Metrication through
Program Decomposition, Computer Journal, 29 (4), 329-339 (1986).

Ford, L. R. and Fulkerson, D. R., Flows in Netwoks, Princeton University Press, New
Jersey, 1962.

Hecht, M. S., Flow Analysis of Computer Programs, Elsevier, New York, 1977.

Hedley, D.and Hennell, M. A., The Causes and Effects of Infeasible Paths in Computer
Programs, Proc. of the 8th. Int. Conf. on Software Engineering, London, UK, 259-266,
Aug. 1985.

McCabe, T. J., A Complexity Measure, IEEE Trans. on Software Engineering, SE 2
(4), 308-320 (1976}.

McCabe, T. J., Structured Testing, IEEE Comp. Soc. Press, Silver Spring, Maryland,
1982.

Miller, E. F., Software Testing Technology: An Overview, in Handbook of Software
Engineering, (C. R. Vick and C. V. Ramamoorthy, eds.), Van Nostrand Reinhold
Company, New York, 1984.

Ntafos, S. C., A Comparison Of Some Structural Testing Techniques, JEEE Trans. on
Software Engineering, SE-14 (6), 868-874 (1988).

Ntafos, S. C. and Hakimi, S. L., On Path Cover Problems in Digraphs and Applications
to Program Testing, I[EEE Trans. on Software Engineering, SE-5 (5), 520-529 (1979).

Rapps, S. and Weyuker, E. J,, Selecting Software Test Data Using Data Flow
Information, [EEE Trans. on Software Engineering, SE-11 (4), 367-375 (1985).

Weyuker, E. J,, Evaluating Software Complexity Measures, IEEE Trans. on Software
Engineering, SE-14 (9), 1357-1365 (1988).

Yates, D. F. and Malevris, N., Reducing the Effects of Infeasible Paths in Branch
Testing, ACM SIGSOFT Software Engineering Noftes, 14 (8), 48-54 (1989).

35

