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2Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, Via Cozzi 53, I-20125 Milano, Italy
3Istituto di Fotonica e Nanotecnologia, Consiglio Nazionale delle Ricerche,

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

We present a universal set of quantum gate operations based on exchange-only spin qubits in
a double quantum dot, where each qubit is obtained by three electrons in the (2,1) filling. Gate
operations are addressed by modulating electrostatically the tunneling barrier and the energy offset
between the two dots, singly and doubly occupied respectively. We propose explicit gate sequences of
single qubit operations for Hadamard gate and π/8 gate, and the two-qubit controlled NOT (CNOT)
gate, to complete the universal set. The unswitchable interaction between the two electrons of the
doubly occupied quantum dot is taken into account. Short gate times are obtained by employing
spin density functional theory simulations.

Electron spins confined in semiconductor quantum
dots (QDs) have been employed to implement basis of
increasingly complex angular momentum for quantum
computing [1–4]. In the simplest proposals, a single elec-
tron spin forms the logical basis for single qubit oper-
ations performed via spin resonance [5, 6]. An alter-
native scheme, with logical basis formed from singlet
and triplet states of two electron spins which immunizes
qubits against the dominant error from hyperfine interac-
tions [7–9], requires inhomogeneous static magnetic field
for full single-qubit control. Exchange-interaction only
qubits based on three electron spins removes the need
for an inhomogeneous field as interactions between adja-
cent electron spins suffice for all one and two qubit oper-
ations [4, 10]. A compact variant of the three spin qubit
in (1,1,1) states of three QDs proposed by DiVincenzo
[10] has been recently developed for (2,1) states in dou-
ble QDs, with total spin states belonging to the subspace
S=1/2 and Sz=-1/2 [11–14]. Differently from the (1,1,1)
system, the (2,1) system offers the advantages of higher
protection from hyperfine interactions of the singlet and
triplet state in one of the two dots [7], and compact fabri-
cation - only two dots instead of three [15, 16]. A possible
drawback consists of more constrained interactions, as it
is not possible to tune separately the exchange of the
two electrons sharing the same site with the third elec-
tron spin. In addition, exchange interaction between the
electrons in the doubly occupied dot cannot be effectively
turned off. While a case limited to the first aspect has
been considered in the past [11], the demonstration of a
universal set of quantum logic gates when the inescapable
intra-dot interaction of a realistic QD is included, still
lacks. The single qubit operations proposed in [11] for
extending the ports are incorrect. Universal quantum
computation in an alternative scheme, where spin and
valley degrees of freedom of two electrons in two QDs are
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exploited, has been proposed [17].

Here, we report on a universal set of gates for two
exchange-only qubits in double QDs with fixed intradot
exchange, generated by a Hadamard gate, a π/8 gate
(single qubit operations), and a controlled-NOT (CNOT)
gate based on two qubits. For each gate interaction, se-
quences supplied with operation times are calculated by
employing a genetic algorithms which takes into account
the intradot interaction of the electrons in the doubly oc-
cupied QD. One and two qubits systems are modeled by
effective Hamiltonians and a dynamical evolution opera-
tor is used to find the overall effect of the interactions.
We developed and used a search algorithm to find the in-
teractions sequences. A Spin Density Functional Theory
(SDFT) simulator is used to estimate the parameters of
the effective Hamiltonians, revealing short gate times for
high performances.

I. THE HYBRID QUBIT

The hybrid qubit, whose energy landscape is shown
in Fig.1, is composed of a double QD with two elec-
trons in one QD (left) and one electron in the other QD
(right). Let’s now define the logical basis, enumerating
the possible transitions between the three electrons spin
states that can be induced by manipulations which pre-
serve total spin angular momentum. The Hilbert space
of three electron spins has eight possible spin states:
the total spin eigenstates form indeed a quadruplet with
S = 3/2 and Sz = ±3/2,±1/2 and two doublets each
with S = 1/2 and Sz = ±1/2, where the square of the
total spin is h̄2S(S+1) and the z-component of the total
spin is h̄Sz. The logical qubit space is chosen to be in the
two-dimensional subspace with S = 1/2, Sz = −1/2. We
point out that only states with the same S and Sz can be
coupled by spin independent terms in the Hamiltonian.
The value of the total angular momentum operator S
specifies whether the decoherence free subsystem qubit
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Figure 1. Pictorial representation of the hybrid double quan-
tum dot qubit with three electrostatically confined electrons.
The quantum state |S〉 |↓〉 is pictured.

has leaked; S = 1/2 is unleaked while S = 3/2 is leaked.
The logical basis {|0〉, |1〉} written via Clebsch-Gordan
coefficients is given by

|0〉 ≡ |S〉 |↓〉 , |1〉 ≡

√

1

3
|T0〉 |↓〉 −

√

2

3
|T−〉 |↑〉 (1)

where |S〉, |T0〉 and |T−〉 are respectively the singlet and
triplet states of the pair in the left dot, in combination
with the angular momentum state of the electron spin
localized in the right dot.
The hybrid qubit is described by an Hubbard-like

model that, following the Schieffer-Wolff projection oper-
ator method, could be recast in a spin Hamiltonian [13].
The effective Hamiltonian is expressed as a sum of ex-
change interactions between each pairs of electron spins

Heff ≈ J13S1 · S3 + J23S2 · S3 + J12S1 · S2 (2)

with exchange interactions

J13 ≃
1

E(012) − E(111)
4(t13 − J13

t )2 − 2J13
e

J23 ≃
1

E(102) − E(111)
4(t23 − J23

t )2 − 2J23
e

J12 ≃

(

1

E(201) − E(111)
+

1

E(021) − E(111)

)

4(J12
t )2 − 2J12

e ,

(3)

where E(αβγ) are the energies with α (β) electrons in the
ground state (first excited) of the left dot and γ elec-
trons in the second dot. The parameters tij are the tun-

neling rates, J ij
t account for the occupation-modulated

hoppings, Je are the spin-exchange terms from the en-
ergy level i to j as defined in [18].

Differently from inter-QD interactions governed by
tunable J13 and J23, the intra-QD interaction J12 can
not be effectively controlled. In fact J12 does not depend
on the tunneling rates (see Eq. (3)) whose values can
span several order of magnitudes and strongly control
J13 and J23. We assumed max(J12) = max(J13) = Jmax

and we set a realistic value for J12 = Jmax/2 to model the
control ineffectiveness. The exchange interactions J13(t)
and J23(t) are assumed to have instantaneous turn-on
and turn-off as in [11].

In order to clarify how tunneling rates tij and the en-
ergy detuning ε between the two QDs can control the hy-
brid qubit, a simplified Hamiltonian for an hybrid qubit
as a function of the inter-QD tunneling rates and of the
inter-QD energy detuning is derived, recovering similar
results obtained with the heuristic Hamiltonian in Ref.
[12]. We consider a basis with an intermediated state
|E〉 ≡ | ↓〉|S〉 in addition to the logical states |0〉 and |1〉.
The state |E〉, which has one electron in the left dot and
two electrons in the right dot conserving the same total
angular momentum S2 and Sz, is directly involved in the
physical process that leads to transitions between the two
logical states. Eq. 4 reports the effective Hamiltonian in
the basis {|0〉, |1〉, |E〉} where the inter-QD detuning ε is
introduced.

H3×3 =







− 3
4J12 −

√
3
4 (J13 − J23)

3
8 (J23 − J13 + J12)

−
√
3
4 (J13 − J23)

1
4J12 −

1
2 (J13 + J23) −

√
3
8 (J13 + 3J23 − J12)

3
8 (J23 − J13 + J12) −

√
3
8 (J13 + 3J23 − J12) − 3

4J23 − ε






(4)

H3×3 eigenvalues are reported in Fig. 2 as a function of
ε in three different cases: both tunneling rates are zero;
t13 is on and t23=0 and t23 is on and t13=0. Transitions
from logical state |0〉 to |1〉 can be induced by first set-
ting ε to the avoided crossing between |0〉 and |E〉 when
t23 is switched on (dashed blue curves in the right box)

and then switching t23 on and off. Then, changing ε to
the avoided crossing between |E〉 and |1〉 when t13 is on
(solid red lines in the left box) and pulsing t13 on and off.
The same argument can be applied to induce transition
conversely from logical state |1〉 to |0〉.

In order to obtain the exchange interaction sequences
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Figure 2. Energy levels of Hamiltonian (4) as a function of
detuning ε for three different configurations of the tunneling
rates between the two dots: energy levels of the system when
t13=t23=0 are highlighted in dotted black lines, t13 on and
t23 off in solid red lines and t23 on and t13 off in broken blue
curves. The boxes highlight where the system has to be biased
to maximize J13 (on the left) and J23 (on the right), with
max(J13) = max(J23) ≡ Jmax.

for the three different quantum gates, we developed a
search algorithm similar to the one described in Ref. [19],
which is a combination of a simplex-based and a genetic
algorithms. At each iteration of the search algorithm se-
quences become closer to the global minimum, featuring
a reduced number of exchange steps and minimum inter-
action time per step. The qubit sequences are calculated
under the assumption that a sufficiently high number of
external inputs (electrostatic gates) are available to finely
control the band structure of the double QDs.

II. GATE SEQUENCES FOR HADAMARD AND
π/8 GATES

Single qubit operation sequences are reported in the
following. In Fig.3 we recall the matrix representation
and present the interaction sequences for the Hadamard
and π/8 gates up to a global phase, respectively, calcu-
lated by using our search algorithm. Both gate opera-
tions are implemented by sequences of five steps.

III. GATE SEQUENCES FOR AN EXACT CNOT

When considering two qubits operations, the two most
significant configurations, where the number of inter-
qubit connections is maximized, are reported in Fig.4.

Dropping the eff superscripts, the effective Hamilto-
nian of the couple of hybrid qubit in the K configuration

a)

H =
1√
2

(

1 1
1 −1

)

(5)

0

0.5

1

J 12
 [J

m
ax

]

0

0.5

1

J 13
 [J

m
ax

]

0 1.366 2.49 3.674 4.6

t [h/J
max

]

0

0.5

1

J 23
 [J

m
ax

]

0.866

b)

Rπ/4 =

(

1 0

0 eiπ/4

)

(6)

0

0.5

1

J 12
 [J

m
ax

]

0

0.5

1

J 13
 [J

m
ax

]

0 2.293 3.598

t [h/J
max

]

0

0.5

1

J 23
 [J

m
ax

]

0.791 2.5660.716

Figure 3. Matrix representation and exchange sequence im-
plementing a) Hadamard and b) π/8 gates up to a global
phase. J12, J13 and J23 are plotted as a function of the time
t expressed in units of h/Jmax. Note that the constant inter-
action J12=Jmax/2.

is:

HK
ab = Ha +Hb +HK

int (7)

(for K=A,B) whereHa, Hb are the effective Hamiltonians
of the single qubits a and b, respectively (see Eq. (2)),
and HK

int is the interaction Hamiltonian. When configu-
ration A is considered,

HA
int =

2
∑

i=1

J3aibS3a · Sib , (8)

whereas when K=B

HB
int =

2
∑

i=1

JiaibSia · Sib . (9)
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Figure 4. Couple of hybrid qubits: configurations A and B.
Configurations differ for the orientation of qubit a and, con-
sequentially, for the inter-qubit connections.

The detailed derivation of the two qubit Hamiltonians
is reported in [20]. The qubit gate sequences for exact
CNOT gates with fixed J12=Jmax/2 in both qubits for
the configuration A and B are presented in Fig. 5. These
sequences differs from those reported in Ref. [11] because
ours account for ineffectively controlled interactions J12
and because we provide exacts CNOTs instead of locally
equivalent ones only. Note that the CNOT sequence for
configuration B reported in Ref. [11] provides only a cor-
rect locally equivalent CNOT because the correspond-
ing single qubit operations needed to transform a locally
equivalent CNOT to an exact CNOT are incorrect.

IV. GATE PERFORMANCES

Sequence times are evaluated for each gate by esti-
mating Jmax through a simulator based on Spin Density
Function Theory (SDFT) [21]. For each couple of valleys
of silicon along ∆ crystallographic directions, the simula-
tor solves the Kohn-Sham equations in the Effective Mass
Approximation (EMA) with anisotropic effective masses
for both spin down and spin up populations [22]. When
the eigenstates are obtained, the spin density concentra-
tions are calculated and the effective potentials, namely
the Hartree and the exchange-correlation potentials, are
derived. For the exchange-correlation potential a Local
Density Approximation (LDA) is assumed by using the
parametrization presented in [23]. The total potential is
then calculated self-consistently by solving the Poisson
equation with the applied potentials from the external.
The simulation ends when the error between the poten-
tial of the current iteration and that of the previous one
is under a given tolerance.
To exemplify a realistic condition, we consider a dou-

ble QD created in a Si nanowire featuring a rectangular

CNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






(10)

0 12.885
0

0.5
1

J 1 a 2
a [J

m
ax

]

0 3.325 8.2 10.897 12.885
0

0.5
1

J 1 a 3
a

0 3.519 5.114 6.746 8.336 10.520 12.885
0

0.5
1

J 2 a 3
a

0 12.885
0

0.5
1

J 1 b 2
b

00.5 12.885
0

0.5
1

J 1 b 3
b

0 11.274
0

0.5
1

J 2 b 3
b

0 1.366 2.775 5.639 8.472 
0

0.5
1

J 3 a 1
b

0 2.775 4.607 
0

0.5
1

J 3 a 2
b

t [h/Jmax]

1.366

12.01

12.866

11.2748.336

6.072

6.746

6.608

3.325 8.2

12.880

12.880

12.8855.08 6.398

3.519 5.6395.114

3.712
5.08 5.393

12.258

12.01

9.015

7.901

10.52

9.922 12.397

12.612

7.901 8.472

6.072

Configuration A

0 18.971
0

0.5
1

J 1 a 2
a [J

m
ax

]

0 1.439 18.971
0

0.5
1

J 1 a 3
a

0 1.2 18.971
0

0.5
1

J 2 a 3
a

0 18.971
0

0.5
1

J 1 b 2
b

0 1.677 5.61 13.35615.833 18.971
0

0.5
1

J 1 b 3
b

0 2.613 18.387
0

0.5
1

J 2 b 3
b

0 2.174 5.644 9.092 15.566
0

0.5
1

J 1 a 1
b

0 1.745 5.304 9.54 11.355 18.14
0

0.5
1

J 2 a 2
b

t [h/Jmax]

1.677

1.745 3.305 5.644 13.422

8.794
9.54

13.422 16.715

18.1415.83316.90915.416

18.294

9.092 17.2558.8

16.679

17.255

15.4168.8 12.788

12.95611.4769.6518.8215.546

17.203

18.846

9.651

9.751

8.821

2.66

Configuration B

Figure 5. Matrix representation and exchange sequence for
an exact CNOT operation (up to a global phase) with fixed
J1a2a = J1b2b

= Jmax/2 as a function of time t for both
configurations A and B.
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section with a thickness TSi=15 nm and width W=60 nm
on a thick layer of SiO2 as pictured in Fig. 6. An Al2O3

layer with thickness TAl2O3=40 nm is deposed on the
nanowire and Al gates placed orthogonally to nanowire
direction and separated by dinterGate are used to electro-
statically confine electrons and control the inter-QD tun-
neling rates in the underneath silicon. In order to exploit
quantum states from a single ∆ valley, the valley split-
ting ∆Ev is enhanced to ∆Ev∼ 500 µeV by increasing
the electric field at the Si/Al2O3 interface by polarizing
negatively the back gate. Simulations show that, when
dinterQD ≡ 2dinterGate=40 nm, the maximum effective
interaction Jmax= 7.2 µeV, providing operation times
of tH=2.64 ns and tπ/8= 2.07 ns for the Hadamard and
π/8 gates, respectively. Calculated CNOT gate times are
tACNOT=7.40 ns and tBCNOT=10.9 ns for two qubit config-
uration A and B, respectively. Effects of charge and spin

Figure 6. The single qubit device is modeled as a silicon
nanowire (in green) embedded in an insulator slab (in yellow).
Accumulation gates forming the QDs are highlighted in red
whereas the contacts controlling the inter-QD electrostatic
barriers are shown in blue. The back gate is shown in gray.

noise on the hybrid qubit decoherence in natural silicon
with DC pulsed gating scheme are reported in Ref. [24]
where a fidelity of 99.995% for the z-rotations and 83%
for the x-rotation have been estimated.

V. SUMMARY

We have presented a universal set of quantum gates
for hybrid double quantum dot qubits with realistic non-
vanishing intradot interaction, composed by Hadamard,
π/8 and CNOT gates. By using a versatile search algo-
rithm, feasible interaction sequences have been reported
for each gate by taking into account not switchable in-
teractions between the two electrons confined inside the
same quantum dot. The two principal configurations
have been studied by coupling two qubits. Under such
conditions, we obtain the exact CNOT sequences for real-
istic hybrid qubits in both configurations, including sin-
gle qubit operations. CNOT gate operations times in the
range of 10 ns are predicted by employing SDFT simula-
tions.
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We present the explicit expressions of the effective Hamiltonian models of two interacting hybrid qubits. The total
Hamiltonian model is composed by two free terms describing the two qubits and by an interaction part between the
two.
The free Hamiltonians of the two qubits a and b, written in terms of the creation and annihilation fermionic

operators c†k and ck respectively are given for q ≡ a, b by

Hq = Heq +Htq +HUq
+HJq

, (1)

where terms on the right side are reported in Eqs. (2 - 6) for every pair of spins considered.

Heq =

3q
∑

k=1q ,σ

εkc
†
kσckσ (2)

Htq = t1q3q
∑

σ

(c†1qσc3qσ + h.c.) + t2q3q
∑

σ

(c†2qσc3qσ + h.c.) (3)

HUq
=

3q
∑

k=1q

Uknk↑nk↓ + U1q2q (n1q↑ + n1q↓)(n2q↑ + n2q↓) +

+ U1q3q (n1q↑ + n1q↓)(n3q↑ + n3q↓) +

+ U2q3q (n2q↑ + n2q↓)(n3q↑ + n3q↓) (4)

HJq
= H

(1q3q)
J +H

(2q3q)
J +H

(1q2q)
J (5)

H
(iqjq)
J = −J (iqjq)

e (niq↑njq↑ + niq↓njq↓)− (J (iqjq)
e c†iq↓c

†
jq↑cjq↓ciq↑ + J (iqjq)

p c†jq↑c
†
jq↓ciq↑ciq↓ +

+
∑

kq ,σ

J
(iqjq)
t nkqσc

†
iqσ̄

cjqσ̄ + h.c.). (6)

Heq and Htq describe respectively the single electron energy level of each dot and the tunneling energy. The last two

terms HUq
and HJq

constitute the intra-dot and inter-dot Coulomb interactions. J
(iqjq)
e is the spin exchange term,

J
(iqjq)
p the pair-hopping term and J

(iqjq)
t the occupation-modulated one.

Regarding the configuration A the interaction Hamiltonian is given by the sum of the following terms

Ht = t3a1b
∑

σ

(c†3aσc1bσ + h.c.) + t3a2b
∑

σ

(c†3aσc2bσ + h.c.)

HU = U3a1b(n3a↑ + n3a↓)(n1b↑ + n1b↓) +

+ U3a2b(n3a↑ + n3a↓)(n2b↑ + n2b↓)

HJ = H
(3a1b)
J +H

(3a2b)
J ,

where HJ is defined as in Eq.(6).
Following the same procedure reported in Ref. [1], we calculate the projected Hamiltonian using an appropriate

operator. The effective Hamiltonian, concerning the low energy excitation, appears as the sum of all the exchange
interactions between pairs of spins

Heff =
∑

q=a,b

(J1q3qS1q · S3q + J2q3qS2q · S3q + J1q2qS1q · S2q ) +

+ J3a1bS3a · S1b + J3a2bS3a · S2b . (7)

The effective coupling constants, considering that intra-dot Coulomb energies are larger than all the other contributions
are finally given by

J1q3q ≃
1

∆E1q

4(t1q3q − J
(1q3q)
t )2 − 2J (1q3q)

e

J2q3q ≃
1

∆E2q

4(t2q3q − J
(2q3q)
t )2 − 2J (2q3q)

e
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J1q2q =

(

1

∆E3q

+
1

∆E4q

)

4J
(1q2q)2
t − 2J (1q2q)

e

J3a1b ≃
1

∆E5
4(t3a1b − J

(3a1b)
t )2 − 2J (3a1b)

e

J3a2b ≃
1

∆E6
4(t3a2b − J

(3a2b)
t )2 − 2J (3a2b)

e ,

where the energy differences for qubits a and b are

∆E1a(b)
= E(012,111)(E(111,012))− E(111,111)

∆E2a(b)
= E(102,111)(E(111,102))− E(111,111)

∆E3a(b)
= E(201,111)(E(111,201))− E(111,111)

∆E4a(b)
= E(021,111)(E(111,021))− E(111,111)

∆E5 = E(112,011) − E(111,111)

∆E6 = E(112,101) − E(111,111)

with the different terms defined in Eqs. 8, 9, 10 where we point out that the first (last) three indices inside parenthesis,
0 ≤ i 6= j 6= k ≤ 2, assuming only integer values, denote the number of electrons in each level for qubit a (b).

E(ijk,111) = iε1a + jε2a + kε3a + ijU1a2a + ikU1a3a + kjU2a3a + δi2U1a + δj2U2a +

+ δk2U3a + ε1b + ε2b + ε3b + U1b2b + U1b3b + U2b3b + kU3a1b + kU3a2b (8)

E(111,ijk) = ε1a + ε2a + ε3a + U1a2a + U1a3a + U2a3a + iε1b + jε2b + kε3b + ijU1b2b +

+ ikU1b3b + kjU2b3b + δi2U1b + δj2U2b + δk2U3b + iU3a1b + iU3a2b (9)

E(111,111) = ε1a + ε2a + ε3a + U1a2a + U1a3a + U2a3a + ε1b + ε2b + ε3b +

+ U1b2b + U1b3b + U2b3b + U3a1b + U3a2b (10)

For the second configuration B under study we assume that the energy detuning between the double occupied QDs
is small enough so terms of the Hamiltonian containing tunnelling rates and exchange interactions between energy
levels in different QDs with different indexes (i.e. 1a2b, 2a1b) are negligible. The interaction Hamiltonian terms are
finally given by

Ht = t1a1b
∑

σ

(c†1aσc1bσ + h.c.) + t2a2b
∑

σ

(c†2aσc2bσ + h.c.)

HU = U1a1b(n1a↑ + n1a↓)(n1b↑ + n1b↓) +

+ U1a2b(n1a↑ + n1a↓)(n2b↑ + n2b↓) +

+ U2a1b(n2a↑ + n2a↓)(n1b↑ + n1b↓) +

+ U2a2b(n2a↑ + n2a↓)(n2b↑ + n2b↓)

HJ = H
(1a1b)
J +H

(2a2b)
J

where HJ is defined as in Eq.(6).
Analogously to the previous case, the effective Hamiltonian appears as the sum of exchange interactions:

Heff =
∑

q=a,b

(J1q3qS1q · S3q + J2q3qS2q · S3q + J1q2qS1q · S2q ) +

+ J1a1bS1a · S1b + J1a2bS1a · S2b +

+ J2a1bS2a · S1b + J2a2bS2a · S2b . (11)

The effective coupling constants, under the assumption of larger intra-dot energies with respect to inter-dot ones are
finally given by

J1q3q ≃
1

∆E1q

4(t1q3q − J
(1q3q)
t )2 − 2J (1q3q)

e

J2q3q ≃
1

∆E2q

4(t2q3q − J
(2q3q)
t )2 − 2J (2q3q)

e
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J1q2q =

(

1

∆E3q

+
1

∆E4q

)

4J
(1q2q)2
t − 2J (1q2q)

e

J1a1b ≃ −2J (1A1B)
e

J1a2b = 0

J2a1b = 0

J2a2b ≃ −2J (2A2B)
e ,

where

∆E1a(b)
= E(012,111)(E(111,012))− E(111,111)

∆E2a(b)
= E(102,111)(E(111,102))− E(111,111)

∆E3a(b)
= E(201,111)(E(111,201))− E(111,111)

∆E4a(b)
= E(021,111)(E(111,021))− E(111,111)

with the different terms defined in Eqs. 12, 13, 14.

E(ijk,111) = iε1a + jε2a + kε3a + ijU1a2a + ikU1a3a + kjU2a3a + δi2U1a + δj2U2a + δk2U3a +

+ ε1b + ε2b + ε3b + U1b2b + U1b3b + U2b3b + iU1a1b + iU1a2b + jU2a1b + jU2a2b (12)

E(111,ijk) = ε1a + ε2a + ε3a + U1a2a + U1a3a + U2a3a + iε1b + jε2b + kε3b + ijU1b2b + ikU1b3b +

+ kjU2b3b + δi2U1b + δj2U2b + δk2U3b + iU1a1b + jU1a2b + iU2a1b + jU2a2b (13)

E(111,111) = ε1a + ε2a + ε3a + U1a2a + U1a3a + U2a3a + ε1b + ε2b + ε3b +

+ U1b2b + U1b3b + U2b3b + U1a1b + U1a2b + U2a1b + U2a2b (14)
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