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Abstract We study the topological phase transitions of a Kitaev chain frustrated by the
addition of a single long-range hopping. In order to study the topological properties of the
resulting legged-ring geometry (Kitaev tie model), we generalize the transfer matrix approach
through which the emergence of Majorana edge modes is analyzed. We find that geometric
frustration gives rise to a topological phase diagram in which non-trivial phases alternate with
trivial ones at varying the range of the hopping and the chemical potential. Robustness to
disorder of non-trivial phases is also proven. Moreover, geometric frustration effects persist
when translational invariance is restored by considering a multiple-tie system. These findings
shed light on an entire class of experimentally realizable topological systems with long-range
couplings.

1 Introduction

Topological quantum matter and Majorana quasiparticles have attracted growing interest
from the scientific community. Because of their peculiar properties, Majorana’s excitations
are believed to be relevant for the fault-tolerant quantum computation[1–3], whose realiza-
tion represents a fundamental step toward the implementation of the forthcoming quantum
computers.

Majorana’s states have been predicted to exist as zero-energy edge modes in various
condensed matter systems and some evidences have come from experiments conducted on
proximity-coupled semiconducting nanowires or ferromagnetic atomic chains on a supercon-
ducting substrate [4–6]. These findings suggest that a topological phase can be synthesized
by combining conventional s-wave superconductors with nanostructured materials present-
ing strong spin–orbit interaction and/or magnetic properties. Resorting to an appropriate
fine-tuning of the system parameters, these superconducting heterostructures can exhibit a
topological phase transition, the non-trivial phase being characterized by the emergence of
topological superconductivity.

A minimal model of topological superconductivity has been introduced by Kitaev in
his seminal work [7]. The Kitaev model consists of spinless fermions confined to a one-
dimensional lattice and subject to a p-wave superconducting pairing. In view of its simplicity,
the Kitaev model has become an established paradigm in studying the topological phase
transitions and various generalization of such model have appeared, for example, to describe
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coupled nanowires (e.g., the Kitaev ladder) [8–12]. The generalizations of the Kitaev model
allow to test the robustness of the topological phase with limited computational effort and
are often used to get insights into the response of real devices. Operation of real devices is
often affected by the detrimental effects of impurities or system’s imperfections and thus
an important issue is testing the robustness of the topological phase to these effects. In
order to prove to what extent a topological phase is preserved in the presence of system’s
imperfections, disordered Kitaev models have been studied [13–18]. The outcome of these
studies evidences that the topological phase is essentially immune to a moderate disorder,
which is an expected property of the topological matter.

Recently, extended models of Kitaev chain with finite and infinite range in the hopping
and pairing parameters have been considered [19–22]. While these models are relevant in
mathematical physics, the interest for long-range Kitaev models is mainly motivated by the
fact that they are realizable, at least in principle, in photonic or in cold atoms systems using
the powerful trick of the synthetic dimensions. However, the possibility to implement these
models in condensed matter systems appears to be very challenging.

Despite these general difficulties, in [23] it has been identified a special class of long-
range Kitaev models (the so-called Kitaev tie models) that can be realized in a condensed
matter context. In particular, it has been proposed that the original Kitaev chain model can
be modified to include an additional hopping term with arbitrary range (see Fig. 1), being the
latter situation realizable in flexible ballistic conductors or in chains of iron atoms arranged
to form a legged ring on the surface of a superconducting material with strong spin–orbit
coupling (e.g., lead). While the latter experimental method requires precise positioning of
atoms on a surface by using the same technique and materials used in [6], the former can
be implemented by using single-walled carbon nanotubes where superconducting proximity
effect can be easily implemented [24–26]. Moreover, in order to implement the geometry
required for the realization of a Kitaev tie model, nanotube loops similar to those described
in Ref. [27] can be used. Interestingly, the range of the extra hopping of the Kitaev tie model
is controlled by the diameter of the nanotube loop, which on its turn can be altered by means
of nanomanipulators inside the chamber of a scanning electron microscope (SEM). The latter
technique allows repeatable modifications of the nanotube loop diameter, while maintaining
almost unaffected the remaining device parameters.

According to the aforementioned arguments, the experimental implementation of the
Kitaev tie model appears to be a promising platform to test the interplay between topology
and long-range effects. A preliminary study of these effects has been reported in [23] where
a first indication about the topological phase diagram has been provided. In that context,
the relevant concept of topological frustration has been introduced. Topological frustration
phenomenon shares similarities with the geometric frustration effects which are well known
in magnetism [28]. Despite this analogy, less is known about the geometric frustration on the
topological phase transitions and filling this vacancy represents one of the main goals of this
work. Before proceeding further with the presentation, it is useful to precise the concept of
topological frustration.

It is a known fact that a Kitaev chain with periodic boundary conditions does not
present unpaired Majorana modes, while, when Dirichlet boundary conditions are consid-
ered, unpaired Majorana states may nucleate at the system edges. The above situation is
reminiscent of the fact that a topological system can exhibit unpaired topological states when
an interface with a topologically trivial material (e.g., the vacuum) is created. A topological
system can be subject to a peculiar frustration condition in which a competition between
the presence and the absence of unpaired Majorana states is established. The occurrence of
this peculiar frustration is favored in topological systems with non-trivial lattice connectivity
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and the resulting phenomenon is here referred to as topological frustration. Since the topo-
logical frustration is determined by the lattice connectivity (i.e., by the system’s geometry),
throughout this work we use the notion of geometric frustration as a synonym.

Once the notion of topological frustration has been specified, we observe that a Kitaev tie
model represents the simplest realization of a topological frustrated system. Indeed, a Kitaev
tie, being shaped in the form of a legged ring, realizes an intermediate condition between
a Kitaev ring and a Kitaev chain. Under this condition, unpaired Majorana modes nucleate
or not depending on the number of lattice sites forming the ring. However, once a system
configuration has been assigned, the presence of unpaired Majorana states is hardly antici-
pable. Due to this, a Kitaev tie presents a rich topological phase diagram whose investigation
requires the use of several theoretical tools.

Indeed, the additional long-range hopping of the Kitaev tie model causes the breaking
of the translational invariance and, for this reason, the topological properties of the system
cannot be studied by means of a topological bulk index Q [29]. Thus, alternative approaches
are needed.

In order to characterize topological systems with broken translational invariance (e.g., due
to disorder effects), real space methods based on non-commutative geometry [30] and on the
wavefunction properties [18,31] have appeared in the literature. In particular, the transfer
matrix (TM) method, which is well known in optics [32], has been widely used to study one-
dimensional systems [22,33,34] and is suited to reveal the emergence of localized Majorana
zero-energy states.

In this work, we provide a comprehensive analysis of the topological phase diagram of
a Kitaev tie by using complementary and diverse theoretical tools. In particular, we use a
generalization of the TM method proposed in Ref. [18,31] and adapted to describe systems
hosting long-range hopping terms. Moreover, the energy spectrum analysis, already reported
in Ref. [23], is here complemented by the computation of the Majorana polarization (MP)
proposed in Ref. [35]. All these approaches provide similar topological phase diagrams show-
ing the nucleation of non-trivial regions inside trivial ones when the chemical potential μ and
the parameter d , controlling the hopping range, are varied. Comparing information obtained
by using different techniques, we are able to demonstrate that the topological frustration
strongly perturbs the energy spectrum of the system and the morphology of the topological
phase boundaries reflects this perturbation.

We also show that the topological phases of the Kitaev tie model are robust against the
detrimental effects of disorder. Moreover, in order to study topological frustration effects in
a translational-invariant system, we propose a multiple-tie model in which the topological
phase transitions can be studied by using the bulk invariant, i.e., the Majorana number. In this
context, we demonstrate that topological frustration effects persist even in a translational-
invariant system.

The paper is organized as follows. In Sect. 2, we introduce the Kitaev tie Hamiltonian,
while its topological phase transitions are discussed in Sect. 3. In particular, the transfer
matrix method is discussed in Sect. 3.1, while the Majorana polarization is introduced in Sect.
3.2. A comparison between the topological phase diagrams obtained by using the transfer
matrix method and the Majorana polarization is also presented. In Sect. 4, we investigate
the robustness of the topological phases against the disorder. To this purpose, disordered
realizations of the Kitaev tie model are considered. A translational-invariant topologically
frustrated system is presented in Sect. 5, where a multiple-tie model is investigated. There the
topological phase diagram is obtained by using the Pfaffian invariant. Conclusions are given
in Sect. 6. A comparison between the transfer matrix method, the Majorana polarization and
the spectral analysis is reported in Appendix A. The effect of the long-range hopping strength
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Fig. 1 a Schematic of the Kitaev
tie model. It is obtained by
adding a long-range coupling to
the Kitaev chain. The resulting
system is a legged ring (b), which
admits the tight-binding
description schematized in (c)

and the bulk-edge correspondence for a multiple-tie system are discussed in Appendices B
and C, respectively.

2 The Kitaev tie model

A Kitaev chain perturbed by the addition of a single long-range hopping linking two distant
lattice sites can be rearranged in the form of tie (Fig. 1). The tight-binding Hamiltonian of
the resulting system, which is here referred to as Kitaev tie, is given by:

H = HK + Hd (1)

where HK is the usual Kitaev chain Hamiltonian [7]:

HK =
L−1∑

j=1

(
−tc†

j c j+1 + Δc†
j+1c

†
j + h.c.

)
− μ

L∑

j=1

c†
j c j (2)

written in terms of creation/annihilation fermionic operators c†
j/c j ; t and Δ are the hopping

and the superconducting pairing amplitudes between nearest neighbor sites, while μ > 0 is
the chemical potential; Hd is the knot Hamiltonian linking the two sites d and L − d + 1:

Hd = −td
(
c†
dcL−d+1 + h.c.

)
, (3)

where td is the hopping amplitude linking two distant sites. The range of the extra hopping,
controlled by d , is varied to change the length of the legs (see Fig. 1). A previous analysis
of the Kitaev tie energy spectrum in [23] has already shown a frustration of the system
emerging from a competition between localized edge modes and hybridized modes along the
ring. Moreover, the breakdown of translational invariance symmetry leads to a system with
no bulk associated [36] since the long-range-hopping Hamiltonian Hd = ∑

k,q c
†
k Vkqcq ,

written in momentum representation, couples all k-modes via the single particle potential
Vkq = td

[
eikde−iq(L−d+1) + e−iqdeik(L−d+1)

]
. Thus, the topological phase transitions have

to be analyzed by using real space methods. Accordingly, in next section, we generalize the
TM method introduced in Ref. [18] to the peculiar geometry of the Kitaev tie model.
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3 Topological phase diagram of a Kitaev tie

3.1 Transfer matrix approach with a long-range hopping and the boundary invariant

Topological properties of finite-sized systems are usually described in terms of geometric
indices also known as topological invariants Q, whose definition is strictly connected to
the bulk of the system in which periodic boundary conditions are considered. The bulk-
edge correspondence, then, can be invoked in order to calculate the number of zero-energy
edge modes [36]. However, the topological properties of the frustrated system considered
here cannot be addressed by means of the momentum-space properties. Thus, we base our
analysis on the TM approach which provides information on the boundary invariant.

Starting from the Kitaev tie Hamiltonian, we make the change of basis from the fermionic
operators cn , c†

n of Eq. (1) to Majorana operators an = cn +c†
n , bn = i(c†

n −cn) which satisfy
the relations: a†

n = an , b†
n = bn , {an, am} = 2δn,m , {bn, bm} = 2δn,m . In this new basis, the

Hamiltonian reads:
HM = H

′
K + H

′
d (4)

where

H
′
K = − i

2

L−1∑

j=1

[
t−a jb j+1 − t+b ja j+1

] − i

2
μ

L∑

j=1

a jb j

H
′
d = − i

2
td (adbL−d+1 + aL−d+1bd) , (5)

while t± = t ±Δ. The TM can be obtained by means of the Heisenberg equations of motion
for the Majorana operators. Imposing the zero-energy constraint (ω = 0) for Majorana
modes, two decoupled equations for the components of the Majorana wavefunctions a j and
b j are obtained:

[
a j , HM

] = t−b j+1 + t+b j−1 + μb j + td
(
δα, j bβ + δβ, j bα

) = 0 (6)
[
b j , HM

] = t−a j−1 + t+a j+1 + μa j + td
(
δα, j aβ + δβ, j aα

) = 0, (7)

where the shortened notation α = d and β = L − d + 1 has been introduced. The space
evolution of the a j Majorana mode is controlled by the following equation:

x j+1 = Ax j + δα, j

(− td
t+ aβ

0

)
+ δβ, j

(− td
t+ aα

0

)
(8)

where

A =
(− μ

t+ − t−
t+

1 0

)
, x j =

(
a j

a j−1

)
. (9)

In the absence of the extra hopping term connecting the sites α and β, the model reduces
to the standard Kitaev chain and the TM connecting x1 and xL+1 is simply given by AL

(see panel (a) of Fig. 2). The TM for the b-mode has an identical structure with the change
t− → t+.

When the Kitaev tie model is analyzed, the lattice sites j = α and j = β are linked by
the long-range hopping and thus the transfer matrix of the system cannot be reduced to a
product of A matrices. For these reasons, the derivation of the transfer matrix of a Kitaev tie
model requires a more involved procedure.
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Fig. 2 Sketch of the transfer matrix method (TM): a for a Kitaev chain and b for a Kitaev tie. The transfer
matrix representation of a Kitaev tie model presented in (b) can be visualized by separating the legs and the
ring region as shown in panel (c). The operators loop structure induced by the extra hopping term presents a
complicated internal structure, which is reminiscent of the interference phenomena of the wavefunction along
the ring

Panel (c) of Fig. 2 schematically shows TM structure of a Kitaev tie model. In particular, the
tie geometry introduces an operators loop structure in the TM equations which is reminiscent
of the interference processes of the wavefunction. To determine the TM of the Kitaev tie,
first we focus on Eq. (8) by taking j = α and j = β. Consequently, the following non-local
relations are obtained:

xα+1 = Ãxα + Γ1xβ+1 + Γ2xβ, (10)

xβ+1 = Ãxβ + Γ1xα+1 + Γ2xα, (11)

where the following auxiliary matrices have been introduced:

Ã =
(

t2d−μ2

μt+ − t−
t+

1 0

)
, (12)

Γ1 =
( td

μ
0

0 0

)
, Γ2 =

(
0 td t−

μt+
0 0

)
. (13)

Interestingly, the two terms Γ1 and Γ2 appear because of the long-range hopping. Using now
the relations xα = Akx1 and xβ = Apxα+1 with k = α − 1 and p = L − 2α, Eqs. (10)–(11)
can be recast in the following form:

xα+1 = (
I − Γ2A

p)−1
(
ÃAkx1 + Γ1xβ+1

)
(14)

xβ+1 =
(
ÃAp + Γ1

)
xα+1 + Γ2A

kx1. (15)

Substituting the expression for xα+1 given in Eq. (14) into Eq. (15), one easily gets the
relation:

xβ+1 = Gx1, (16)

where G is an appropriate matrix operator. Multiplying both sides of Eq. (16) by acting with
the operator Ak and using the relation xL+1 = Akxβ+1, the following result is derived:

xL+1 = T x1. (17)

Here, T = (I − R)−1S is the transfer matrix of the legged-ring model with

R = Ak
(
ÃAp + Γ1

) (
I − Γ2A

p)−1
Γ1A

−k
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S = Ak
(
ÃAp + Γ1

) (
I − Γ2A

p)−1
ÃAk + AkΓ2A

k .

Once the TM is known, the topological phase transitions can be analyzed by imposing
the localization requirement of the Majorana modes, which corresponds to the equation
aL+1 = T11a1 + T12a0 complemented by the open boundary condition aL+1 = a0 = 0. This
conditions implies T11 = 0.

For finite-size systems, the ground state degeneracy, expected in thermodynamic limit, is
broken by an exponentially small energy splitting. The latter is originated by a weak overlap
between the wavefunctions tails of Majorana modes localized at opposite edges. Due to this
the condition T11 = 0, which has been derived under the assumption of decoupled Majorana
modes, cannot be exactly met. Thus, for systems of finite size, the condition T11 = 0 has to be
substituted by the weaker one T11 < λ, with λ a suitable cutoff value. We have numerically
verified that topological regions of the phase diagram can be easily discriminated from trivial
ones by using the cutoff value λ = 10−7.

The phase diagram obtained by the condition above is shown in panel (a) of Fig. 3 for a tie
of 121 sites at varying the chemical potential μ and the extra hopping range, controlled by d .
Topological phases (blue regions) nucleate inside trivial regions (white regions). Moreover,
the number of non-trivial phases increases, when the circumference of the ring is reduced
(d is increased), i.e., when the system approaches a perturbed Kitaev chain limit, which is
reached for d = 60. The interstitial character of the topological phase is more evident for
small values of the parameter d since, in this case, the system is similar to a ring with very
short legs. The figure indicates the intricate behavior which may occur in the frustrated case,
including re-entrant phases.

Such phase diagram can be contrasted with the one derived by the energy spectrum shown
in Fig. 3 (panel (c)) and the Majorana polarization in panel (b). In the first case, the topological
phase transitions are signaled by the gap closing events indicating the existence of zero-energy
edge modes. The phase diagram of Fig. 3 (panel (c)) accounts for the spectral properties of
the system and agrees well with the phase diagram obtained by the boundary invariant (Fig.
3a). A similar topological phase diagram is obtained by using the Majorana polarization (Fig.
3b), which is presented in the next subsection. The qualitative agreement among the phase
diagrams obtained by different approaches is clearly evident. However, distinct methods
highlight complementary properties of the topological phase and thus a strict quantitative
agreement is not expected. Different methods indeed capture different features of the system.
For instance, the transfer matrix method provides a measure of the spatial localization of
the edge modes, while the spectrum analysis is sensitive to the eigenvalues of the energy.
Majorana polarization, on the other hand, captures the eigenstates symmetry in the Nambu
space. Despite these differences, topological phase diagrams obtained by using different
methods present an interstitial structure of the topological phase. When this structure is
explored without introducing cutoffs (see Appendix A), the estimators of the topological
phase present very similar behavior and show a consistent picture of the topological phase
diagram.

3.2 Majorana polarization

Another quantity that permits to evaluate the topological phase diagram is the Majorana
polarization (MP) [35,35,37–39]. This is a topological order parameter, analogous to the
local density of states (LDOS), which measures the quasiparticles weight in the Nambu
space.
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Fig. 3 Topological phase diagram of a Kitaev tie (L = 121) in the d − μ plane. The model parameters have
been fixed as: td = 1, Δ = 0.02 in units of t . Panel a is obtained with the Majorana transfer matrix method
(T11 < 10−7), while Majorana polarization has been used to obtain panel (b). In panel c is reported the
topological phase diagram obtained by the gap closing of the lowest energy eigenvalue. The red dots of panel
b correspond to four selected values of the extra hopping range controlled by the parameter d (d = 1, 3, 40,
59) for which the polarization is plotted in Fig. 4. Blue (white) regions represent topological (trivial) phases

Let us introduce the Nambu representation Ψ = (c1, c
†
1, ..., cL , c†

L)T . Accordingly, the
Hamiltonian in Eq. (1) can be written in the Bogoliubov–de-Gennes form:

H = 1

2
Ψ †HBdGΨ (18)

where HBdG is a 2L × 2L matrix being L the number of lattice sites. The eigenstates of
HBdG are expressed in the electron–hole basis as ψ(m) = (e(m)

1 , h(m)
1 , ..., e(m)

L , h(m)
L )T and

the local Majorana polarization is defined as:

PM (n) =
∫ ∞

−∞
PM (ω, n)dω (19)

where

PM (ω, n) = 2
∑

m

δ(ω − εm)e(m)∗
n h(m)

n
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Fig. 4 Majorana polarization (MP) of the Kitaev tie (blue curves) for the values of d corresponding to the red
dots of Fig. 3. The cases of a Kitaev ring (d = 1, panel (a)), a quasi-Kitaev ring (d = 3, panel (b)), d = 40,
panel (c) and of a perturbed Kitaev chain (d = 59, panel (d)) are shown. The red curves in each panel represent
the MP of a Kitaev chain of the same size L = 121. The numbered black circles are the selected minima and
maxima at which we evaluate the local Majorana polarization shown in Fig. 5

is the density of MP and e(m)
n (h(m)

n ) refers to the m-th eigenstate, while n is a site index.
If a state ψ(m) belongs to the particle or hole sector, i.e., h(m)

n = 0 or e(m)
n = 0 ∀ n, the

PM is indeed zero. On the other hand, the Majorana polarization PM = ∑L/2
n=1 PM (n) of

a genuine Majorana state is ±1. We also note that the system has to satisfy the constraint:
Ptot
M = ∑L

n=1 PM (n) = 0, because free Majorana monopole cannot exist. In panel (b) of Fig.
3, we show the topological phase diagram obtained by evaluating the Majorana polarization
of the legged-ring system (td �= 0) measured in units of the Majorana polarization of the
Kitaev chain (td = 0) with the same system length L = 121. We recover qualitatively the
same phase diagram of panel (a) with alternating trivial/non-trivial phases.

The effect of geometric frustration is also analyzed in Fig. 4 where we show the MP
as a function of the chemical potential by varying the range of the extra hopping: d = 1
(Kitaev ring), 3, 40, 59 (perturbed Kitaev chain). The case of a Kitaev chain of 121 sites (red
curves) is also plotted for comparison. Going from the Kitaev ring limit (panel (a)) to the
perturbed Kitaev chain limit (panel(d)), the MP mean value increases favoring the non-trivial
regime. On the other hand, the alternation of local minima and maxima keeps track of the
geometric frustration of the system induced by the long-range hopping. The phenomenology
of the frustration is clear when looking at Fig. 5 where the real space Majorana polarization
is plotted in correspondence of the minima and maxima of Fig. 4 (indicated by the black
circles). The size of the circles is proportional to the absolute values of the local MP, while
blue and red colors refer to positive and negative values of the MP, respectively. As shown,
the minima of Fig. 4 correspond to hybridized Majorana states and the hybridization becomes
stronger when d is smaller. This is clearly seen in the extreme case of a Kitaev ring (panel
(a)) where the polarization is uniformly distributed throughout the system. On the other hand,
local maxima correspond to Majorana modes localized at the system’s legs. A similar analysis
can be performed by studying the wavefunction along the chain as done in Fig. 5 of Ref.
[23]. Also in that case, localized modes have been identified at the system legs and it has
been found that the localization properties are strongly affected by interference phenomena
controlled by d .
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Fig. 5 Real space Majorana polarization for the system parameters corresponding to the numbered black
circles (1, 2) of Fig. 4. Panels a, b, c and d follow the same order of panels of Fig. 4. The model parameters
have been fixed as: t = td = 1, Δ = 0.02 and L = 121

Up to now, we have considered the case of uniform hopping td = t . The case td �= t ,
reported in Appendix B for completeness, shows a phase diagram similar to the one obtained
for the homogeneous case.

4 Disorder effects

We have demonstrated that the topological regions of the phase diagram of a Kitaev tie
model are surrounded by trivial areas. The presence of trivial regions for μ < 2 is peculiar
to the proposed model and, indeed, it is not expected in the phase diagram of a Kitaev
chain. Thus, the emergence of trivial regions in the phase diagram of a Kitaev tie model is
direct consequence of the topological frustration effect induced by the perturbation due to
the long-range hopping. This observation suggests that topological phases of the Kitaev tie
model should be as immune to disorder as the topological phase of the original Kitaev chain
model. In order to verify the above conclusion, disordered realizations of the Kitaev tie model
have to be studied. There are several options to include disorder effects in Eq. 1. Here we
confine our attention to those appearing directly related to a recognizable physical origin.
Topological systems are usually realized by using nanowires in proximity coupling with
superconductors. Typically, the nanowire–superconductor coupling, which is responsible
for the induced superconductivity inside the nanowire, can be prone to unwanted spatial
variations along the wire. These inhomogeneities can be modeled as random couplings.
Accordingly, it is quite reasonable to infer that the induced superconductivity along the
nanowire takes a stochastic character which can be included in the Kitaev tie model by
considering a random site-dependent pairing potential. Disorder, however, can be of endogen
origin. Typically, the growth process of a nanowire requires the delicate control of several
process parameters. Under this condition, compositional gradient along the nanowire may
originate a space-dependent effective mass of the charge carriers, which is a well-known
effect in semiconducting heterostructures. Within the framework of a discrete description,
effective mass gradient and random doping along the nanowire can be modeled by including
site-dependent random hopping integrals in the Kitaev tie model. This conclusion is equally
applicable to the case of flexible one-dimensional conductors, such as the single-wall carbon
nanotubes. The latter systems are typically homogeneous from the chemical viewpoint even
though they are not immune to modifications of the hopping integrals induced by local
bending effects and interaction with the substrate. The aforementioned sources of disorder
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Fig. 6 Lowest energy eigenvalues as a function of the chemical potential μ for different values of the disorder
strength. A system’s size of L = 121 lattice sites has been considered. Panels a–c: pairing disorder has
been introduced by considering a random site-dependent pairing potential generated by a uniform probability
distribution defined in the interval (Δ − δ, Δ + δ). Panels d–f : hopping disorder has been obtained by
considering a random site-dependent hopping integral generated by a uniform probability distribution defined
in the interval (t − τ , t + τ ). For each panel, a single disorder realization is considered. The remaining model
parameters have been fixed as: t = 1, Δ = 0.02

are simultaneously present in real systems and their relative relevance is in general hardly
anticipable. Thus, in the following, we study two distinct conditions, characterized by the
presence of one source of disorder at the time. When disordered realizations of the Kitaev
tie model are considered, the existence of Majorana modes is pinpointed by gap closing
events in the energy spectrum. This condition can be monitored by studying the smallest
subgap energy eigenvalue as a function of the chemical potential, while fixing different
values for the disorder strength. Disorder strength is quantified by the variance of the uniform
distributed random variable representing the site-dependent pairing potential or the site-
dependent hopping integral. In order to study disorder effects, single disorder realizations are
analyzed and we have checked that the corresponding behavior does not differ too much from
the typical behavior deduced from the analysis of a relevant number of independent random
realizations. From the experimental viewpoint, the disorder contribution to the Hamiltonian is
typically due to a precise impurity pattern, which is responsible for sample-specific signatures.
For this reason, studying the device response to a single disorder realization seems to be more
appropriate than using an ensemble average (involving several disordered realizations). The
latter strategy is particularly appropriate when mesoscopic samples are considered.

Results of this analysis are reported in Fig. 6a–f. In particular, in Fig. 6a–c, the effect
of a random superconducting coupling is studied by considering random values of the site-
dependent pairing potential. The disordered Hamiltonian is described by H ′ = H + Hdis ,
with H defined in Eq. 1 and Hdis = ∑L−1

j=1 δdisj c†
j+1c

†
j + h.c.. Here, δdisj represents a

random pairing fluctuation with uniform distribution in the interval (−δ, δ). The effect of
random hopping integrals is reported in Fig. 6d–f, where disorder is introduced by generating
uniformly distributed random values of the site-dependent hopping integrals. In this case, the
disordered Hamiltonian is H ′ = H + Hdis with Hdis = ∑L−1

j=1 τ disj c†
j c j+1 +h.c. and τ disj a

random hopping fluctuation with uniform distribution in the interval (−τ , τ ). When disorder
is induced by a random pair potential (Fig. 6a–c), depending on the legs’ length d and on the
chemical potential, two distinct situations are realized: (i) the gap closing events are pinned to
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specific values of the chemical potential which are insensitive to the disorder’s strength; (ii)
the gap closing events are displaced by disorder toward different chemical potential values.
For the considered disorder strength, we never observe the disappearance of a topological
region induced by disorder. Probably, the mentioned condition is almost reached in Fig. 6a,
where two topological phases (i.e., two gap closing points separated by a trivial phase) tend
to merge as the disorder strength is increased. The merging condition, which is not reached, is
probably the prelude to the gap opening and the disappearance of the two topological phases.
It is worth mentioning here that the maximum disorder strength considered in Fig. 6a–c is
comparable with the mean value of the pairing potential Δ. The latter condition corresponds
to an extremely disordered system, which is not expected in realistic experimental conditions.
A similar phenomenology can be observed by studying disorder effects induced by random
values of the hopping integral (Fig. 6d–f). Here, although the effects of disorder constitute
a small perturbation compared to the previous case, a similar phenomenology is observed.
This observation suggests that random hopping is more effective in perturbing the topological
phase then a random superconducting pairing. From the above analysis, we conclude that
realistic values of the disorder strength only produce a reshaping of the topological phase
boundaries, while preserving the interstitial nature of the topological phases. The latter are
robust features of the topological frustration phenomenon.

5 Building of a topological frustrated translational-invariant system

In this section, we consider a multiple-tie system which is the simplest model to recover
translational invariance while still having geometric frustration in the single unit cell. Beyond
the theoretical interest, such a model can describe the multiple loops geometry sometimes
observed in carbon nanotubes [27,40]. Thus, we define a multiple-tie system with N unit
cells each of which having a tie of fixed size L (see Fig. 7 panel (a)). In the thermody-

Fig. 7 Panel a: The multiple-tie
system with N unit cells. The red
square is the n-th unit cell. Panel
b: topological phase diagram in
μ − d plane of the model given
by the Majorana number QM .
The topological (trivial) phases
correspond to the blue (white)
regions. The parameters have
been fixed as: L = 121,
Δ = 0.02, t = 1
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namic limit N → ∞, translational invariance is recovered. The physical properties of the
translational-invariant system can be studied in momentum representation. To this purpose,
we implement periodic boundary conditions c†

j,N+1 = c†
j,1 and perform the Fourier transform

of the fermionic operators:

c†
j,n = 1√

N

∑

k

c†
j,ke

−ikn

where k ∈ [−π, π] is the wave vector, j is the intracell site index, while n labels the unit cell
with n = 1, . . . , N . The multiple-tie Hamiltonian can be written in the momentum space as:

HMK (k) = Hc(k) + Hic(k), (20)

where Hc and Hic are given by:

Hc(k) = 1

2

⎡

⎣−t
L−1∑

j=1

∑

k

(
c†
j,kc j+1,k + c†

j,−kc j+1,−k + h.c.
)

+Δ

L−1∑

j=1

∑

k

(
c†
j+1,kc

†
j,−k + c†

j+1,−kc
†
j,k + h.c.

)

−td
∑

k

(
c†
α,kcβ,k + c†

α,−kcβ,−k + h.c.
)

− μ

L∑

j=1

∑

k

(
c†
j,kc j,k + c†

j,−kc j,−k

)
⎤

⎦

Hic(k) = 1

2

∑

k

[
−t

(
c†

1,kcL ,ke
−ik + c†

1,−kcL ,−ke
ik + h.c.

)

+Δ
(
c†

1,kc
†
L ,−ke

−ik + c†
1,−kc

†
L ,ke

ik + h.c.
)]

. (21)

Due to the translational invariance, one can compute the topological bulk invariant corre-
sponding to the Majorana number introduced by Kitaev [7]. Let us first introduce the Majorana
operators in k-space: a j,k = c j,k + c†

j,−k, b j,k = (c j,k − c†
j,−k)/ i in terms of which the

Hamiltonian becomes:

HMK = i

2
Ψ

†
M

[
H + (τ1e

ik + τ2e
−ik + h.c.)

]
ΨM

where ΨM = (a1,−k, b1,−k, . . . , aL ,−k, bL ,−k)
T and a†

j,k = a j,−k , b†
j,k = b j,−k . In the new

basis,H, τ1 and τ2 are 2L×2L matrices whose structure is defined by Eq. (21). The Majorana
number, is defined as:

QM = Sign [PfM(0)] Sign [PfM(π)] , (22)

where PfM(0) or PfM(π) represent the Pfaffians of the Hamiltonian M(k) = H+ (τ1eik +
τ2e−ik + h.c.) evaluated at the points k = 0 or k = π in the momentum space. The
computation proceeds as follows. We first reduce the Hamiltonian to the canonical form
M ′ = UMUT by means of an orthogonal 2L×2L matrixU whose rows are the eigenvectors
of M . After the transformation, the Hamiltonian takes the form:
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M ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1

−λ1 0
.

.

.

0 λ2L

−λ2L 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

whose Pfaffian PfM ′ = λ1 . . . λ2L can be easily calculated. Then, using the Pfaffian property
Pf(UMUT ) = det[U ]Pf(M), the Majorana number can be recast in the form:

QM = Sign

[
PfM ′(0)

det(U )

]
Sign

[
PfM ′(π)

det(U )

]
, (24)

which is evaluated numerically.
Panel (b) of Fig. 7 shows the phase diagram in d − μ plane of a multiple-tie system when

the single unit cell has size L = 121. The topological phases correspond to QM = −1 (blue
regions) while the trivial phases correspond to QM = 1 (white regions). We note that the
trivial/non-trivial phases sequence is still present for values of the chemical potential close
to the value μ = 2t where the topological phase transition is expected for a Kitaev chain.
The presence of trivial phases close before μ = 2t is essentially due to the frustration of the
single unit cell. Bulk-edge correspondence is explicitly proven for a system of reduced size
in Appendix C.

6 Conclusions

We have presented an analysis of the topological phase diagram of a Kitaev chain affected
by geometric frustration caused by the presence of a long-range hopping (Kitaev tie). Due
to the breaking of the translational invariance, we have based our analysis on a real space
method which exploits a generalization of the transfer matrix approach. Using the transfer
matrix, we have studied the emergence of localized Majorana modes at the system’s legs.
We have found that the geometric frustration gives rise to an interstitial-like behavior of
the topological phase diagram in which non-trivial phases nucleate inside trivial ones at
varying the chemical potential and the range of the extra hopping. We have demonstrated
that non-trivial phases become dominant when the perturbed Kitaev chain limit (i.e., large
values of parameter d) is considered. The same interstitial-like character of the topological
phase diagram emerges when the gap closing and the Majorana polarization methods are
considered. The disorder effects on the topological regions have also been investigated and
the results show that localized edge modes are robust against hopping and pairing random
realizations. Finally, we have analyzed a multiple-tie system in which translational invariance
coexists with frustration effects. We have shown that the geometric frustration is reduced but
still present for chemical potential values close to the critical value of the unperturbed Kitaev
chain. Moreover, the bulk-edge correspondence of the multiple-tie system has been proven.

The aforementioned findings suggest that topological frustration could be a relevant ingre-
dient to design proof-of-principle nanodevices. Using these systems, Hamiltonian models
with long-range couplings could be studied in a condensed matter context. In this respect,
flexible nanowires, such as, e.g., carbon nanotubes, are the main testbed to prove the topo-
logical frustration physics described in this work.
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AppendixA:Comparison between transfermatrix,Majorana polarization and spectral
analysis.

We compare the transfer matrix method, the Majorana polarization and the spectral analysis
in defining the phase diagram of a Kitaev tie of L = 121 sites. Selected values of the
long-range hopping positions (namely, d = 10, 30, 50) are considered, while the remaining
parameters have been fixed as done in Fig. 3. In Fig. 8, we compare the behavior of the
complement of the Majorana polarization (1 − |PM |), the first element of the transfer matrix
and the lowest energy eigenvalue. The presence of unpaired Majorana modes is related to
small or vanishing values of the mentioned estimators. All plots clearly show the topological
frustration phenomenon which is signaled by an oscillating behavior of the estimators as a
function of the chemical potential μ. Interestingly, the agreement between distinct methods
is improved when high values of d are considered. Good agreement is obtained when the
perturbed-chain limit is reached (see panel (c)).

123

http://creativecommons.org/licenses/by/4.0/


  627 Page 16 of 19 Eur. Phys. J. Plus         (2021) 136:627 

Fig. 8 Comparison among the
complement of the Majorana
polarization (red curve), the first
element of the transfer matrix
(green curve) and lowest energy
eigenvalue (blue curve) as a
function of the chemical potential
μ. Kitaev tie models with d = 10
(panel (a)), d = 30 (panel (b))
and d = 50 (panel (c)) are
considered. The remaining
parameters have been fixed as
done in Fig. 3

Appendix B: Effect of the hopping strength

In the main text, we have shown the effect of geometric frustration by varying the range of
the extra hopping. Here we investigate the effect of changing the amplitude of long-range
hopping by setting td �= t . This analysis is performed in Fig. 9. Since the transfer matrix and
MP methods provide compatible results, we restrict our analysis to the Majorana polarization.
Panel (a) of Fig. 9 shows that for td/t = 0.5 the extent of non-trivial phases is increased
compared to the homogeneous case (td = t = 1) reported in Fig. 3 (panel (b)). In particular,
panel (b) of Fig. 9 shows the Majorana polarization as a function of chemical potential for
td = 1 and td = 0.5 when d = 3. When the strength of the extra hopping is fixed to td = 0.5,
the Majorana polarization manifests a tendency to increase as long as μ < 1.6, while an
opposite tendency is detected for μ > 1.6.
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Fig. 9 a Topological phase
diagram in the μ − d plane for
t/td = 0.5. b Majorana
polarization as a function of
chemical potential μ for td = 1
(green curve) and td = 0.5
(orange curve). The other
parameters are: t = 1, Δ = 0.02,
d = 3, L = 121

Appendix C: Bulk-edge correspondence for a multiple-tie system

In this Appendix, we show bulk-edge correspondence for a multiple-tie system made of 30
unit cells. In particular, in Fig. 10a, we show the phase diagram of the translational-invariant
multiple-tie system having 20 sites per unit-cell. The phase diagram has been obtained by
exploiting the band topological invariant. It shows a checkerboard pattern which is remi-
niscent of the topological frustration of the single unit cell. Panel (b) of Fig. 10 shows the
lowest energy eigenvalues corresponding to the red horizontal cut of panel (a). The corre-
spondence between trivial and non-trivial phases is clearly visible in Fig. 10b. In order to
get further insight, in panels (c)–(f), we show the localization properties of the wavefunction
for a trivial/topological phase sequence moving the chemical potential along the red line of
Fig. 10a. This analysis directly shows that localized states correspond to the gapless points
in Fig. 10b, while trivial states correspond to the gapped ones. The above results explicitly
prove the bulk-edge correspondence for a multiple-tie system.
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Fig. 10 a Topological phase diagram of a multiple-tie system of 30 unit cells and 20 sites per unit cell obtained
by the Majorana number Q. The topological (trivial) phases correspond to the blue (white) regions. b Energy
eigenvalues of the system as a function of chemical potential μ corresponding to the horizontal red cut of
panel (a). The other parameters have been fixed as: Δ = 0.02, t = 1. c–f Amplitude of the lowest energy
modes of the multiple-tie system with N = 30 unit cells and with L = 20 sites per unit cell, as a function of
the lattice index j . Different panels refer to distinct values of the chemical potential μ belonging to the red
line of panel (a)

References

1. C. Beenakker, Ann. Rev. Cond. Matter Phys. 4, 113 (2013). https://doi.org/10.1146/annurev-conmatphys-
030212-184337

2. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012). https://doi.org/10.1088/0034-4885/75/7/076501
3. J. K. Pachos, Topological quantum computation. In Formal Methods for Dynamical Systems: 13th Inter-

national School on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM 2013, Bertinoro, Italy, June 17–22, 2013. Advanced Lectures, eds by M. Bernardo, E. de Vink, A.
Di Pierro, , H. Wiklicky (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013) https://doi.org/10.1007/
978-3-642-38874-3_5

4. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003
(2012). https://doi.org/10.1126/science.1222360

5. S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani,
Science 346, 602 (2014). https://doi.org/10.1126/science.1259327

123

https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1007/978-3-642-38874-3_5
https://doi.org/10.1007/978-3-642-38874-3_5
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1259327


Eur. Phys. J. Plus         (2021) 136:627 Page 19 of 19   627 

6. S. Nadj-Perge, I.K. Drozdov, B.A. Bernevig, A. Yazdani, Phys. Rev. B 88, 020407 (2013). https://doi.
org/10.1103/PhysRevB.88.020407

7. A.Y. Kitaev, Phys. Usp. 44, 131 (2001). https://doi.org/10.1070/1063-7869/44/10s/s29
8. A.C. Potter, P.A. Lee, Phys. Rev. Lett. 105, 227003 (2010). https://doi.org/10.1103/PhysRevLett.105.

227003
9. B. Zhou, S.-Q. Shen, Phys. Rev. B 84, 054532 (2011). https://doi.org/10.1103/PhysRevB.84.054532

10. R. Wakatsuki, M. Ezawa, N. Nagaosa, Phys. Rev. B89, 174514 (2014). https://doi.org/10.1103/PhysRevB.
89.174514

11. C. Schrade, M. Thakurathi, C. Reeg, S. Hoffman, J. Klinovaja, D. Loss, Phys. Rev. B 96, 035306 (2017).
https://doi.org/10.1103/PhysRevB.96.035306

12. A. Maiellaro, F. Romeo, R. Citro, Eur. Phys. J. Spec. Top. 227, 1397 (2018). https://doi.org/10.1140/
epjst/e2018-800090-y

13. P.W. Brouwer, M. Duckheim, A. Romito, F. von Oppen, Phys. Rev. B 84, 144526 (2011). https://doi.org/
10.1103/PhysRevB.84.144526

14. P.W. Brouwer, M. Duckheim, A. Romito, F. von Oppen, Phys. Rev. Lett. 107, 196804 (2011). https://doi.
org/10.1103/PhysRevLett.107.196804

15. J.D. Sau, S. Das, Sarma. Phys. Rev. B 88, 064506 (2013). https://doi.org/10.1103/PhysRevB.88.064506
16. P. Neven, D. Bagrets, A. Altland, New J. Phys. 15, 055019 (2013). https://doi.org/10.1088/1367-2630/

15/5/055019
17. I. Adagideli, M. Wimmer, A. Teker, Phys. Rev. B 89, 144506 (2014). https://doi.org/10.1103/PhysRevB.

89.144506
18. S.S. Hegde, S. Vishveshwara, Phys. Rev. B 94, 115166 (2016). https://doi.org/10.1103/PhysRevB.94.

115166
19. L. Lepori, D. Giuliano, S. Paganelli, Phys. Rev. B 97, 041109 (2018). https://doi.org/10.1103/PhysRevB.

97.041109
20. W. DeGottardi, M. Thakurathi, S. Vishveshwara, D. Sen, Phys. Rev. B 88, 165111 (2013). https://doi.

org/10.1103/PhysRevB.88.165111
21. D. Vodola, L. Lepori, E. Ercolessi, A.V. Gorshkov, G. Pupillo, Phys. Rev. Lett. 113, 156402 (2014).

https://doi.org/10.1103/PhysRevLett.113.156402
22. A. Alecce, L. Dell’Anna, Phys. Rev. B 95, 195160 (2017). https://doi.org/10.1103/PhysRevB.95.195160
23. A. Maiellaro, F. Romeo, R. Citro, Eur. Phys. J. ST 229, 637 (2020)
24. A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. Khodos, Y. Gorbatov, V. Volkov, C. Journet,

O. Stephan, M. Burghard, Comptes Rendus de l’Académie des Sciences: Series IIB—Mechanics-Physics-
Astronomy 327, 933 (1999) https://doi.org/10.1016/S1287-4620(99)80157-4

25. M. Marganska, L. Milz, W. Izumida, C. Strunk, M. Grifoni, Phys. Rev. B 97, 075141 (2018). https://doi.
org/10.1103/PhysRevB.97.075141

26. L. Milz, W. Izumida, M. Grifoni, M. Marganska, Phys. Rev. B 100, 155417 (2019). https://doi.org/10.
1103/PhysRevB.100.155417

27. G. Refael, J. Heo, M. Bockrath, Phys. Rev. Lett. 98, 246803 (2007). https://doi.org/10.1103/PhysRevLett.
98.246803

28. A. Ramirez, Nature 421, 483 (2013). https://doi.org/10.1038/421483a
29. A. Altland, M.R. Zirnbauer, Phys. Rev. B 55, 1142 (1997). https://doi.org/10.1103/PhysRevB.55.1142
30. H. Katsura, T. Koma, J. Math. Phys. 59, 031903 (2018)
31. W. DeGottardi, D. Sen, S. Vishveshwara, New J. Phys. 13, 065028 (2011). https://doi.org/10.1088/1367-

2630/13/6/065028
32. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys. Condens. Matter 25, 215301 (2013). https://doi.org/10.

1088/0953-8984/25/21/215301
33. S. Ostlund, R. Pandit, Phys. Rev. B 29, 1394 (1984). https://doi.org/10.1103/PhysRevB.29.1394
34. D. Sen, S. Lal, Phys. Rev. B 61, 9001 (2000). https://doi.org/10.1103/PhysRevB.61.9001
35. D. Sticlet, C. Bena, P. Simon, Phys. Rev. Lett. 108, 096802 (2012). https://doi.org/10.1103/PhysRevLett.

108.096802
36. J. Shapiro, Rev. Math. Phys. 32, 2030003 (2020)
37. E. Perfetto, Phys. Rev. Lett. 110, 087001 (2013). https://doi.org/10.1103/PhysRevLett.110.087001
38. C. Bena, C R Phys. 18, 349 (2017). https://doi.org/10.1016/j.crhy.2017.09.005
39. N. Sedlmayr, C. Bena, Phys. Rev. B 92, 115115 (2015). https://doi.org/10.1103/PhysRevB.92.115115
40. X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Nano Lett. 9, 3137 (2009)

123

https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1070/1063-7869/44/10s/s29
https://doi.org/10.1103/PhysRevLett.105.227003
https://doi.org/10.1103/PhysRevLett.105.227003
https://doi.org/10.1103/PhysRevB.84.054532
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1140/epjst/e2018-800090-y
https://doi.org/10.1140/epjst/e2018-800090-y
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevB.88.064506
https://doi.org/10.1088/1367-2630/15/5/055019
https://doi.org/10.1088/1367-2630/15/5/055019
https://doi.org/10.1103/PhysRevB.89.144506
https://doi.org/10.1103/PhysRevB.89.144506
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.97.041109
https://doi.org/10.1103/PhysRevB.97.041109
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevLett.113.156402
https://doi.org/10.1103/PhysRevB.95.195160
https://doi.org/10.1016/S1287-4620(99)80157-4
https://doi.org/10.1103/PhysRevB.97.075141
https://doi.org/10.1103/PhysRevB.97.075141
https://doi.org/10.1103/PhysRevB.100.155417
https://doi.org/10.1103/PhysRevB.100.155417
https://doi.org/10.1103/PhysRevLett.98.246803
https://doi.org/10.1103/PhysRevLett.98.246803
https://doi.org/10.1038/421483a
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1088/1367-2630/13/6/065028
https://doi.org/10.1088/1367-2630/13/6/065028
https://doi.org/10.1088/0953-8984/25/21/215301
https://doi.org/10.1088/0953-8984/25/21/215301
https://doi.org/10.1103/PhysRevB.29.1394
https://doi.org/10.1103/PhysRevB.61.9001
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.110.087001
https://doi.org/10.1016/j.crhy.2017.09.005
https://doi.org/10.1103/PhysRevB.92.115115

	Effects of geometric frustration in Kitaev chains
	Abstract
	1 Introduction
	2 The Kitaev tie model
	3 Topological phase diagram of a Kitaev tie
	3.1 Transfer matrix approach with a long-range hopping and the boundary invariant
	3.2 Majorana polarization

	4 Disorder effects
	5 Building of a topological frustrated translational-invariant system
	6 Conclusions
	Acknowledgements
	Appendix A: Comparison between transfer matrix, Majorana polarization and spectral analysis.
	Appendix B: Effect of the hopping strength
	Appendix C: Bulk-edge correspondence for a multiple-tie system
	References




