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K-Means algorithm, which has & good scalability on the number of objects and attributes, but can
only work with numeric vectors of fixed length, Our algorithm works with transactions, i.e., sets of
variable size containing discrete-valued attributes, We adapt the standard definition of mathematical
distance used in the K-Means algorithm to represent transactions dissimilarity, and redefine the
notion of cluster center. In oqur algorithm g cluster center is a typical transaction representing the
common properties of cluster elements, The resulting algorithm maintaing the formal complexity
of standard K-Means, but substantially outperforms the latter on both gynthetic and real data.
Experiments with such datasets show the good scalability of our algorithm, in term of both the size
of the dataset and the average size of the transactions,

1 Introduction

1.1 Motivations

Clustering is a useful technique for grouping data in partitions, called clusters, based on values of their
attributes. Contributing areas of research include data mining, statistics, machine learning, pattern recog-
aftion. The following are typical requirements of clustering algorithms in data mining: '

— Scalability: a large database can contain millions of objects. Clustering on a sample may be ineffec-
tive, 0 we need algorithms that can efficiently work with the entire database,

— High dimensjonality: many clustering methods are good at handling low-dimensional data, but real
datasets may have many dimensions. It ig challenging to cluster objects in high dimensional spaces,

In such context, the problem of clustering transactional data, i.e., tuples of varighle size, requires all
the above capabilities:

— in most application domains transactions can be very huge: for example, daily web user sessions of g
smail web cominunity (e.g., a university) are almost hundreds of thousands of order of magnitude.

— the number of elements that Can appear in a transaction is usually huge. An example is the number
of web pages that can be visited in a user session.

~ A transaction can contajn both discrete-valued an continuous-valued data.

— each transactional cluster should have a cluster representative: a typical transaction subsuming all
the transactions belonging to the cluster.



The need to develop algorithms for transactional clustering comes from their various relevant appli-
cations in reallife problems. The primary motivation of our work was web data clustering. Log data
typically represents sets of single accesses of web users to web resources. The set of one user accesses
can be split into sessions. A session is a set of web pages visited by a user in a “semantically homo-
geneous” way (e.g., in order to find useful information about user interests, or to improve proxy cache
performances). A problem strictly connected to the previous is clustering of purchase transactions, where
a market basket correspond to a session and the purchased items to single accesses.

Efficient clustering of transactions is also a requirement in text mining [10,17,21]. The main idea
here is o cluster web documents according to the keywords they contains. Web documents can be pre-
processed and represented by & set of significant words. Hence, a transactional clustering algorithm can
help finding homogeneous groups of documents, according to the keywords they contain. To each cluster
we can then associate a representative (a set of words) that can be used to label the documents belonging
to the cluster. Another potential application of transactional clustering is the clustering of sparse datasets,
i.e., datasets whose attributes contain a large number of null values. -

The traditional clustering approaches to these kinds of applications, however, exhibit some drawbacks.
In the current literature, transactional clustering is usually dealt with hierarchical methods. Hierarchical
clustering is often presented as the better quality clustering approach, but it is rather inefficient on
large datasets for its quadratic complexity. Moreover, it 1s difficult to generate a representative value
providing an easy interpretation of the clusters population. In contrast, classical partitioning methods,
like K-Means and its common variants, have a linear scalability on the number of objects and attributes,
- and consequently are efficient on large databases.

However, these methods do not provide an adequate representation formalism for tuples of variable
gize containing categorical data. The most suited approach to cluster categorical data with K-Means
based algorithms was presented in [15]. In this method every single categorical attribute is converted into
a set of boolean attributes. The cardinality of a set is the number of distinct values that the categorical
attribute can assume and every boolean attribute takes the value 1 if the corresponding categorical
value is in the object, 0 otherwise. As a result, even a small set of items gives raise to a curse of high
dimensionality.

Furthermore, the traditional concepts of similarity and center of a cluster used by standard K-Means
are not significant for transactional data. The euclidean distance, in fact, does not represent the real
gemantic distance between two transactions, and the notion of cluster mean is not adequate to represent
the cluster characteristics.

1.2 Objectives

The objective of this paper is to implement a partitioning method for transactional clustering which
crosses the limitations of traditional K-Means algorithms. We develop a method that works on sets with
variable cardinality confaining discrete values, and uses viable concepts of mathematical distance and
cluster center. The main idea is that of re-defining a cluster center as a transaction representing the
common properties of cluster elements. Similarity inside a cluster is hence measured by using the cluster
representative, that becomes also a natural tool for finding an explanation of the cluster population.

The plan of the paper is as follows. In section 2 we provide an overview of the traditional approaches
to transactional clustering. Section 3 provides the formal foundations of the clustering algorithm that is
shown in section 4. Finally, in section 5 we show formal and empirical results to prove that the algorithm
is both efficient and effective on transactional data.

2 Related works

The problem of transactional clustering js related to two classes of problems: clustering of categorical
attributes and clustering of variable length sets. An example of algorithm that deals with such problems
in a unified way was introduced by Guha et al. [8]. Here, the ROCK algorithm is presented, an agglom-
erative hierarchical method for clustering sets of categorical values. A given dataset is partitioned in an



agelomerative way, using the number of common neighbors as a criterion for merging the subclusters.
A neighbor is a set with a similarity value greater than a fixed threshold. The similarity measure is
the Jaccard index. ROCK complexity is quadratic w.r.t. the number of input objects. To overcome this
limitation, the authors define a two-steps approach: at the first step, a sample of the dataset is ciustered,
in order to obtain a suitable set of clusters. In the next step the entire dataset is considered, and each
tuple is assigned to one of the clusters obtained from the previous step.

An alternative to the previous method is that of exploiting partitioning methods such as, e.g., K-
Means and its variants, which have a linear scalability on the size of the dataset. The K-Modes algorithm,
proposed by Huang [11], is an extension of the standard K-Means method for categorical domains. An
approach similar to the former ig described by Gupta et al in [9]. The algorithm is defined to work
with vectors of categorical attributes and defines as clugter center the vector containing the modes of
the categorical attributes, The main drawback of this method is the necessity of dealing with boolean
representations of tuples with varigble size, thus making the approach uneffective when dealing with sets
having a large number of items.

Another method for clustering objects with categorical attributes, called CACTUS, was proposed by
Ganti et al. [5]. The algorithm has three phages: summarization, clustering and validation. In the first
phase the dataset is modeled using sumtnaries. Inter-attribute summaries represent strictly connected -
pairs of values, belonging to distinct attributes, Intra-attribute summaries describe similarities between
values of the same attribute. The resuits of the summarization phase are used for the computation of
a set of candidate clusters. In the last phase real clusters are obtained from candidate clusters. The
summarization phage need complex computations, The cost of such phage is acceptable provided that
the cardinality of the domains of is small. To extend CACTUS in order to handle large attribute value
domains the authors Suggest to change original domain with an abstraction having lower cardinality.

Other approaches focus on the problem of clustering transactional data, Wang and others [20] describe

clustering algorithms, but with important differences. Clusters are formed iteratively using the concept

+ of large item, that is an item frequently occurring in transactions and minimizing the total cost (defined

in terms of both intra-cluster and inter-cluster similarity).
Strehl and Ghosh present OPOSSUM 18], a similarity-based clustering method particularly attuned to

" market baskets. The algorithm is based on constrained, weighted graph partitioning. The Computational

complexity of the algorithm, however, is O(N?M), where M is the cardinality of distinet items. Cadez,
Gaffney and Smyth [1] present a probabilistic framework for clustering objects when data, measurements
are not vectors of fixed dimensionality. Each cluster is represented by a finite state Markov model, and
every object has probability P of belonging to cluster K. The authors propose a variant of the EM
(ExpectationnMaximization) algorithm. The main idea is that each transaction is a sequence of events

3 Problem statement

A clustering problem can be stated in many different ways. We shall refer to the following formalization,
that views clustering mainly as a partitioning of objects. Given a dataset D = {z;, ... »Zn } of objects, a
clustering is a partitioning of I into subsets, where each cluster represent one of such subsets. Let Wi;
be a weight representing the similarity between the objects x; and z; and ¥;; a variable such that

. — J 1 if 2; and z; belong to the same cluster
Y= 10 otherwise

The clustering problem can hence be stated as the problem of finding the assignments to Vij, 1<i<j<n
that satisfy the following constraints:

maximize E WisYij
1<i<j<n



provided that ;; = ¥
Yig + Yjk — Yie < 1
Yis — ik + ¥k <1
—yii Y T Y S 1
1<i<ji<k=<n

Unfortunately this problem is NP-hard [7], and hence we have to define heuristics methods in order to
find a suitable grouping.

The two main approaches to clustering are hierarchical and partitional clustering [3,4]. Hierarchical
methods are cited in the literature as the better quality clustering approaches, but they are limited
because of their quadratic complexity over the number of object under consideration. In this paper we
focus on partitional algorithms that have linear complexity. The most well-known partitional approach
is the K-Means algorithm, introduced by MacQueen [12]. For a given parameter K, K-Means partitions
D into K clusters that guarantee an high intra-cluster gimilarity and a low inter-cluster similarity. Each
object ; is assigned to a cluster j according to its distance d{z;,m;) from a value m; representing the
cluster itself. m; is called the center (or representative) of the cluster. ;

" Definition 1. Given a set of objects D = {zy,..., Z,}, the K-Means algorithm finds a partition C =
{C) ...Cy}, of D such that:

1. each ; is associated to a center mn; :
2. 2, € C; if and only if d{w:,m;) < d(zi,mu) for 1 < L<k §#1

3. The partition € minimizes ELI Zz,- cc; Az, mi)
0

The algorithm works as follows. First of all, K objects are randomly selected from D. Such objects
correspond to some initial cluster centers, and each remaining object in D is assigned to the cluster
satisfying condition 2. Next, the algorithm iterafively recomputes the center of each cluster and re-
assigns each object to the cluster of the nearer center. The algorithm terminates when the centers do not
change anymore. In that case, in fact, condition 3 holds.

The general schema of K-Means, shown in fig. 1, is parametric to the functions d and rep, that
formalize the concepts of distance and center. Such concepts in turn are parametric to the domain of D.

Definition 2. Given a domain I/ equipped with a distance function d : U x U = IR and a set & =
{Z1,...,Tm} CU, the center of S is the element that minimizes the sum of the distances:

rep(8) = mingeu Z d(z;,v)

Ezample 3. When I{ = IR", a standard definition of d is the Minkowski distance:

n ‘ i/p
d(z,y) = (Z(‘Bi - yi)”)
i=1

where p is a prime integer. When p = 2, the distance d is refereed to as the euclidean distance, and the
center of a set § = {#1,...,%n} is computed as

1
rep(S) = - Zx,;



Algorithin K-Means(D, K )i

Input : a dataset D = {z1,... »Zwv} of objects, the desired number K of clusters.
Output : a partition ¢ = {C,...,C) of Din K clusters.
Method :
— Randomly chooge Ty, ..., %, and set my; = zi; for 1 <5 <k
~ Repeat
e for each §, get; C; = {zild(zi,m;) < d{es, mu),1 <1< k};
* set m; = rep(C;) for 1 < j <k
until m; do not change.

Fig. 1. The K-Means algorithm

Ezample 4. Let us consider U={wn,...v,}. The mismatch-count distance is defined as follows [11]:
_Jlifa=y
Oley) = {0 otherwise
It can be shown that, for a given set & = {21,....2m} CU, the center is given by the mode of the set:
rep(S) = v € U such that freg(v, S) > freq(v;, §), for 1 <i<u

The approach can be easily generalized to the muitidimensional case I/ = Uy xUa x ;. x U, where
U = {vg,... Vin; }- In such case the distance is defined ag N

d(z,y) = _Zﬁ(xs, %)

and the representative is given by the vector containing the mode of each attribute, O

Transactional data, in this paper, is referred to as vectors of variable size, containing categorical
values.

Definition 5. Given a set 7 — {ai...a,}, where g; is a categorical value (henceforth called item), The
domain of transactional data is defined as

U = Powerset(T)
A subset T C 7 is called an itemset. O

Ezample 6. Let us suppose that a; represents a web URL, and that T models all the pages contained
within a web server. An itemset can then represent a typical web user session within the web server, i.e.,
the set of pages a user hag accessed within the given web server.

3.1 Dissimilarity measure

As we already mentioned, the standard approach used to deal with transactional data in clustering
algorithms is that of representing such data by means of fixed-length boolean attributes.

Ezample 7. Let us suppose 7 = {a1,...,a10}. We can represent the itemsets I; = {a1,a2}, I, =
{a1, a3, a3, a5, Gg,ar} and Iy = {as} by means of the following vectors:

IJ. [1)110:0’0:0)0,03010]
5 [1,1,1,0,1,1,1,0,0,0]
I [0,0,0,1,0,0,0,0,0,0]

In this representation, position  of the boolean vector repregents object a;. A value 1 corresponds to the
presence of g; to the transaction, while a value 0 correponds to its absence, ]



In principle, the above representation allows to directly apply the concepts of distance and center
defined in the previous section. Such approaches, however, do not capture our intuitive idea of transaction
similarity. In the above example, I is more similar to [, than to Ia, since there is a partial match between
the transaction.

Ezample 8. Using the euclidean distance, we obtain d(f, I 2) = 2 and d(I;, Is) = V3; thereby, I is more
gimilar to I5 than to Ir. These result is clearly in contrast with our intuition, since the only property that .
I; and I3 have in common is the absence of most of the items. |

Exemple 9. Using the mismatch-count distance, we obtain d{(li,Iz) = 4 and d(J1,I3) = 3. Again, this
result does not capture our intuitive notion of similarity between transactions. O

The problem with the above dissimilarity measures is in the fact that they consider both the presence
and the absence of an item within a transaction. As a consequence, sparse transactions (i.e., transactions
containing a very small subset of ) are very likely to be similar, even if the items they contain are quite
different. A solution to this problem is given by the Jaccard Coefficient [14,19]. This measure is based
on the idea that similarity between objects, represented by boolean vectors, is directly proportional to
the number of common values, and inversely proportional to the number of different values for the same
attribute.

Definition 10. Given z,y € JR™, the Jaccard coefficient is defined as

s(z,y) = s
’ N1 + Ny + Now

where Ny = E?% iy, N1 = S, #:(1 — ;) and Nox = SN =z 5]

=1

A distance measure can be straightforwardly defined from the Jaccard coefficient. For example, we
can define d(z,y) = 1 — s{z,¥).

Ezample 11. Let us consider again the transactions of example 7. Using the above distance meagure, we
obtain d(f1, L) = 2/3 and d(f1,L3) = 1. o

A more intuitive but equivalent way of defining the above distance function can be provided. Given
two itemsets I and J, we can represent d(, J) as the (normalized) difference between the cardinality of
their union and the cardinality of their intersection:

1InJ|
U J|

d;(I,J)=1-

Lemma 12. dj(I, J)} is a mathematical distence.

Proof. See [6] O

3.2 Cluster representative

Another problem to face with is a suitable definition of the cluster representative for transactional data.
In definition 2 we have specified the criteria for obtaining the cluster representative once the distance
function is fixed. Intuitively, a cluster representative for transactional data should model the content of
a cluster, in terms, e.g., of the elements that are most likely to appear in a transaction belonging to the
cluster. In such case, in fact, the interpretation of a cluster from its representative should be trivial. The
euclidean and mismatch-count distances provide an interesting approximation of such a desired behavior
of the cluster representative.



rep({h, I, Is}) = (2/3,2/3,1/3,1/3, 1/3, 1/3,1/3,0,0,0]

Such a model provides a, ful] representation of all the features within the cluster, However, the repre-
sentative is not a transaction by itself. Hence, as long as the K-Means algorithm recomputes cluster
Tepresentatives, the intra-cluster similarity can loose its originary significance. o

Ezample 14. The Mismatch-count distance produces the following representative for the transactions of
example 7:

Tep({II?I2,I3}) = {Gl,ag}

Here, items a; and @2 are the most frequent items actually appearing within the cluster. A problem
with such an approach is that less frequent, items, ie., items appearing in many but not in most of the
transactions, are not included in the cluster representative. O

The use of the Jaccard distance makeg computing a cluster representative problematic. In fact, the
problem of minimizing the expression ). dy{z;, c) given a set {21,..., Zm } cannot be solved in polynomial .
time if ¢ is required to be an itemset [7]. Moreover, the cluster Tepresentative can' have more than one -
cluster center, as the following example shows, ‘

Ezample 15. Consider the transactions T = {a1,03}, Th = {a1,03} and Ty = {a1,a4}. Each of them is
4 good candidate as a cluster Tepresentative, since it minimizes the sum of the distances:

1 ds(T3,T3) = 4/3 Yics dr(Ts, T3) = 4/3 Y 4T3, T3) = 4/3
Zg_—.l dJ ({al}: Tii) = 3/2 ZE:I dJ({ﬂl,az,ﬂ@}, Tz) = 17/12 Z?:] dJ({G1,Gz,G4}, T‘l) = 17/12
21 di({as, as, a4}, T3} = 17/12 E?:l dr({a1,az, a3, a4}, T;)=3/2

I

In order to overcome such problems, we can compute an approximation that resembles the cluster
representatives associated to the euclidean and mismatch-count distances. Union and intersection seern
good candidates to start with,

Lemma 16. Given o set S = {my,.. < Tm}, Tep(S) C Ui 2

Proof. Let U7 = Uz = {e; .. -@n} and R = rep(S). Let us suppose that R Z U. Hence, R = 5, US; such
that:

1L S, CU
2. SgﬂU::ﬂ
3 1Sl =w>0

Suppaose, for a given z; that |$; U x| = k; and |5) N ¥i| = hi. Hence,

di(z;, 81)
= { definition of d; }
(k- h)/k
< { trivial arithmetic }
(5 +w — h)/(k + w)
{ definition of d; }
d_](mi, Stu Sz)



Now, since §; C U, there is at least one element &; such that h; > 0. As a consequence,
Y di(@S) < > dy(wi, R)
i i

that is clearly a contradiction, by definition of R. O

The above lemma shows that the only elements we need to consider in order to compute the represen-
tative are contained in the union of the elements of the cluster. The following example shows, however,
that the cluster center can be different from the union.

Ezomple 17. Let us consider a cluster containing the elements I = {a,a2,a3}, 2 = {a1,063,04} and
I3 = {a1,a2,a5}. Their union is hence U = {oy,0a2,63,04,05}. Now Z?__.l dy(I;, U) = 9/5. However, for
the set C = {ay, 02,03}, we have Z?=1 d;(I;,C)=1. . O

. The idea of approximating the cluster center with the union has some drawbacks that make such
choice unpractical. First of all, the resulting representative can have a huge cardinality because of the
“heterogeneity of objects. If transactions contain a large number of distinct values and the cluster contains
a reasonable amount of transactions, the probability their union has a large cardinality is very high. The
second problem is represented by the fact that the union containg all the values in the objects without
considering their frequencies. In this case, in fact, the resulting intra-cluster similarity can be misleading,
since the cluster may contain elements with little elements in common. ,

To overcome the above problems, one can think to use the intersection of the transactions as an
approximation of the representative. And, indeed, the intersection is actually contained in a cluster
repregentative.

Lemma 18. Given a 3¢t 8 = {€1,...,Zm}, [); 2: C rep(S)

Proof. Again, we prove the assertion by contradition. Let I =, z; = {@1,...,a¢}, and B = rep(S). Let
us suppose that J € R. Hence,

1. R=51U5;
2. 51CI
3. SQHI=9.

Now we choose J = I U 52 and show that, for each z;, ds(z,J) < ds(®i, R).

d_](ll?i, Iu Sg)
= { definition of ds }
z; LTSy —i:tiﬂfIUSz
[2: 01055
= { intersection distributes over union }
|z Sz [—|(z: NN U(z:NS52)]
| US2
= {ICx;and IN(ziNS2) =0}
|z4USs|—|T]|=|z:iNSa|
IZiUSzI
< { Sl }
|2:USs|—|51] =}z 82|
[EIVES
= {Slgmiandslﬂ(xiﬂSg):@}
|z:USa)—{ziMS1)U(=:NSa)|
i:l'.'iUSz|
= { intersection distributes over union }
]miUS;USﬂ—im"ﬂ{S;[USz)i
|I,‘US1US'2I
= { definition of d; }

dJ {xia R)




0 ={1,6,9,4} 7, = {3,5,9,4} T = {0,8,4,7,2} T, = {5,7,9)
T5={975) To={1,32} 7= 10,8,9,7,5} Ty = {3, 4,5,8)

The optimal center is {3,4,5,7,8, 9}, containing all items with frequency > 3/8.

T1={1,2,3,4} T, ={56,7,89) T,= {1,2,10, 11} T, ={12,13,14}
Ts = {5,15,16} Ts = {3, 11,17, 18} T7 = {1,6,19, 20,21}

The optimal center ig {1,2,3,5,8, 9,11}, containing all items with frequency > 2/7.

Fig. 2. Examples of optimal cluster centers.

On the basis of the above result, we obtain that 2idi(z, J) < 2;ds(z;, R), which is clearly a contra-
diction. 0

Example 19. Let us consider again the transactions of example 17. The intersection of such transactions
8 I = {a;}, which has the sum of distances EJ:’:___I dy(I;, 1) = 2 Again, such 2 value is greater that the
value associated to the set ( — {a1, 02,03} " O

Again, it can be unpractical to approximate the cluster tepresentative with the intersection. With

clusters densely populated, it ig very likely to obtain an empty intersection. On the other side, the cluster
representative cannot be empty, as the following result ghows. : : :

Lemma 20. Given a set S ~ {z1...2m}, rep(S) is not empty.

Proof. We proceed by contradiction. Assume that rep(S) = 0. It is easy to see that 3. d;(x;,0) = m.
Let us consider ¢ € j, for some given j. We can split S into two subsets: D — {zi : a € x;} and
E={z;:ag z;}. Clearly, D £ (). As & result, we obtain:
2ity dr (2, {a})

{ definition of
ZiED dj(z, {a}) + zieE‘ dy(z;, {e})

{ definition of d; }
Z,‘Ep(loi, - 1)/,0171 + EieE 1

D i3 not empty }

i

m
that is clearly g contradiction, (]

A property of cluster representatives is that frequent items are very likely to belong to them. Figure 2
shows two examples of this behavior, Clearly, such a broperty is not true in general. Consider, for example,
the transactions T = {a1,03,a4},T5 = {a1, 05,06} T3 = {a1,07,03}, Ty = {az}. The representative of
the above transactions is {az}, but the most frequent item ig a1.

The main problem with the above example is in the heterogenity of the transactions, In homogeneous
clusters, such a drawback can hardly hold. In each case, a simple way of conirolling such an effect can
be that of specify the desired degree of frequency-based similarity. We introduce a user-defined threshold
value -y over the frequency of the iters appearing in the union. Such & parameter represents the intra-
cluster similarity degree desired by the user, and corresponds to the minimum percentage of occurrences
an item must have to be inserted into the approximation of the cluster representative,

Definition 21. For g given set 8 = {z,, ..  Zm}. Let v € [0, 1). The representative of S is defined ag
rep(S) = {'u € Ua:,; | freq(v,8)/m > 7}
i

where freg(v, ) = Hzilv € S}. O



Greater v values correspond to a stronger intra-cluster similarity, less populated clusters and low-
cardinality representatives. By the converse, lower vy values correspond to a weaker intra-cluster similarity,
huge clusters and high-cardinality representatives. By setting v = 1 we choose the intersection as a cluster
representative; by setting -y = 0 we choose the union. :

3.3 TUnclustered Objects

From the definition of d, the elements with empty intersection have distance 1. This means that objects
having an empty intersection with each cluster representative are not inserted in any cluster. We refer
to these unclustered objects as trash. This problem is mainly due to the fact that, within the domain
U equipped with dy several objects can be equally distant from the other clusters. Consequently, any
assignment; of such objects to a cluster is not significant.

In section 5 we show that the cardinality of the trash is related to the clustering parameters (K and )
and to the structure of dataset (Number of input objects, average cardinality of sets, number of distinct
values). To overcome the problem of large trashes, various solutions can be adopted that act over these
parameters.. '

_ The initial cliister centers can be carefully chosen, in order o limit the size of the trash..

— We can iteratively reduce the value of of the 4 value, or augment the number of clusters.

— We can further apply the clustering technique to the trash, by choosing a random set of cluster
representatives among the trash, and grouping the remaining elements re-iterating the algorithm.
In such a way, we can avoid the effects of the high dissimilarity between the trash and the clusters
previcusly generated.

4 ‘Transactional K-Means

The main schema, of the algorithm is shown in fig. 3. The schema is substantially similar to the traditional
K-Means algorithm. However, The algorithm has two main phases. In the first phase, the algorithm
computes k + 1 clusters. The tuples are assigned to the first % clusters according to the distance measure
dy. (k + 1)-th cluster (the trash cluster) is created to contain objects that are not assigned to any of the
first k clusters.

The second phase has the main objective to manage the trash cluster. The main idea in this phase
is to recursively apply the algorithm with different parameters. As explained in the previous section,
different choices can be done at this point. We adopted the solution to try to recursively split the trash
cluster into two further clusters. The idea is that of maintaining the approach as stable as possible, by
trying to split the trash cluster into a minimal number of clusters. Of course, the final result may contain
clusters with a single element: elements substantially different can remain in the trash cluster until they
are not chosen as cluster centers.

4.1 Implementation

An experimental version of the algorithm was implemented in C++. Such an implementation uses three
main data structures: itemset, cluster and kmeens. An itemset is a collection of items, where an item is
represented by a pair identifier-frequency. Itemsets are kept sorted according to their identifier, in order
to speed-up the main operations, such as union, intersection and distance.

The adoption of boolean vectors to represent itemsets is not a suitable approach, unless we deal with
small datasets defined on & small Z. In real-life datasets, this solution requires handling of huge data
structures because of the presence of thousands of distinct categorical values. As an example, we consider
a real-life dataset containing 5961 web sessions containing 57571 distinct web pages and 8799 web sites.
The resulting boolean representation requires 40Mb to code the dataset at the “page” abstraction level
and 6Mb at the “site” abstraction level. A comparison of two objects requires the inspection of the whole

10



Algorithm TrK-Means(D,k,y);

Input : a dataset D = {z1,..., 25} of transactions, the desired number & of clusters. A cluster representative
threshold value -,
Output : a partition ¢ = {Cr,...,Copi} of Din ke clusters, where { > 0,
Method :
— Randomly choose Tiry ..., 24, and set m; = Zi; for 1 < < k.
— Repeat
* for each 7, set C; = {z:lds (m:,m;) < di{zi,m), 1 <1<k}
¢ set Crt1 = {z for each § dy{zi, my;) = 1};
* setmy =rep(C;) for 1 < j < k;
until m; do not change;
— recursively apply the algorithm to Cj,, preducing a partition of Cr+1 in I clusters.

Fig. 3. The Transactional K-Means Algorithm

set of items. This ig clearly a rather expensive operations, if we consider that the average length of a-
session in the dataset is 28, '

A solution to this problem is to adopt efficient compression techniques of sparse matrices, However,
- We can use a more compact representation of objects, by means of lsts implemented by variable-length
vectors. In our example, categorical values are coded using 4 bytes, and the resulting dataset has 600Kb
size using the complete range of values.

A cluster implements the maintenance of the cluster representative. At each iteration, as soon as an

4.2 Complexity analysis

The complexity of the algorithm depends from the complexity of a single iteration. The assignment of
object to the nearest cluster is O(NKc(ds)), where N is the number of objects in the database, K the
number of required clusters and c(dy) is the cost of the computation of the distance between two ob jects.
Assuming that c(dy) is linear in the size of a transaction, the total cost of the cluster assignment phase is
at most O(NK M). The representative constructions is at most O(K M ), since, for each cluster we have to
check the frequency of each item inside a cluster. Assuming to keep ordered all the cluster representatives,
the total cost of an iteration is O(NKM+KMlogM )- The second addend of the sum is significant only
if log M is of the same order of N . This hypothesis is hardly verified in real datasets.
As a result, the complexity of the iteration is, in the worst case, linear in the size of the dataset.

5 Experimental Results

The objective of the following experiments is to study the behavior of the algoritm. To this purpose,

— We first compare the performance of the algorithm with the performance of the standard K- -means
representation that uses a boolean-vector representation.

— Next, we analyze the scalability of the approach on large transactional datasets.

— We study how the barameters of the algorithm, i.e., the 7 threshold and the number % of cluster
influence the trash population. In order to do this, in these tests we do not further partition the trash
cluster,
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— Finally, in order to test the efficacy of the approach, we analyze the results of the algorithm on a real
dataset containing web usage logs.

5.1 Performance

In this phase we use the synthetic data generator available at [16], which allow us to create arbitrary
sets of transactions. The parameters we shall consider are N, the total number of trasnsactions, ||, the
number of distinct items and T, the average length of transactions.

Experiments were made on a Linux system with a 400Mhz Intel Pentium IT processor, 128Mb RAM
and a 10000rpm hard disk. We chose not to load the entire dataset in main memory, since this option can
be unpractical with very large datasets. Better, the tuples are read in blocks and stored in main memory
at need. Tt is worth noticing, however, that the data structures presented in the above section, needed to
represent the transactions, are substantially smaller than the bitmap representations used by standard
K-Means, and typically fit into main memory producing significant performance improvements.

Comparison with K -Means. In order to compare the two algorithms we have implemented a K-Means
version which works on a boolean data matrix, and uses the traditional euclidean distance and cluster
representative. Figures 4 and 5 show the average iteration time of the two approaches. As expected, the
overhead due to the boolean-vector representation is significantly large.

Performance on Large Datasets. The following graphics show the changes in total response time and
average response time for iteration w.r.t. the clustering parameters X and v and dataset properties N,
T and |Z].
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Trash Analysis. The Trash population is extremely significant w.r.t. the clustering results. Intuitively,
a higher number of clusters corresponds to a smaller trash population. At the same time, the trash
population is affecteq by the  threshold value, that fixes the intra-cluster degree of similarity desired
by the user. If 7y is high, the clusters containg object with high similarity. Consequently, a large number
of objects are likely to be contained within the trash cluster. Figure 10 shows the behavior of the trash
population for varying values of X and Y.

The size of the trash population can be affected by the dataset characteristics, too. A greater number
of distinct items and transactions (fig. 11) corresponds to a higher probability of having almost different
transactions. On the other side (fig. 12), transactions with a high average size are more likely to be
similar,

5.2 Application ta Real Datasets

in presence of null values is available at [6].
The main objective of the experiment is to study the behavior of a typical (anonymous) web uger
coming from a given community. To thig purpose, the idea of using the web logs of a proxy server of 1

13
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given community gives us sufficient information about the browsing patterns of the the users belonging
to that community.

We made our experiments with the data available from the web logs coming from the proxy server
of the University of Pisa. A web log is a file in which each line contains a description of the access to a
given web resource from a given user. A typical log row contains information about the IP of the user
requesting the resource, the address of the resource requested, the size and status of the request and the
time the request was made. We considered logs covering two weeks of browsing activity of the users of
the University of Pisa.

In the preprocessing phase, we grouped the user accesses by client. Each web session corresponds to
the sequence of pages that are requested by a given user in a reasonably low time interval [2]. In our
experiment, the dataset contained 5961 sessions with average cardinality of 26 web accesses. We considered
sessions containing information concerning web requests both at the “site” abstraction level and at the
“regource” abstraction level. For both the levels we obtained good quality clusters with acceptable trash
quentity. Figure 13 shows an example of the results obtained using the algorithm at site level with
v = 0.05 and K = 32. For this experiment, the initial cardinality of the trash cluster is 1335, and can
be reduced to smaller values by recursively applying the algorithm. The resulting cluster representatives
contain significant sites concerning related arguments. This peculiarity makes the cluster interpretation
extremely simple. For ingtance, we can observe that cluster 1 groups sessions concerning linux resources,
cluster 2 groups sessions concerning libraries and online document retrieval services, and cluster 3 groups
sessions concerning on-line news.
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6 Conclusion and future work

The great advantage of the & -Means algorithm in data mining applications is its linear scalability. Thig
makes it particularly suitable to deal with large datasets. However the approaches proposed to extend
the use of K-Means to categorical attributes are suitable only for attributes with small domains, because
of the large data structure needed to represent the inputs. The algorithm we have broposed crosses such
limitations,

— replacing traditional vectorial representation of input objects with sets of non-fixed length;
— using a similarity measure capable to deal with sets of categorical objects
— using an efficiently computable frequency-based concept of cluster representative,

These extensions allow us to use our algorithm directly to clyster transactional data without the need to
convert input data into boolean vectors. Formal and experimental results show the that the algorithm
maintains a linear scalability, while the overall cost of the algorithm is not affected by the number of
distinct values in the attribute domains.

The effectiveness of the approach is also proved by the easy interpretability of the results, made
viable by the definition of the cluster representative. Experimental results in thig settings have shown
that the approach can be successfully applied to most significant transactional domains, such as web-
session clustering and document clustering,
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Fig. 13. Examples of Cluster representatives.

modeling of the dataset features, especially in domains in which different characteristics can be present
in the same transactions.
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