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EH from V2X Communications: the Price of
Uncertainty and the Impact of Platooning
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Abstract—In this paper, we explore how radio frequency
energy from vehicular communications can be exploited by an
energy harvesting device (EHD) placed alongside the road to
deliver data packets through wireless connection to a remote
Access Point. Based on updated local topology knowledge, we
propose a cycle-based strategy to balance harvest and transmit
phases at the EHD, in order to maximize the average through-
put. A theoretical derivation is carried out to determine the
optimal strategy parameters setting, and used to investigate the
effectiveness of the proposed approach over different scenarios,
taking into account the road traffic intensity, the EHD battery
capacity, the transmit power and the data rate. Results show that
regular traffic patterns, as those created by vehicles platooning,
can increase the obtained throughput by more than 30% with
respect to irregular ones with the same average intensity. Black
out probability is also derived for the former scenario. The
resulting tradeoff between higher average throughput and lower
black out probability shows that the proposed approach can be
adopted for different applications by properly tuning the strategy
parameters.

Index Terms—Vehicular Communications, Energy harvesting,
Wireless Communications.

I. INTRODUCTION

In the next future, the Internet of Things (IoT) paradigm is
expected to drastically increase the number of interconnected
devices and networks, which will become a fundamental
brick of the future smart cities. A plethora of services and
applications are envisioned to be made available to citizens
everywhere and everytime, due to ubiquitous wireless connec-
tions. At the same time, Machine-to-Machine communications
will play a pivotal role in order to gather and exchange relevant
data in real time from streets, factories, vehicles, public offices
and so on, so as to proactively take actions in order to keep
all services available and efficient.

One of the key aspects of this scenario lies in its energy
demand. While most of these devices will implement energy
efficient protocols and transmission schemes when performing
their communications, their sheer number will inevitably lead
to a growing need for energy, which might offset the assumed
carbon reduction goals for planned smart city transitions.

Recently, a promising solution to provide the required
energy for communication devices has been identified in the
exploitation of the energy scavenged from the ambient, where

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

F. Librino is with the Italian National Research Council, 56124 Pisa, Italy
(e-mail: federico.librino@iit.cnr.it).

P. Santi is with the Italian National Research Council, 56124 Pisa, Italy
and with the Massachussets Institute of Technology, 02139 Cambridge, MA,
USA (e-mail: paolo.santi@iit.cnr.it).

multiple sources can be properly leveraged. Several works
have appeared in the literature, focusing on solar energy, vibra-
tional energy, thermal energy and radio frequency (RF) energy.
Harvesting energy from RF transmissions is a particularly
suitable option, since wireless communications will be part
of most of the smart cities systems and applications. To this
aim, the usage of dedicated wireless transmitters, as well as
cellular networks base stations, has been explored.

In this work, we carry out a preliminary study on another
potentially effective source of RF energy, namely the commu-
nications among vehicles. Indeed, vehicular communications
are also foreseen to become pervasive with the development
of smart mobility systems, as well as autonomous vehicles. In
the future cities, the large majority of vehicles driving along
the roads are expected to be exchanging data and information
also through wireless channels, thus creating a valuable source
of RF energy for devices located close to the main streets.

With the goal of achieving a tractable mathematical analysis,
we investigate a simple yet significant scenario. We consider a
single straight road segment where vehicles travel at constant
speed. An EH device (EHD), willing to send its data to a
sink node, is located close to the street, and is fed only
by the RF energy of vehicular communications. Our aim
is to explore how the knowledge of the network topology,
which we assume available, can be exploited to properly
tune the EH device operational mode in order to maximize
the communication throughput. While limited, the obtained
results can offer insights about the feasibility of the proposed
approach, and a potential scheme to optimize the metrics of
interest.

A. Related Literature
Energy harvesting has been widely investigated in the recent

literature, since it provides an effective way to power mobile
devices without the need for costly or inefficient battery
replacing operations. The challenges in designing devices
capable of scavenging energy have been addressed in early
works [1], [2]. Since then, several different sources of energy
have been considered as feasible to power communication
devices, ranging from solar energy [3], [4] to vibrational
energy induced by the movement of vehicles in a highway [5].
With the worldwide spread of wireless communications, Ra-
dio Frequency (RF) energy harvesting has also become a
promising research direction, as reported in [6] and references
therein. A common feature of all these energy sources lies in
their inner stochastic nature. In order to faithfully reproduce
the unpredictable fluctuations of energy availability, various
stochastic models have been developed and utilized [4], [7]–
[10]. While a combination of multiple energy sources has
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been also envisioned [11], most of the existing work focus
on harvesting from a single source. In particular, RF energy
harvesting has attracted more and more attention, since it
makes the usage of dedicated energy sources viable.

Two main research directions can be distinguished in this
field. The first one focuses on simultaneous wireless in-
formation and power transfer (SWIPT) systems [12]–[17].
Under this paradigm, power (or energy) transfer is intended
as a specific application of RF energy harvesting, where the
harvested energy is purposely emitted by a transmitter in order
to convey part of its energy to the harvester. Multiple-Input-
Multiple-Output (MIMO) transmissions are often suitable for
this type of approach. For instance, in [12], a node with
a good channel towards the MIMO source harvests energy
from the signal in order to forward it to another device with
poorer channel conditions; the idea of EH powered relays is
further developed in [14], where energy is accumulated or used
depending on the channel conditions; in [15], the optimization
of information and energy transmissions is found through a
power splitting optimization algorithm in a scenario where
Interference Alignment is also adopted. The SWIPT approach
can be implemented through either power splitting schemes or
time splitting schemes, but it is feasible only when the source
of energy and the source of data coincide.

The second research direction investigates wireless powered
communication networks (WPCN) [18]–[21]. In this scenario,
the source of data and the source of energy are distinct, with
the latter that can be either dedicated or not. In [18], RF
energy is sent from a MIMO equipped Base Station over the
downlink, so as to allow users to transmit data on the uplink,
and the optimal BS transmit power is found as a function of
the number of antennas and of users. The idea of a hybrid
Access Point acting as a power beacon is leveraged in [19]
as well. Here, throughput maximization and transmission time
minimization problems are tackled in an IoT scenario, where
the Short Packet Communication model is adopted. In [20]
and [12], energy harvesting is used to power a cooperative
jammer, which can protect the subsequent communication
from an eavesdropper. Note that in the abovementioned works,
a dedicated source of energy is exploited. The main advantage
of a power beacon is that the energy supply at the energy
harvesting device can be guaranteed, at least within a certain
level.

Nonetheless, harvesting energy from non dedicated, ambient
sources is also feasible [22]–[24]. In [22], secondary users of a
cognitive radio network harvest energy from ambient sources,
including RF signals; authors derive the upper bound of the
achievable throughput as a function of the energy availability,
the primary traffic characteristics and the traffic detection
threshold. Harvesting energy from primary users transmissions
in instead devised in [23]. Stochastic geometry is used to
determine the distribution of the transmitters, and the optimal
density and transmission power of the secondary users is de-
rived in order to maximize the secondary network throughput
under constraints on the outage probability. Authors in [24]
analyze the battery recharging time for a device that harvests
energy from multiple RF sources, transmitting on different
frequency channels, taking into account both large scale and

small scale fading. From the environmental viewpoint, the idea
of reusing energy which is already available in the ambient
is more appealing, thus explaining the research effort in this
direction.

B. Paper contributions

Despite the vast amount of work in the literature, which
have outlined several promising scenarios, to the best of our
knowledge the usage of vehicle communications [25]–[27] as
the main source of RF energy is yet an unexplored research
direction. Such a scenario has some peculiar characteristics,
the most important one being the partly predictable mobility
patterns of the energy sources. This leads to the need for
considerably different stochastic models able to capture the
fluctuations of energy availability. Motivated by this con-
sideration, we propose a system where energy is scavenged
from vehicle communications, which are foreseen to become
pervasive in the next decades. The specific contributions of
the article are:

• the problem of finding the harvesting strategy that max-
imizes the throughput, based only on local topology
information, is formalized mathematically, taking into
account vehicular traffic statistics, battery capacity and
power allocation;

• the optimization problem is reformulated by identifying a
subclass of strategies that allow a cycle-based throughput
maximization. The solution is derived analytically by
modeling the battery status as a Markov Process;

• the price of uncertainty on the achievable throughput
and energy efficiency is shown by investigating different
vehicular traffic statistics, highlighting the benefits of
vehicles coordination techniques (e.g., platooning);

• a mathematical expression for the black-out probability is
also carried out, and the tradeoff between this probability
and the attainable throughput is also revealed.

The rest of the paper is organized as follows. Section II
describes the system model, including the channel model and
the energy handling model. Our proposed strategy is illustrated
in Section III, where the general maximization problem is
formalized. The throughput mathematical derivation is carried
out in Section IV, and the results are presented in Section V.
Finally, Section VI concludes the paper. As to the notation,
throughout the text bold variables, like M, are used for
matrices, while calligraphic symbols, like S or C, indicate sets.

II. SYSTEM MODEL

We consider a single lane of a straight road segment,
where vehicles drive at a constant speed v0. Their arrival
follows a stochastic process, with the inter-vehicle distance
dv distributed according to a general probability distribution
function (pdf) fD(y). The vehicle density µ is defined as
the reciprocal of E[dv]. All the vehicles are equipped with a
single antenna, and perform continuous wireless transmissions,
with fixed power Pv , on dedicated channels, according to the
802.11p standard1.

1Intermittent transmissions can be accounted for, by adding a transmission
probability to the proposed model.
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A transceiver capable of RF energy harvesting is placed
at distance w from the road. This EHD is powered by a
rechargeable battery, with finite capacity G, and is willing
to transmit data to an Access Point (AP) located at distance
r from it. We assume that the device is backlogged, and
that it can recharge its battery by scavenging energy from
the vehicular communications. Furthermore, no information
is known about the instantaneous battery status. Although
this agnostic system is certainly simplified, it can be applied
to devices with minimal technology, and can still provide
a performance lower bound for scenarios with more refined
technology, where more complex control strategies can be
envisioned. Instead, local topology information is available,
and includes, for each neighboring vehicle, its position and the
currently employed wireless channel. This information can be
easily retrieved by the AP (or by the EHD itself) by listening
to the broadcast channel utilized by vehicles to periodically
exchange beacons. Beacons sent by a vehicle are very short
packets, whose content includes the current position, speed and
heading direction of the vehicle and its neighbors [28], and
are generally sent with relatively high frequency. The AP may
then inform the device about the expected vehicles movement
through a dedicated downlink channel.

While the single lane scenario under investigation is clearly
a simple one, we consider this work as a first brick towards
more complex scenarios: multiple lanes and/or streets, and
variable vehicle speeds will require to take into account more
complex topologies, with time-varying inter-vehicle distances,
while the presence of intersections might induce different
but partly predictable traffic patterns. At the same time, the
deployment of multiple EHDs will allow the development of
network protocols, able to exploit the inhomogeneous spatial
RF energy distribution to smartly identify multi-hop routes
able to deliver packets where they are needed. Data relaying
by vehicles may be also envisioned as an alternative approach.
Indeed, the vehicle can leverage a battery with much higher
capacity, and could therefore relay the data from the EHD
to the AP. There may be, however, some drawbacks in this
solution. Firstly, the vehicles are assumed to be moving,
while the EHD has a fixed (and probably smartly planned)
position. This makes it possible to employ features able to
improve the EHD-AP channel (e.g., directional antennas, or
precise beamforming through MIMO techniques at the AP,
which would also result in better resilience against interference
from multiple EHDs). Secondly, the two-hop transmission
from the EHD to a vehicle and then to the AP should be
performed on one of the channels used by the vehicles for
V2X communications. This may be impractical in an urban
scenario with high vehicular density, where these channels are
likely to already sustain a high load. Moreover, a coordination
protocol should be implemented in order to avoid multiple
vehicles to forward the data from the same EHD, thus further
increasing the channels load due to the necessary overhead. We
leave these interesting extensions as promising future research
directions.

We consider a slotted time model, where the slot duration is
T . The EHD is equipped with a single antenna, that is used for
both transmission and energy harvesting. These two operations

Notation Parameter
dv Inter-vehicle distance [m]
µ Intensity of arrivals Poisson process [vehicle/m]
r Distance between EHD and AP [m]
w Distance between EHD and lane center [m]
T Duration of a time slot [s]
v0 Vehicles speed [m/s]
Pt EHD transmit power [W]
Pv Vehicle transmit power [W]
N0 Noise power [W]
α Path loss coefficient
κ Rice factor
η Harvesting efficiency
Etx Energy required for data packet tx [J]
B Channel bandwidth between EHD and AP [Hz]
S Data packet size [bit]
ϕs Decoding probability at AP
G Battery capacity [J]
Ns Energy quanta in a full battery
ℓ Harvesting distance [m]

TABLE I
LIST OF PARAMETERS.

are mutually incompatible, meaning that, at a given time slot,
the EHD can be either in Transmit or in Harvest mode. The
energy scavenged in the Harvest mode is used to replenish the
battery, which later provides this energy for data transmission.
All the relevant parameters are listed in Table I.

A. EHD transmissions model

When the EHD device is in Transmit mode, it sends one
data packet per slot to the AP, with transmit power Pt. The
energy required to send a packet is equal to Etx = PtT , which
is drained from the battery. If the battery level is already
below Etx, the transmission is unsuccessful, and the battery
is completely discharged; if the battery is already empty, the
EHD remains silent. We assume that data packets have size S
bit. The channel model from the EHD to the AP includes both
path loss, with exponent α, and Rayleigh quasi-static block
fading. Hence, a data packet sent at time slot n is received at
the AP with a Signal-to-Noise ratio given by

SNR(n) =
Ptr

−α

N0
|h(n)|2, (1)

where N0 is the noise power, and h(n) is modeled as a
complex Gaussian random variable with zero mean and unit
variance. Therefore, |h(n)|2 is an exponential random variable
with unitary mean. The fading coefficients are considered i.i.d.
across time. According to the Shannon capacity model, the
packet is correctly received if

B log2(1 + SNR(n)) ≥ S

T
, (2)

where B is the channel bandwidth, thus yielding the decoding
probability

ϕs = exp

(
−N0r

α

Pt

(
2

S
BT − 1

))
. (3)

B. EHD harvesting model

When the EHD is in Harvest mode, it uses its antenna to
scavenge energy from the neighboring vehicles. We consider
a linear model for the harvesting, that is, a fraction η of the
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incoming energy is actually stored in the battery. Non linear
harvesting model has been investigated as well [29], since
they are closer to the behavior of real devices. Nevertheless,
as shown in [30], the difference between the two models
becomes relevant when the input power is high, e.g., in the
presence of power beacons specifically deployed to supply
energy to surrounding EHDs. In our scenario, instead, energy
is obtained from vehicular communications, whose adopted
power is much lower: even when the vehicle is closest to the
EHD, the input power Pv/w

α is lower than 1 mW, thus the
linear model can be chosen as a tight approximation of the
more realistic exponential one.

Following the abovementioned channel model, the incoming
power from a vehicle at distance dt at time instant t is

Pr(t) =
Pv

dαt
|hv(t)|2. (4)

For the fading coefficient hv(t), we consider Rician fading,
which more faithfully reproduces the LOS communications
occurring when the EHD is closer to the street, and is often
more suitable for short range transmissions [31]. In this
case, hv(t) is modeled as a Rice random variable with scale
parameter equal to 1 and Rice factor (that is, the ratio between
the power of the LOS component and the scattered ones)
equal to κ. The amount of energy harvested from this vehicle
(and stored in the battery) on a time interval ∆ centered at
t is therefore ∆ηPr(t). Notice that this holds only if ∆ is
small, since both the channel fading and the vehicle position
change across time. This makes the modeling of harvested
energy less straightforward. On one side, averaging out the
fading would allow a continuous time model, able to better
represent the continuous position variation. Such a model,
while offering some general insights on the overall system
evolution, would miss the impact of the inherent stochastic
nature of the wireless channel. On the other side, it is possible
to rely on a discrete time model, such that in any time step the
vehicle position and the channel fading are considered fixed,
with fading coefficients independent across time. The choice
of the time step size must be done carefully. Too long time
steps would not capture the vehicles movement adequately,
especially when vehicle speed is high; conversely, too short
time steps would make the hypothesis of independent fading
coefficients unrealistic, thus requiring to take into account
involved stochastic correlations. In this work, for the sake of
simplicity, we set the quantization step equal to the time slot,
which was purposely chosen so as to guarantee i.i.d. fading
coefficients. The scavenged energy on a given slot n is hence
ηP

(n)
r T , where P

(n)
r is obtained from (4) by using the fading

coefficient hv(n) and setting dt equal to the distance between
the EHD and the midpoint of the road segment traversed by
the vehicle during that time slot. This energy is stored in the
battery, up to its capacity G: if additional energy is obtained,
it cannot be stored, and is consequently lost.

When multiple vehicles are present, they will transmit on
different channels of a given spectral band (e.g., the 5.9 GHz
band for 802.11p) in order to avoid interference, especially
if they are close to each other. The EHD is assumed to
be designed to operate on the entire fraction of spectrum

dedicated to V2X communications, and to be therefore able to
perform energy harvesting irrespective of the specific channel
selected by each vehicle.

C. EHD battery model

The energy harvested by the EHD is stored in a finite
capacity battery, which then provides the energy required for
data transmission. Call Φn the battery level at the beginning of
time slot n. If the EHD is in Transmit mode, then the battery
status updates as

Φn+1 = max(Φn − Etx, 0). (5)

Conversely, if it is in Harvest mode, the update is

Φn+1 = min(Φn + ηP (n)
r T,G), (6)

where P
(n)
r is the incoming power in the current time slot,

assuming fixed vehicles positions and fading coefficients, as
explained above. While the energy expense in the Transmit
mode is inherently quantized, due to the fixed transmit power
level Pt, the same does not hold for the energy harvested in the
Harvest mode, since P

(n)
r ∈ R+. As stated above, however, no

information about the current battery status Φ(n) is available
at the EHD.

D. Throughput definition and problem formulation

The throughput is defined as the number of packets correctly
delivered over a given time interval. Call sn ∈ {0, 1} the
mode selected by the EHD at time slot n, which can be either
Transmit mode (sn = 1) or Harvest mode (sn = 0). In time
slot n, a packet is delivered if the following conditions hold:

• sn = 1, that is, the EHD selects Transmit mode;
• Φn ≥ Etx, that is, there is enough energy in the battery;
• the packet is correctly decoded at the destination.

The third condition does not depend on the EHD operational
mode, but only on the channel conditions, and can be modeled
through the delivery probability ϕs in (3). The first condition
depends on the EHD mode of the present time slot, and the
second one depends (also) on the operational mode selected
in the previous time slots. Hence, the throughput is defined as

Θ = lim
N→+∞

ϕs

NT

N∑
n=1

χ(Φn ≥ Etx)sn, (7)

where χ(·) is the indicator function. From (7), it follows that
the throughput depends on the operational mode selection of
the EHD at each time slot since, even when Transmit mode
is chosen, a successful transmission can be performed only if
there is enough energy stored in the battery.

The choice of the operational mode in a slot must be
based on the local topology, since this is the only available
information. Call C the set of all the possible local topology
configurations, each one characterized by the number and
locations of the vehicles within a given distance from the
EHD. A strategy σ : C → {0, 1} maps any possible local
topology configuration into a binary value that determines the
operational mode. Hence, the set H of all possible strategies
has cardinality 2|C|. Under strategy σ, the value of sn at slot
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n is set to σ(Cn), being Cn ∈ C the topology configuration
at that time slot.

The related throughput maximization problem can hence be
written as

max
σ∈H

E

[
lim

N→+∞

ϕs

NT

N∑
n=1

χ(Φn ≥ Etx)σ(Cn)

]
s. t. Cn ∈ C,

Φn ∈ [0, G],

Φn = Φn−1 +min(ηP (n)
r T,G− Φn−1)(1− σ(Cn))+

−min(Etx,Φn−1)σ(Cn).
(8)

Notice that problem (8) is hard to tackle: P (n)
r is known only

stochastically, based on the vehicles position at each slot, and
the maximization is hence done over the expected value of Θ.
Moreover, the size of C is potentially very high, making the
number of possible strategies overwhelming.

III. CYCLE-BASED MODE SELECTION STRATEGY

In this section, we propose a heuristic approach to solve
(8), based on two observations. The former is that, due to
the law of energy propagation, even when there are multiple
vehicles in the proximity of the EHD, the energy harvested
by the closest one is by far the largest fraction. Hence, we
can characterize a topology configuration by simply using
the (quantized) distance of the closest vehicle from the EHD,
which lets us consistently reduce the cardinality of set C (and
hence of set H).

The second observation is that, while the selection of the
Transmit mode gives a reward that is stochastically inde-
pendent from the time slot (since both the EHD and the
AP remain at the same location, thus leaving the decoding
probability unaltered across time), the same is not true for
the Harvest mode. Indeed, choosing the Harvest mode is
particularly advantageous only when there is a vehicle close
to the EHD location, thus reducing the impact of path loss
and increasing the expected value of harvested energy. The
key idea is hence to adopt Harvest mode as long as a vehicle
is close enough, and Transmit mode otherwise. By doing this,
we are actually restricting the search of the optimal strategy
to the subset Ĥ ⊂ H containing only the strategies that
prescribe Harvest Mode when the closest vehicle is nearer
than a threshold distance, which we call harvest distance, and
Transmit Mode otherwise.

This approach effectively divides time into cycles, each
composed by a Harvest Phase (HP) followed by a Transmit
Phase (TP). During the time slots of the former phase, Harvest
mode is always selected, while Transmit mode is chosen in
all the time slots of the latter phase. A cycle begins when
a vehicle gets closer to the EHD than the harvest distance,
thus triggering a new HP, which lasts until the vehicle moves
farther than the same threshold. At this point, the TP starts,
and continues until the next vehicle gets closer than the harvest

distance, which corresponds to the start of the next cycle2.
Each strategy in Ĥ is characterized by a different har-

vest distance value. Therefore, finding the best solution is
equivalent to finding the optimal harvest distance. Making
it large grants more time to recharge the battery; however,
any time slot in the HP corresponds to a missed transmis-
sion opportunity, and inflating it too much has a detrimental
effect. Conversely, reducing the threshold leaves more time
for transmissions, but at the cost of a lower average amount
of harvested energy, thus increasing the risk of an energy
outage. Notice that the harvest distance might be limited by
the EHD sensitivity, that is, the minimum amout of incoming
power necessary for actual harvesting. While we do not model
sensitivity explicitly, it can be easily included by adding
a constraint to the harvest distance, which depends on the
specific device implementation. For instance, with a sensitivity
of -18.5 dBm, which is already achieved in some commercial
products, we get that the harvest distance should be lower than
18 m, which will be proved to be much higher than the optimal
value in the considered scenario.

A. Simplified Problem Formulation

Consider a Cartesian plane such that the considered road
lane is placed along the x axis, with the vehicles moving
eastward. The EHD is placed at coordinates (xehd,−w). For
mathematical tractability, the harvest distance ℓ, triggering the
beginning of a new cycle, is not measured between the vehicle
and the EHD, but between the vehicle and the projection of the
EHD location onto the road segment, that is, point (xehd, 0).
The corresponding distance between the vehicle and the EHD
can be easily derived.

The q–th cycle starts when vehicle Vq arrives at position
(xehd − ℓ, 0), and lasts until the following vehicle Vq+1 gets to
the same location. The HP starts at the beginning of the cycle,
and ends when Vq arrives at position (xehd + ℓ, 0). Figure 1
gives a picture of the considered scenario. In the upper part, a
qualitative sketch of the average amount of incoming power,
as a function of the vehicles positions, is also depicted.

Since the speed is assumed constant, in the q–th cycle the
HP lasts for NH = 2ℓ/(v0T ) time slots, while the TP lasts for
NT (q) = (dq − 2ℓ)/(v0T ) time slots, being dq the distance
between Vq and Vq+1. It must be observed, however, that not
all the NT (q) transmissions might actually take place, since
energy outage events might occur. Call Φ(q) the energy stored
in the battery at the beginning of cycle q, and Eh(q) the
energy collected during the HP of cycle q. The number Wq

of transmissions performed in cycle q becomes

Wq = min

(
NT (q),

min (Φ(q) + Eh(q), G)

Etx

)
, (9)

where the maximum theoretical number of transmissions
NT (q) is limited by the amount of transmissions that can be
performed with the available energy. This is in turn given by

2The TP might be absent when two vehicles are very close to each other,
since the latter might get closer than the harvest distance when the former
is still within the same distance. Conversely, over a long TP, the EHD might
run out of energy, thus remaining silent until the following HP.
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Vq+1 Vq

dq

w

r

xehd xehd+ℓxehd−ℓ

x

y

x

P

2ℓdq − 2ℓ

Fig. 1. Graphic representation of the considered scenario. Above, a qualitative
graph of the average received power as a function of the vehicles positions is
also reported, which shifts as the cars move. Since the EHD harvests energy
when the x-coordinate of the closest vehicle is within the interval [xehd −
ℓ, xehd + ℓ], the yellow shaded area is proportional to the harvested energy.

the sum of the energy Φ(q) already present in the battery and
the one harvested during the HP.

Leveraging the i.i.d. property of the inter-vehicle distances,
we can model the system as a Renewal-Reward process,
where the reward variable Wq is the number of transmissions
performed in the q–th cycle, while the holding time Zq is the
duration of the cycle, equal to dq/v0.

Notice that while the Zq’s are i.i.d. by assumption, the Wq’s
are identically distributed, but in general not independent.
The source of correlation among Wq and Wq+1 lies in the
energy stored in the battery at the end of the q–th cycle,
which induces a negative correlation. In fact, a high number
of transmissions in cycle q means that lower energy is left
at the beginning of cycle q + 1, resulting in a stochastically
lower value for Wq+1. This correlation mainly depends on the
battery capacity; however, it is quite loose, as confirmed by
the accuracy of the obtained results, and can be neglected.

According to the elementary renewal theorem for Renewal-
Reward processes, the average throughput can be written as

Θ =
E [Wq]

E[Zq]
, (10)

and the throughput maximization problem can be reformulated
simply as

max
ℓ

ϕsv0
E[dv]

EΦ,Eh,dv

[
min

(
dv − 2ℓ

v0T
,
min(Φ + Eh, G)

Etx

)]
,

(11)
where the number of transmissions must be averaged over the
inter vehicle distance, the amount of energy in the battery and
the amount of harvested energy during the HP. We compute
the throughput as

Θ =
ϕsv0
E[dv]

∫ G

0

∫ +∞

0

∫ +∞

0

min

(
y − 2ℓ

v0T
,
min(z + x,G)

Etx

)
×

× fE(x)fD(y)fB(z)dxdydz. (12)

The distribution of the inter vehicle distance dv is given by the
generic distribution fD(·), while fE(·) is the distribution of the

per cycle harvested energy Eh, and fB(·) is the distribution of
the battery level at the beginning of a cycle. The derivations
of fE(·) and fB(·) are detailed below.

B. Distribution of the per cycle harvested energy Eh

The HP takes place in the time interval during which the
vehicle Vq that provides energy traverses a segment of length
2ℓ. According to the discrete model outlined above, we divide
this road segment into L segments of length v0T , each one
covered by the vehicle in a single time slot.

Its movement is quantized by assuming that, during each
time slot, the vehicle is fixed at the midpoint of the crossed
segment. The energy Eh harvested then reads as

Eh =

L−1∑
i=0

ηPvT[
w2 +

((
i+ 1

2

)
v0T − ℓ

)2]α/2Xi =

L−1∑
i=0

Xi

λi
,

(13)
with L = ⌈2ℓ/(v0T )⌉, and

λi =
1

ηPvT

[
w2 +

((
i+

1

2

)
v0T − ℓ

)2
]α/2

, (14)

where Xi represents the square of the rician fading coefficient
experienced in the i–th road segment, and is therefore equal
to Yi/(2(κ+1)), being κ the Rice factor and Yi a noncentral
chi-square random variable with 2 degrees of freedom and non
centrality parameter 2κ (thus correctly resulting in E[Xi] = 1).
Hence, we can rewrite the overall harvested energy as

Eh =
1

2(κ+ 1)

L−1∑
i=0

Yi

λi
, (15)

which is basically a linear combination of noncentral chi-
square random variables. The resulting distribution is quite
involved, and has no closed form expression. We then ap-
proximate it using the saddle point approximation as follows.
The moment generating function of Eh is

ME(t) =

L−1∏
i=0

λ̂i

λ̂i − 2t
exp

(
2κt

λ̂i − 2t

)
, (16)

where λ̂i = 2(κ + 1)λi. The cumulant generating function
KE(t) = ln(ME(t)) is therefore

KE(t) =

L−1∑
i=0

(
ln

(
λ̂i

λ̂i − 2t

)
+

2κt

λ̂i − 2t

)
. (17)

Its first and second derivatives are, respectively,

K ′
E(t) = 2

L−1∑
i=0

1

λ̂i − 2t

(
1 +

κλ̂i

λ̂i − 2t

)
, (18)

K ′′
E(t) = 4

L−1∑
i=0

1

(λ̂i − 2t)2

(
1− 4κ

λ̂i − 3t

λ̂i − 2t

)
. (19)

The CDF FE(x) can thus be obtained as [32], [33]

FE(x) = Φ(u) +
e−u2/2

√
2π

(
1

u
− 1

v

)
, (20)

where Φ(·) is the CDF of the standard normal distribution, ẑ
is the solution of the saddle point equation K ′

E(ẑ) = x, while
u = sgn(ẑ)

√
2(ẑx−KE(ẑ)) and v = ẑ

√
K ′′

E(ẑ).
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C. Battery status statistics
Differently from the harvested energy Eh, whose distribu-

tion is independent across cycles, the battery status evolves
across time, and a different approach is needed in order to cope
with the resulting time correlation. The evolution of the battery
status on a cycle basis is given by the following expression:

Φ(q + 1) = max (min (Φ(q) + Eh(q), G)− EtxNT (q), 0) ,
(21)

where NT (q) is the number of slots in the TP during cycle
q, Eh(q) is the harvested energy in the HP, and Φ(q) is the
battery charge at the beginning of cycle q. Since the battery
status depends only on its value in the previous cycle, we
can model its evolution as a discrete time Markov Process,
whose status sq at instant q is given by the battery level at the
beginning of cycle q.

In principle, the battery level can assume any real value in
the interval [0, G]. For mathematical tractability, we introduce
an approximation by quantizing it with quantization step Etx.
We hence assume that the harvested energy Eh in the HP
is rounded down to the closest multiple of Etx. Since Etx is
usually much smaller than G, we expect this approximation
to have negligible effects on the overall system performance.

Let us define Ns = G/Etx, which means that a fully
charged battery can provide energy for at most Ns data
packet transmissions (independently from the packet size S).
According to the quantization, the Markov process is turned
into a discrete state process, with the states given by the set
S = {0, Etx, 2Etx, . . . , NsEtx}. Coherently, the battery status
distribution fB(·) in (12) is replaced by a discrete probability
mass function pB(·), defined over the domain S, and equal to
the status steady state distribution π of the Markov process.

In order to find π, we first derive the Markov process
transition matrix M. The transition from state sq ∈ S to state
sq+1 ∈ S depends on both the energy harvested during the
HP and the energy depleted during the TP. As to the former,
the probability mass function pE(·) of the harvested energy
quanta in a cycle can be written as

pE(k) =

{
FE ((k + 1)Etx)− FE (kEtx) for 0 ≤ k < Ns

1− FE(NsEtx) for k = Ns,
(22)

where FE(·) is the continuous CDF of the harvested energy
Eh defined in (46). Note that the domain of pE(·) is limited
between 0 and Ns, thus taking into account the finite battery
size G.

The number of energy quanta that can be spent during the
cycle is instead equal to the number of time slots in the TP
(capped to Ns), and proportional to the inter vehicle distance,
which is distributed according to fD(·). Henceforth, it follows
the distribution

pT (k) =


FD(2ℓ) for k = 0,

FD(2ℓ+ kv0T )+

−FD(2ℓ+ (k − 1)v0T ) for 0 < k < Ns,

1− FD(2ℓ+ (Ns − 1)v0T ) for k = Ns.
(23)

In fact, when the inter vehicle distance is lower than 2ℓ, the
cycle has no TP, no transmission is performed, and no energy

is depleted. Conversely, if the distance is greater than 2ℓ +
(Ns − 1)v0T , the maximum number Ns of transmission is
limited by the battery capacity.

The probability pi,j of the process moving from state sq =
iEtx to state sq+1 = jEtx can be computed as

pi,j=



Ns∑
h=max(j−i,0)

pE(h)pT (min(i+ h,Ns)− j) if j ̸= 0

Ns∑
h=0

pE(h)

Ns∑
k=min(i+h,Ns)

pT (k) if j = 0.

(24)
These values, for i, j,∈ {0, 1, 2, . . . , Ns} are collected in the
Ns + 1 × Ns + 1 transition matrix M, with element M[i, j]
equal to pi−1,j−1. The steady state distribution π is then
obtained as the normalized left eigenvector of M associated
with eigenvalue 1.

We point out a couple of observations. Firstly, the distribu-
tion pE(·) assumes that energy is harvested from one vehicle
at a time. This may not be entirely true if two vehicles are very
close to each other, and especially if their distance is lower
than 2ℓ. In this case, the proposed theoretical approach is an
approximation that tends to underestimate EH, whose tightness
depends on the value of ℓ and on the inter-vehicle distance
distribution fD(·). As long as the energy harvested from a
vehicle when its distance is higher than ℓ is negligible, and/or
FD(2ℓ) is low, the theoretical result is expected to faithfully
reproduce the actual system behavior. Secondly, the derivation
of the distribution pB(·) of the battery status presented above
makes it hard to derive a closed form expression to the
maximization problem (11). Nevertheless, it offers a simple yet
effective tool to analyze the throughput as a function of several
tunable parameters, and to draw some practical conclusions,
as detailed in the Results section.

IV. THROUGHPUT COMPUTATION

Exploiting the battery status quantization, the expression in
(12) can be rewritten as

Θ =
ϕsv0
E[dv]

Ns∑
k=0

pB(k)Ψ(k), (25)

where

Ψ(k) =

∫ +∞

2ℓ

∫ +∞

0

min

(
y − 2ℓ

v0T
,
min(kEtx + x,G)

Etx

)
×

× fE(x)fD(y)dxdy (26)

is the average number of transmissions per cycle, for a given
value of the tunable parameter ℓ, conditioned on the fact that
the battery contains k energy quanta at the beginning of the
cycle. In (26) we have accounted for the fact that throughput
is 0 when the inter vehicle distance y is lower than 2ℓ, since
in this case there is no TP.

In order to solve (26), we can firstly split the inner integral
into two terms. Recalling that G = NsEtx, we get

Ψ(k) =

∫ +∞

2ℓ

∫ δ

0

min

(
y − 2ℓ

v0T
,
x

Etx
+ k

)
fE(x)dxfD(y)dy +

+(1− FE(δ))

∫ +∞

2ℓ

min

(
y − 2ℓ

v0T
,Ns

)
fD(y)dy, (27)



8

being δ = (Ns − k)Etx the amount of energy needed to fully
replenish the battery. The latter term, which we call Ψ2(k),
represents the case when the harvested energy recharges the
battery completely. The number of transmissions here depends
only on the battery capacity and the cycle duration (that is,
the distance of the next vehicle), and therefore only on fD(·).
We can elaborate it to get

Ψ2(k) =
1− FE(δ)

v0T

(∫ W

2ℓ

yfD(y)dy +Nsv0T+

+2ℓFD(2ℓ)−WFD(W )

)
,

=
1− FE(δ)

v0T

(
Nsv0T −

∫ W

2ℓ

FD(y)dy

)
, (28)

where W = 2ℓ+Nsv0T is the maximum inter-vehicle distance
over which a fully charged battery can avoid an energy outage.

The former term in (27), which we call Ψ1(k), corresponds
to the case when the battery is not fully replenished during
the harvest phase of the current cycle. In this case, we can
split the outer integral into three parts, each corresponding to
a different situation:

1) 2ℓ < y ≤ 2ℓ + kv0T = R: in this case, the inter
vehicle distance is low, and the energy contained in the
battery even before the harvest phase (kEtx) is already
enough to perform all the transmissions of the cycle; the
corresponding term is

Ψ11(k) =

∫ R

2ℓ

∫ δ

0

y − 2ℓ

v0T
fE(x)dxfD(y)dy

=
FE(δ)

v0T

(∫ R

2ℓ

yfD(y)dy − 2ℓ (FD(R)− FD(2ℓ))

)

=
FE(δ)

v0T

(
kv0TFD(R)−

∫ R

2ℓ

FD(y)dy

)
. (29)

2) R < y ≤ W : in this case, the inter vehicle distance is
greater, the energy already stored in the battery is not
sufficient, and the overall number of transmissions depends
on both the amount of harvested energy and the cycle
length; the corresponding term is

Ψ12(k)=

∫ W

R

∫ δ

0

[
k +

min (β(y), x)

Etx

]
fE(x)dxfD(y)dy

=
1

Etx

∫ W

R

(∫ β(y)

0

xfE(x)dx+β(y)

∫ δ

β(y)

fE(x)dx

)
fD(y)dy+

+kFE(δ) (FD(W )− FD(R)) , (30)

where β(y) = [(y − 2ℓ)/(v0T ) − k]Etx is the minimum
energy to be harvested to avoid energy outage, and is a
function of y. After some algebraic manipulations, Ψ12(k)

can be rewritten as

Ψ12(k)=FD(W )FE(δ)Ns +
1− FD(W )

Etx

∫ δ

0

FE(y)dy +

−FE(δ)

v0T

∫ W

R

FD(y)dy − kFE(δ)FD(R) +

− 1

Etx

∫ δ

0

FE(y)

(
1− FD

(
v0T

Etx
y +R

))
dy. (31)

3) y > W : in this case, the inter vehicle distance is large, and
even replenishing the battery is not enough to guarantee
continuous transmissions until the end of the current cycle.
The overall number of transmissions depends only on the
amount of harvested energy, and the corresponding term is

Ψ13(k) =

∫ +∞

W

∫ δ

0

(
k +

x

Etx

)
fE(x)dxfD(y)dy

=(1− FD(W ))

(
kFE(δ) +

1

Etx

∫ δ

0

xfE(x)dx

)

=(1− FD(W ))

(
NsFE(δ)−

1

Etx

∫ δ

0

FE(x)dx

)
. (32)

Overall, the expected number of transmissions per cycle,
conditioned on the battery level k, is given by Ψ11(k) +
Ψ12(k) + Ψ13(k) + Ψ2(k), which yields

Ψ(k) = Ns −
1

v0T

∫ W

2ℓ

FD(y)dy +

− 1

Etx

∫ δ

0

FE(y)
[
1− FD

( y

m
+R

)]
dy, (33)

with m = Pt/v0. Intuitively, equation (33) states that the
maximum number of transmitted packets in a cycle would
be Ns, that is, the number of packets that can be sent with a
fully charged battery. This number is limited by two factors:
i) the subsequent vehicle can be too close to allow the EHD
to send all the packets (second term in (33)); ii) the energy
harvested may not be enough to charge the battery and sustain
continuous transmission when the subsequent vehicle is farther
away (third term in (33)).

A. Sparse vehicular traffic: Poisson arrivals
In this section, we consider a scenario with low vehicular

traffic, which we model as a Poisson process, with intensity µ,
meaning that FD(x) = 1−e−µx. This distribution is not fully
realistic, since its domain is R+, while very short distances
are not feasible in real scenarios. However, as long as µ is not
too high, it can still give reasonable results. In addition, slight
modifications, likely introducing a minimum distance between
vehicles, can be easily incorporated. Under this assumption,
substituting FD(x) it into (33) gives

Ψ(k) = Ns −
1

v0T

(
W − 2ℓ+

e−µW

µ
− e−2ℓµ

µ

)
+

−e−µR

Etx

∫ δ

0

FE(y)e
−µ y

m dy

=
1

µv0T

(
e−2ℓµ− e−µR

)
+
e−µR

Etx

∫ δ

0

(1− FE(y))e
−µ y

m dy.

(34)
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The integral, using the CDF in (20), can be numerically com-
puted. By replacing (34) into (25), and setting E[dv] = 1/µ,
the average throughput Θ is obtained.

B. Heavy vehicular traffic or platooning: constant inter-
vehicle distance

Due to the foreseen spread of V2X communications and
autonomous vehicles, platoons are expected to be often ex-
ploited as an energy saving, safe formation. Vehicles in a
platoon move at the same speed, and keeping inter-vehicle
distances approximately constant. We model this scenario by
replacing the stochastic inter-vehicle distance dv with a fixed
one, namely d0. A very similar situation is represented by
vehicular traffic congestion, where vehicles move (usually at
low speed) with nearly constant distance from each other.

In this scenario, the distribution pT (k) of the energy quanta
depleted, in (23), becomes equal to 1 only for k = ⌊min((d0−
2ℓ), Ns)/(v0T )⌋, and 0 otherwise. The expression for the
conditioned number Ψ(k) of transmissions per cycle greatly
simplifies, and depends on the value d0, thus giving

Ψ(k) =



0 if d0 < 2ℓ
1

v0T
(d0 − 2ℓ) if 2ℓ ≤ d0 < R

k +
1

Etx

∫ m(d0−R)

0

(1− FE(x))dx if R ≤ d0 < W

k +
1

Etx

∫ δ

0

(1− FE(x))dx if d0 ≥ W,

(35)
where the integral, inserting the CDF in (20), can be eas-
ily computed numerically. By putting (35) into (25), with
E[dv] = d0, the expected throughput is obtained. Notice
that in this case, since the duration of the cycle is constant,
the expression in (25) does not require the Renewal-Reward
process approximation, and is therefore exact. In this scenario,
d0 depends on the vehicular traffic conditions. Nevertheless,
it can still be partially tuned by the EHD, by choosing not
to harvest energy from every vehicle, but, if convenient, from
only some of them, at regular intervals, which is equivalent to
have a bigger inter-vehicle distance (2d0, 3d0, and so on).

C. Energy Efficiency
We can use the throughput expression to derive energy

efficiency, which is also a relevant metric in this scenario.
We compute it, in both the abovementioned scenarios, as the
expected number of bits that are correctly delivered per unit
of available energy.

For the platooning scenario, with inter-vehicle distance d0,
consider a cartesian plane, where vehicles move along the
x-axis heading to the left. The EHD is placed aside from
the street, at location (0,−w). For symmetry reasons, we
can evaluate the average RF energy density εplat over the
time interval Tc = [−d0/(2v0), d0/(2v0)], where we assume,
without loss of generality, that at instant 0 the closest vehicle,
V0, is at location (0, 0).

The energy density in this time interval can be written as

εplat =
v0
d0

∫ d0
2v0

− d0
2v0

∑
j

P (j)
r (t)dt, (36)

being P
(j)
r (t) the power received from the j–th vehicle.

Equation (36) is exact if the signals received from different
sources are nonoverlapping, narrow-band signals [24], which
is reasonable at least from neighboring vehicles, in order
to avoid interference. Indeed, in practical cases the energy
coming from far vehicles is negligible, and the summation in
(36) can be considered a very good approximation.

We compute P
(j)
r (t) by averaging the effect of the fast

fading, thus getting:

P (j)
r (t) =

Pv

(w2 + (v0t− jd0)2)
α/2

, (37)

where we consider the path loss attenuation.
Equation (36) can be hence reformulated as

εplat =
Pvv0
d0

+∞∑
j=−∞

∫ d0
2v0

− d0
2v0

1

(w2 + (v0t− jd0)2)
α/2

dt

=
Pv

d0

+∞∑
j=−∞

∫ d0
2

− d0
2

1

(w2 + (x− jd0)2)
α/2

dx, (38)

where we set x = v0t, thus converting time into space. Now,
by further setting y = x− jd0, we obtain

εplat =
Pv

d0

+∞∑
j=−∞

∫ −jd0+
d0
2

−jd0− d0
2

1

(w2 + y2)
α/2

dy

=
Pv

d0

∫ +∞

−∞

1

(w2 + y2)
α/2

dy

=
Pv

d0

√
πw1−αΓ

(
α−1
2

)
Γ
(
α
2

) , (39)

where Γ(·) is the Gamma function. Notice that the average
amount of energy available during Tc is equal to the one that
would be provided over an infinite time horizon by vehicle V0

alone. This is reasonable, since the energy that V0 provides out
of Tc must be equal to the energy that other vehicles provide
within Tc, due to the symmetry of the configuration.

The same expression holds also for the scenario with
Poisson arrivals. In a generic instant t0, call xi the position,
over the x axis, of the i–th vehicle. The average energy density
here reads as

εpois = E

[∑
i

Pv

(w2 + x2
i )

α/2

]
(a)
= µPv

∫
R

1

(w2 + x2)α/2
dx, (40)

where (a) comes from Campbell’s Theorem applied to a linear
Poisson Point Process with intensity µ, and gives back (39),
with d0 replaced by 1/µ. Since these two quantities represent
the expected inter vehicle distance in the two scenarios,
respectively, we can replace them both with E[dv], thus getting
a unique expression which, for the case α = 3, can be
simplified into

ε =
2Pv

w2E[dv]
. (41)
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Parameter Value Parameter Value
r 200 m N0 -90 dBm
w 5 m α 3
T 100 ms η 0.5
v0 10 m/s B 15 kHz
Pt 40 µW S 1 kbit
Pv 100 mW G 400 µJ

TABLE II
PARAMETER VALUES.

The throughput, in bits per second, is SΘ, being S the
packet size. The overall energy efficiency, that is, the number
of bits correctly sent per unit of available energy, is therefore

Υ =
SΘ

ε
=

Sw2E[dv]
2Pv

Θ. (42)

V. RESULTS

We analyze how different parameters, like the vehicular
traffic pattern and intensity, the battery capacity, the EHD
transmission power and the choice of the harvesting distance
affect the system throughput. In addition, we compare the
theoretical results with those obtained through extensive MAT-
LAB simulations. The parametes setup is similar to [34], and
unless otherwise specified, their values are those reported in
Table II, while the Rice factor is set to κ = 10 dB. For the
sake of clarity, in all the figures the throughput is reported in
kbit/s, and is obtained by multiplying Θ, which is measured
in pkt/s, by the packet size S.

Our proposed cycle-based strategy requires that the EHD
has local topology knowledge (with radius slightly higher than
the selected harvest distance ℓ) and of the vehicular traffic
type (inter-vehicle distance statistics) to properly set its tunable
parameters.

A. Analysis validation

In order to assess the validity of the proposed theoretical
approach, we first check the tightness of the saddle point
approximation for the CDF FE(·) of the harvested energy
derived in (20). We use the accuracy metric defined in [35]
to measure the relative difference between the theoretical
CDF and the real one, F̂E(·), obtained through Monte Carlo
simulations with 106 runs. The range of interest is the interval
where 0.001 < F̂E(·) < 0.5. The accuracy is also derived for
the complementary CDF (cCDF); in this case, we choose as
range of interest the interval where 0.5 < F̂E(·) < 0.999. The
obtained values are reported in Figure 2, as a function of the
harvesting threshold ℓ. The accuracy is always below 0.04,
and decreases down to 0.003, for κ = 6 dB, as the number
L of summands increases, thus validating the approximation
tightness.

Another approximation comes from the energy quantization
adopted in the theoretical model in equation (22). We assessed
the throughput error due to this quantization through extensive
simulations, comparing the scenarios with and without energy
quantization. The obtained results are plotted in Figure 3. For
the platooning scenario and a given µ, the error is lower when
ℓ is either very low, meaning that the battery is emptied at
almost every cycle, or very high, causing frequent energy
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Fig. 2. Accuracy of the CDF and cCDF of the harvested energy
obtained via saddle point approximation.
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Fig. 3. Quantization error as a function of the harvesting threshold.
Solid lines are for the platooning scenario, while dashed lines are for
the sparse vehicular traffic scenario.

overflows. Both events in fact lead to the same battery status
(empty or full), irrespective of the quantization. In the sparse
vehicular traffic scenario, instead, the variance in the inter-
vehicle distance leads to a more smooth behavior of the error
curve, decreasing with ℓ. In all cases, however, the quantization
error is always lower than 1%

In Figure 4, we investigate the performance of the proposed
strategy in the low vehicular traffic scenario, with arrivals
modeled through a Poisson process. We vary ℓ with step size
1 m (smaller step sizes might exceed the localization precision
of the vehicles). The first observation is that the throughput
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Fig. 4. Average throughput as a function of the harvesting distance
ℓ, with Poisson arrivals. Lines are theoretical results, while markers
are simulation results.
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Fig. 5. Average throughput as a function of the harvesting distance ℓ,
with fixed inter-vehicle distance. Lines are theoretical results, while
markers are simulation results.

expression based on (34) matches the simulation results for
all the parameters settings, thus confirming the validity of the
analysis. The minor discrepancy observed for low values of ℓ
is due to the fact that in this case the energy harvested from
other vehicles may become non negligible, and the theoretical
results slighlty underestimate the real throughput. Secondly,
we notice that almost all curves show a unique maximum. As
expected, lowering ℓ too much causes frequent energy outage
events, thus limiting the number of transmissions; increasing it
too much reserves too much time for energy harvesting, hence
limiting the throughput. Thirdly, the vehicular traffic intensity
has an impact. When more vehicles are present, energy is
more abundant, and it is preferable to reduce ℓ, in order to
leave more time for transmissions. Indeed, using high values
for ℓ with high vehicular traffic intensities (e.g., µ = 1/25
vehicles/m) is particularly detrimental, since several TPs may
have very short or even null duration: the overall number of
transmissions is hence reduced, and the high amount of energy
harvested in long HPs is mostly wasted due to battery overflow.
Conversely, when the traffic is less congested, the optimal
value of ℓ increases (doubling from µ = 1/50 vehicles/m to
µ = 1/100 vehicles/m).

Figure 5 depicts the results with the same parameters, in
the heavy vehicular traffic scenario, where the inter vehicle
distance is approximately fixed. Notice that the value d0
does not necessarily correspond to the distance between two
adjacent vehicles, since the EHD might choose to harvest
only from a subset of the vehicles. Indeed, this appears to
be a smart choice, since the maximum achievable throughput
does not monotonically grow as d0 decreases, as it does in
the low vehicular traffic scenario. This is mainly due to the
limited battery size, which makes the choice of harvesting too
often less advantageous. We also observe that the achievable
throughput in the platooning scenario is higher than that in low
traffic scenario, even when the average inter vehicle distance
is higher. For instance, the maximum throughput attained in a
Poisson modeled vehicular traffic with µ = 1/50, with average
inter vehicle distance equal to 50 m, is between 6.2 and 6.5
kbit/s; the maximum throughput in the platooning scenario
with d0 = 100 m is instead higher than 7 kbit/s. The presence
of regularly spaced energy sources is beneficial, since it avoids
long periods of energy outage which can occur in the sparse
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Fig. 6. Average throughput for varying values of the transmit power
Pt, low vehicular traffic scenario with µ = 1/50 vehicles/m. Lines
are theoretical results, while markers are simulation results.
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Fig. 7. Average throughput for varying values of the transmit power
Pt, high vehicular traffic scenario with d0 = 50 m. Lines are
theoretical results, while markers are simulation results.

vehicular traffic scenario. Furthermore, battery overflow events
due to very close vehicles are also avoided. We can state
that harvesting energy from V2V communications is more
convenient when vehicles are more regularly spaced.

In the same figure, we also plot the lines for the case of a
halved battery capacity (200 µJ). The limited battery size has
a pronounced effect on the curves for higher ℓ, since these
values correspond to more harvested energy, which is likely
to be wasted due to energy overflow. The throughput reaches
a plateau when ℓ becomes high enough to allow full battery
replenishment at the end of the HP.

B. Impact of transmit power, data rate and vehicular traffic
intensity

Apart from the harvest distance ℓ, the transmission power Pt

has also a strong impact on the overall throughput, especially
if the transmission rate grows. On one side, transmitting at
higher power increases the delivery probability; on the flip
side, however, energy is depleted more rapidly, thus increasing
the frequency of energy outage events. We investigate this
aspect in Figure 6, for the low vehicular traffic scenario, and
7, for the high vehicular traffic scenario. We set the packet
size to 2000 bit, while the average inter vehicle distance is 50
m in both cases. Five equally spaced power levels are tested.

We observe that transmitting with the lowest power Pt = 20
µW is not the best choice, despite granting the lowest amount
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Fig. 8. Average throughput for varying values of packet size S. Blue
lines are for ℓ = 2 m, red lines for ℓ = 4 m and green lines for
ℓ = 6 m. The inter vehicle distance d0 is set to 50 m.

of energy depletion. Instead, increasing ℓ to 4 m and the
transmit power to Pt = 40 µW in the low traffic scenario
grants a 12% throughput gain with respect to the minimum
transmit power level Pt = 20 µW with ℓ = 2 m, while
setting Pt = 60 µW in the vehicular high traffic scenario offers
an even higher 30% gain. The reason for the latter scenario
allowing a higher value for Pt lies in its bounded inter vehicle
distance, which avoids the need to save energy for a potentially
very long time period before the arrival of the next vehicle.

The inherent tradeoff in the choice of the transmit power
actually depends on the desired data rate, which in our scenario
is determined by the packet size S, as illustrated in Figure 8,
where the high vehicular traffic scenario with d0 = 50 m
is analyzed. Since the simulation results tightly match the
theoretical ones, in this figure, as well as in the next ones,
we do not report them for the sake of legibility. For low data
rate, low transmit power is always preferable, since it still
attains a high delivery probability, while limiting the battery
energy consumption and hence energy outage. When S grows,
however, it is also necessary to increase Pt, since the gain in
terms of decoding probability at the AP compensates the loss
in terms of energy outage probability. In addition, as Pt grows,
the harvest distance ℓ also plays a bigger role. For Pt = 40
µW, little difference is observed in Figure 8 among the lines
for the three considered values of ℓ, and the highest throughput
of approximately 14 kbit/s is achieved when S = 3 kbit with
ℓ = 4 m. When Pt = 80 µW the maximum throughput
(17.68 kbit/s) is obtained at S = 4 kbit with ℓ = 6 m,
which consistently outperforms the choices of a smaller ℓ. This
confirms that, as S becomes larger, the maximum throughput
can be achieved by increasing both Pt, in order to get higher
decoding probability at the AP, and ℓ, in order to limit the
energy outage probability, even if this reduces the transmission
time.

In the high vehicular traffic scenario, d0 can be, to a certain
extent, also tuned by the EHD, by choosing to harvest energy
only from a subset of vehicles. Figure 9 plots the throughput
as a function of d0 in this scenario, with S = 2 kbit. First of
all, we observe that for any given values of d0 and ℓ, there is
an optimal transmit power level, which is the one that fully
balances the decoding probability at the AP and the energy
outage probability at the EHD. Secondly, if the vehicular traffic

10 15 20 25 30 35 40 45 50
Inter vehicle distance [m]

2

4

6

8

10

12

14

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t 
[k

b
it
/s

]

P
t
 = 40 W

P
t
 = 60 W

P
t
 = 80 W

Fig. 9. Average throughput for varying values of the inter vehicle
distance d0. Blue lines are for ℓ = 1 m, red lines for ℓ = 2 m and
green lines for ℓ = 3 m.

is high enough (d0 = 10 m), the best option is to set Pt to its
maximum value and ℓ to a low value. As the traffic becomes
less congested, larger values of ℓ are preferable, since energy
sources are available less frequently, and increasing ℓ can
prevent throughput losses. However, when d0 further increases,
lowering Pt becomes necessary. Notice that almost the same
throughput (between 13 and 14 kbit/s) is achievable over the
entire span of d0 values, meaning that a proper selection of
the transmission and harvesting parameters can grant stable
performances under varying vehicular traffic conditions.

We conclude this section by comparing the energy effi-
ciency Υ in the two traffic scenarios, as a function of the
traffic density. Figure 10 depicts, for different values of the
transmit power, the maximum energy efficiency attained in
the platooning scenario and in the sparse traffic scenario, each
one computed for the value of ℓ that maximizes the expected
throughput. The packet size S is set to 2 kbit. Energy efficiency
initially grows with the average inter-vehicle distance E[dv],
since energy overflow events, which bring to energy waste,
become less frequent. However, as E[dv] further increases, it
finally reaches an upper limit, which corresponds to the case
when vehicles are so distant that the entire energy harvested
from each one is completely used before a new cycle begins.

While this trend holds for both scenarios, we observe that
platooning is able to grant a much faster growth, and a higher
energy efficiency, with a top gain vs irregular traffic of more
than 55%. Indeed, a regular traffic pattern enables a better
energy utilization: knowing that a new incoming energy source
lies at a predefined distance allows the system to make the best
usage of the energy in the battery, with little concern for an
energy outage. Conversely, stochastic vehicles arrivals force
the system to overprovision energy in order to face longer
intervals between successive battery recharges. We can call
this effect the price of uncertainty, which is relevant especially
when the inter vehicle distance is not too large and the transmit
power is high.

C. Black-out probability

While throughput is a good metric to evaluate the average
data rate received at the AP, it cannot fully capture the overall
communication quality. Indeed, Age of Information (AoI)
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Fig. 11. Black out probability for varying values of the transmit power
Pt. Continuous lines are theoretical results, markers are for simulation
results.

is another relevant quantity to be analyzed. It is especially
important for some safety applications, which require timely
information updates in order to trigger proper recovery actions.
In particular, the so called Black out events [28], that is, AoI
exceeding a predefined value Qs, can be potentially harmful,
and should be avoided. While the proposed cycle-based har-
vesting strategy is not specifically designed to minimize the
black out probability, its analysis can shed light on the best
parameters setup to limit its value. The analysis is particularly
interesting in the high vehicular traffic scenario (in the sparse
traffic one, most of the black outs are likely to occur when
two subsequent vehicles are very far from each other, so there
is simply no energy to perform transmissions, regardless of
the adopted strategy), where a closed form expression can be
found (see Appendix B).

In Figure 11, we set Qs to 2 s, and the inter vehicle distance
to 50 m. The black out probability in a cycle is plotted against
the harvest distance ℓ. Also for this metric, the theoretical
results fit the simulation curves very well. For all the transmit
power levels, the curve shows a minimum, and then goes to
1 for ℓ = 10 m. This is not surprising, since at this value the
duration of the HP is already equal to 2 s, and a black out
occurs at every cycle. However, a too low value of ℓ is also a
bad choice: while the HP causes only a short transmission
interruption, the harvested energy is not enough to sustain
the data communications until the end of the cycle, and the
resulting energy outage turns into a black out event. Clearly,
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Fig. 12. Black out probability for varying values of the transmit power
Pt. Blue lines are for ℓ = 2 m, red lines are for ℓ = 4 m, and green
lines are for ℓ = 6 m. The inter vehicle distance is d0 = 50 m.
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Fig. 13. Average throughput for different channel models. Blue lines
are for Pt = 60 µW, red lines are for Pt = 100 µW.

the optimal ℓ grows with the transmit power, but rising Pt too
much makes it impossible to lower the black out probability
to almost 0.

The black out probability as a function of the data rate is
illustrated in Figure 12. As expected, it increases with the
data packet size S, and ℓ = 6 m grants the best performance
for S ≥ 4 kbit. By comparing this figure with Figure 8, an
interesting tradeoff is unveiled. Setting a large ℓ and a large
Pt grants the highest throughput for S = 4 kbit, but only a
relatively high black-out probability, around 0.05. Conversely,
if a black-out probability of 10−3 is to be guaranteed, Pt must
be necessarily lowered. Setting S to 3 kbit, with ℓ = 4 m, and
Pt = 40 µW achieves the desired black-out probability, at the
cost of a 20% throughput loss. The best parameter tuning for
the EHD, therefore, strongly depends on the requirements of
the specific application implemented on the system.

D. Impact of channel model

We conclude the paper by analyzing the effect of different
fading models over the two main performance metrics. In
Figure 13 we plot the average throughput as a function of
the harvesting threshold, for two values of Pt, comparing the
Rician fading model with different values of the Rice factor
κ, and also the Rayleigh model (for which the throughput
derivation is reported in Appendix A). The black-out proba-
bility in the same scenario is instead depicted in Figure 14. As
to the throughput, we observe that Rician fading offers better
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Fig. 14. Black out probability for different channel models. Blue lines
are for Pt = 60 µW, red lines are for Pt = 100 µW.

performance than Rayleigh fading, although this is relevant
only over a limited interval. This is because the average value
of the harvested energy over a cycle with both models is the
same, but the variance is different: Rayleigh fading (and in
general, lower values of κ), gives in fact a larger variance.
When the average harvested energy brings the battery level
close to its capacity, however, this larger variance actually
leads to an overall lower amount of scavenged energy. In fact,
positive peaks of harvested energy, now capped by the finite
battery capacity, do not compensate negative peaks, with a net
effect of less scavenged energy. Notice that this effect does
not appear when the average amount of harvested energy in a
cycle is quite low, and thus far from filling the battery (low
values of ℓ), nor when it is very high, and thus saturates the
battery (high values of ℓ). Since higher Rice factors reduce
the variance of the fading, the effect becomes more evident
for κ = 10.

As to the black out probability, it is interesting to notice that
Rayleigh fading can reduce it, with respect to Rician fading,
up to a certain value of ℓ, beyond which Rician fading gives
better perfomance. This is again due to the lower variance of
harvested energy per cycle given by Rician fading. Indeed,
even if the average harvested energy per cycle is not enough
to prevent black-out events (low ℓ), Rayleigh fading is more
likely to take values much greater than the average, thus
making it possible to avoid some of the black-out events.
Conversely, when the average harvested energy per cycle is
high enough to ensure continuous data reception (high ℓ),
Rayleigh fading can still exhibit more pronounced negative
peaks, thus causing black-out events. As before, since higher
Rice factors reduce the fading variance, this effect is more
evident when comparing Rayleigh fading and Rice fading with
high κ.

VI. CONCLUSIONS

This paper proposes a cycle-based strategy for exploiting
RF energy of vehicular communications by means of devices
located alongside the road. A theoretical derivation of the
average throughput is presented, and used to investigate the
impact of several parameters, ranging from vehicular traffic
type and intensity to transmit power, from data rate to battery
capacity. Energy efficiency and black out probability are also

derived. Results show that the best performance is obtained
with regular vehicular traffic patterns (e.g., platooning), and
that transmit power and harvesting phase duration can be
tuned in order to favor throughput maximization or black out
probability minimization. Furthermore, we observe that the
presence of regular traffic patterns can substantially increase
the achievable throughput and the energy efficiency by reduc-
ing the price of uncertainty. This is of particular relevance,
since recent or novel technologies like V2X communications,
autonomous vehicles or smart intersections, are expected to
enhance coordination among vehicles, in order to reduce (elec-
tric) fuel consumption, thus leading to more predictable traffic
patterns. A major implication of our study is that platooning is
useful also for providing a much more effective source of RF
energy to surrounding wireless networks based on EH, thus
highlighting for the first time an additional potential benefit
of platooning applications.

Three potential directions for future work are envisioned.
Firstly, the performance in more complex scenarios, with mul-
tiple lanes or roads, may offer additional insights; secondly,
the development of a non agnostic, more adaptive strategy,
able to leverage the knowledge of the battery status, appears
to be promising; thirdly, an experimental validation, even on a
simple case study, may assess the feasibility of the illustrated
framework, and pave the way to more refined approaches.

APPENDIX A
THROUGHPUT DERIVATION WITH RAYLEIGH FADING

With Rayleigh fading, hv(n) is modeled as a complex
Gaussian random variable with zero mean and unit variance.
Equation (13) still holds, but now the Xi’s have an exponential
distribution with unitary mean. Therefore, the random variable
Yi = Xi/λi is still exponential, with mean 1/λi, and Eh

is the sum of exponential random variables with different
parameters. Let us divide the sum in (13) into two parts,
namely

E
(1)
h =

L/2−1∑
i=0

Yi, E
(2)
h =

L−1∑
i=L/2

Yi. (43)

The former sum corresponds to the approaching of the vehicle
Vq that provides energy, from point (xehd − ℓ, 0) to point
(xehd, 0), the latter instead to the interval when Vq moves away,
from point (xehd, 0) to point (xehd + ℓ, 0), as per Figure 1.

Let us consider the approaching phase. Since all the λi’s
are different, and leveraging the independence of the Xi’s,
the probability density function of E

(1)
h is modeled as an

hypoexponential distribution, that is

f
(1)
Eh

(x) =

L/2−1∏
i=0

λi

 K∑
j=1

e−λjx∏
k ̸=j(λk − λj)

. (44)

For symmetry reasons, the energy E
(2)
h harvested when the

vehicle is moving away has exactly the same distribution.
Therefore, the overall energy Eh harvested in the entire HP is
E

(1)
h + E

(2)
h , whose cumulative distribution function is given

by

FE(x) =

∫ x

0

f
(1)
Eh

(y)F
(1)
Eh

(x− y)dy, (45)
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Fig. 15. Illustration of the occurrence of a potential blackout of x = 12T
seconds, corresponding to 11 missed transmissions. In this case, the battery
charge at the end of the first NH slots allows Ntx = 8 transmissions, while in
the last Nno = 2 slots of the TP no transmission can be performed. Therefore,
an interruption of NH +Nno = 8 slots occurs. The probability that a black
out of 11 consecutive slots happens is the probability that there are at least 3
consecutive failures in the set of 6 slots marked with a “?” in the figure.

where the CDF F
(1)
Eh

(x) of E
(1)
h is easily obtained from (44)

through integration. After mathematical manipulations, we get

FE(x) = 1−A

L/2−1∑
i=0

∑
j ̸=i

e−λjx/λj − e−λix/λi

(λi − λj)ΛiΛj
+

+
e−λix(1 + λix)

λ2
iΛ

2
i

)
(46)

where A =
∏L/2−1

i=0 λ2
i and Λi =

∏
k ̸=i(λk −λi). We can put

the obtained CDF into (34) and into (35) to obtain the average
conditioned number of transmissions per cycle in the case of
sparse and heavy vehicular traffic, respectively.

APPENDIX B
DERIVATION OF THE BLACK-OUT PROBABILITY

We compute the expression for the black out probability
PBO(x), defined as the probability that the AoI equals or
exceeds the time duration of x time slots in a cycle. This
occurs when no successful transmission is performed over at
least x− 1 consecutive time slots.

In the high traffic scenario, with fixed inter vehicle distance
dv = d0, the number of time slots per cycle is given by N =
d0/(v0T ). Among these, NH = 2ℓ/(v0T ) slots are reserved
to the harvest phase, while the remaining NT = N −NH are
reserved for transmissions. It follows that, in a given cycle,
there are at least NH consecutive slots where no transmission
is performed. Therefore, if x ≤ NH , we have PBO(x) = 1.

Let us now move to the more interesting case when x >
NH . In a general cycle, the NT slots of the transmit phase
can be further divided into two groups. In the former group
of Ntx slots, the EHD has enough energy to transmit, whereas
in the subsequent Nno = NT − Ntx slots, no transmission is
performed due to energy outage (see Figure 15). Clearly, it
can be Ntx = NT (and hence Nno = 0) if the battery has
enough charge.

We state the following assumptions:
• Ntx > 0, meaning that after the harvest phase, the battery

has enough energy to perform at least one transmission.
This is almost always true, since the energy Etx required
to send a single data packet is much lower than the battery
capacity, and FE(Etx) ≃ 0.

• the longest interval with no decoded packets in a cycle
contains the NH slots of the HP and the last Nno slots of

the TP. In fact, in these slots no transmissions occur, and
we only need x−(NH+Nno) consecutive failed transmis-
sions to have a black out. Since NH+Nno > 0, this event
has a much higher probability than having x consecutive
failed transmissions among the Ntx performed ones.

Under these assumptions, we can condition the black out
probability over the distribution p̂B of the battery status after
the harvesting phase:

PBO(x) =

Ns∑
i=0

PBO(x|i)p̂B(iEtx), (47)

We can easily find p̂B(iEtx) as

p̂B(iEtx) =

i∑
j=0

pB(jEtx)pE(i− j), (48)

where pB is the pmf of the battery status before the HP,
obtained in Section III-C, and pE is the pmf of the energy
quanta harvested during the HP, defined in (22).

The quantized battery status corresponds to the number Ntx
of transmissions that can be supported in the cycle. In other
words, PBO(x|i) is the black out probability given that Ntx = i.
We can distinguish two cases. If i ≤ N − x+1, then there is
not enough energy in the battery to avoid an interruption of
x− 1 slots (including the NH ones), and the black out occurs
with probability PBO(x|i) = 1. If instead i ≥ N−x, then there
is enough energy to avoid the black out, and its occurrence
depends only on decoding failures. The number of silent slots
where transmissions do not take place is NH +Nno, which is
equal to N − i. In order to have a “hole” of x − 1 slots, we
need at least w = x− 1− (N − i) consecutive failures in the
slots adjacent to the silent slots, as sketched in Figure 15. The
probability that this happens can be found by considering only
the w slots before the silent slots, and the w slots after them.
If a sequence of at least w consecutive failures can be found
within these 2w slots, the black out occurs3. The probability
φ(w, q) of having at least w consecutive successes among a
sequence of 2w i.i.d. attempts, with success probability q, is
obtained by summing the probabilities of having exactly j
consecutive successes, with w ≤ j ≤ 2w; each of them can
be conditioned on the total number k ≥ j of successes, which
follows a binomial distribution, thus yielding

φ(w, q) =

2w∑
j=w

2w∑
k=j

Q(2w, j|k)
(
2w

k

)
qk(1− q)2w−k, (49)

The term Q(L, j|k) is the probability of having j consecutive
successes over L attempts, given that there are k ≥ j
successes. For the case of interest j ≥ L/2, its value is equal
to 0 when j < k = L, to 1 when j = k = L, and to 2/L if
k = L− 1; otherwise, its expression is computed as

Q(L, j|k) =
2
(
L−j−1
k−j

)
+ (L− j − 1)

(
L−j−2
k−j

)(
L
k

) . (50)

3We are implicitly assuming that there is no energy outage in the first w
slots after the HP. While this is not always true, its probability is high, as
long as w is limited.
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The final expression for the conditioned black out probabil-
ity therefore reads as

PBO(x|i) =

{
1 if i ≤ N − x+ 1,

φ(i−N + x− 1, 1− ϕs) otherwise,
(51)

where ϕs is the packet decoding probability in (3). This
expression can be put into (47) to get the overall black out
probability in a cycle.
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