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Abstract— Model Predictive Control has been proved to
enhance the control performance of overhead cranes. However,
in Operator-In-the-Loop (OIL) overhead cranes the trajectory
of the payload strongly depends on the runtime decisions of the
user and can not be predicted beforehand. Simple assumptions
on the future references evolution have therefore to be made.
In this paper we investigate the applicability of linear and
nonlinear MPC strategies to the case of OIL overhead cranes,
based on different assumptions on the future evolution of the
length of the hoisting cable.

I. INTRODUCTION

Overhead cranes are the most widespread material han-
dling systems in industry. Since they are underactuated un-
derdamped systems, their control is not trivial. A poor control
of an overhead crane can generate important oscillations
of the payload during and after manoeuvres, increasing the
positioning time and posing a safety hazard for the operators.
A number of techniques have been proposed in the last fifty
years for the control of these systems [1].
Among open-loop techniques, which aim to reduce the
residual oscillations after the manoeuvre, input shaping is
by far the most widespread [2]. Input-output inversion based
techniques have also been proposed for both simple and
double pendulum modelled overhead cranes [3], [4], [5].
While open-loop techniques are usually easy to implement
on off-the-shelf industrial overhead cranes, as they do not
require the presence of a sensor for the measure and the
feedback of the system output or states, the decreasing cost
of sensors have motivated an increasing focus on closed-
loop approaches. The use of closed-loop techniques brings,
in general, an increased robustness and can lead to zero
oscillation of the payload after the manoeuvre. Fuzzy logic
closed-loop approaches have been proposed in [6], while
adaptive control is used in order to compensate for varying
parameters in [7]. On another side, the increment of standard
industrial controllers computational capability has brought
the focus on the application of Model Predictive Control
(MPC) for the control of systems with relatively fast time
constants such as overhead cranes and mechatronic systems
in general. The MPC approach for the control of overhead
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cranes has been demonstrated to yield better performance
than standard open-loop techniques in [8]. MPC algorithms
have been used for position control of overhead cranes in
[9], [10]. In [11], [12] MPC algorithms have been used to
track offline computed trajectories, while in [13], [14] energy
optimal MPC is applied for point-to-point motion. Other
MPC techniques applied to the position control of overhead
cranes can be found in [15], [16], [17].
The aforementioned MPC techniques focus on point-to-point
motions or tracking of offline-computed trajectories. This
approach is effective for completely automated systems, but
it does not satisfy the requirements of cranes manoeuvered
by an operator. As a matter of fact, in this case, the user does
not operate in terms of point-to-point motions, but instead
he/she gives a velocity reference to the system by pressing a
button. Therefore, the control problem in manually operated
cranes is completely different, in particular because it is not
possible to know in advance the future velocity reference
given each instant by the operator, while for the position
control of autonomous overhead cranes the position reference
is known in advance and does not change along the predictive
horizon.
The control of Operator-In-the-Loop (OIL) overhead cranes
has been addressed in [18]. Therein, the approach considers
only the horizontal travel of the payload with constant cable
length, limiting the point-to-point manoeuvres to be executed
with separated and mutual-excluding sequences of horizontal
travelling, hoisting and lowering, thereby increasing the total
operation time.
In this paper, we investigate the applicability of different
MPC techniques to OIL overhead cranes by explicitly taking
into account the problem of controlling the crane during a
manoeuvre which includes simultaneous payload horizontal
travelling and hoisting. In particular, the focus is posed on the
comparison between linear and nonlinear MPC approaches
to the problem. While NMPC has been demonstrated to
improve the performance on path-following tasks, its ef-
fectiveness in controlling cranes with non-predefined cable
lengthening, such is the case of OIL cranes, has still to be
investigated.
Moreover, the implementation of NMPC approaches on off-
the-shelf industrial hardware is still non-trivial as it requires
nonlinear quadratic solvers, while the implementation of
linear MPC techniques is now the standard and usually leads
decreased computational effort [19].



Fig. 1: Approximation of an overhead crane as a simple
pendulum on a sliding cart.

II. MODELLING OF OVERHEAD CRANE SYSTEM

When modelling an overhead crane, a common approxi-
mation is to consider it as a single pendulum on a sliding
cart with the rope modelled as an inflexible rod, as shown in
Figure 1, where s is the position of the cart, θ is the angle
between the vertical and the cable, and l is the length of the
cable.

A nonlinear model of the crane in Figure 1, considering
the acceleration of the cart s̈ and the lengthening velocity l̇
as inputs of the system, is given by
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where xnl = [s, ṡ, l, θ, θ̇]T is the state vector, and g is
the gravitational acceleration. The controlled variable of
the system, that is the payload velocity, can be defined as
ynl = ṡ+ θ̇l cos(θ) + l̇ sin(θ).

In the case of constant cable length, that is when l̇ = 0,
the model can be linearized with the assumption of small
sway angles. With the vector of states for the linear model
xl = [s, ṡ, θ, θ̇]T , input the cart acceleration s̈ and controlled
variable the payload velocity y, the system results in a state
space description in the form

ẋl = Axl +Bs̈

yl = Cxl
(2)
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III. PROBLEM FORMULATION

The position control of overhead cranes consists in point-
to-point manoeuvres for which, knowing the initial and final
position, the Optimal Control Problem (OCP) formulation is
straightforward. With OIL cranes, the operator moves the
load by means of forward and backward buttons on the

remote controller, so that a position oriented approach is not
possible. For these cases, a velocity control approach must
be used.
The velocity reference of the payload depends on the com-
mand given by the operator, and can be defined as

w :=


α if forward button is pressed,
−α if backward button is pressed,
0 if no buttons are pressed,

(4)

where α ∈ R+ is the desired absolute value of the velocity
at steady state.
Similarly, the lengthening the cable is also controlled by the
operator, so that the lengthening command can be defined as

l̇ :=


β if forward upward is pressed,
−β if backward button is pressed,
0 if no buttons are pressed,

(5)

where β ∈ R+ is the desired absolute value of the lengthen-
ing velocity at steady state.

IV. MPC FOR SIMULTANEOUS HOISTING AND
TRAVELLING MANOEUVRES

MPC consists in finding an optimal input sequence of
Nc future moves with respect to an OPC over a predictive
horizons of Np time instants. Given the problem at hand,
the OCP should minimize the velocity tracking error and the
control effort. Moreover, in order to avoid big oscillations
that could pose safety hazards, the difference between the
position of the cart and the position of the payload is also
weighted.
The cart acceleration input and the velocity of the cart have
to be constrained in relation with the limits of the actuator
(maximum cart acceleration and velocity). Therefore, the
OCP can be formulated as

minimize
u

Np

Σ
i=1

(
y(k + i)− w(k)

)2
+

+ λ1
Np

Σ
i=1

(
θ(k + i)− w(k)

)2
+ λu

Nc

Σ
i=1

(
s̈(k + i− 1)

)2
subject to ṡmin ≤ ṡ(k + i) ≤ ṡmax ∀i ∈ {1, . . . , Nc}

s̈min ≤ s̈(k + i) ≤ s̈max ∀i ∈ {1, . . . , Nc}
(6)

where λ1 ∈ R+ and λu ∈ R+ are the weighting factors and
ṡmin, ṡmax and s̈min, s̈max are the lower and upper bounds
of the velocity and acceleration of the cart, respectively,
while y(k + 1), θ(k + 1) and ṡ(k + 1) can be computed
using models (1) and (2).
However, in the case of OIL control, the future velocity
reference w and length of the cable l are not known in
advance, as they depend on the operator decisions. For this
reason, assumptions have to be made regarding the evolution
of w and l̇ along the predictive horizon.
As regards w, we resolve to the simple assumption that, at
each control instant k, the velocity reference is constant fo
the future Np sampling periods (i.e., w(k+ i) = w(k),∀i =
1 . . . Np).



Regarding the length of the cable, the choice of how
to consider the evolution of the cable length along the
prediction horizon is arbitrary, but two main options seem
to be reasonable:

Assumption A: to consider, at each control instant k, the
length as constant and equal to l(k) along the prediction
horizon (i.e., l(k+i) = l(k) and l̇(k+i) = 0,∀i = 1 . . . Np),

Assumption B: to consider, at each control instant k,
the lengthening velocity equal to l̇(k) along the prediction
horizon, starting from a cable length equal to l(k) (i.e.,
l̇(k + i) = l̇(k),∀i = 1 . . . Np).

Given the aforementioned assumptions, different MPC
strategies can be employed.

ADAPTIVE LINEAR MPC:
By assuming that the length of the cable is constant along the
predictive horizon and equal to the current value l(k), that is
considering Assumption A, model (2) can be considered as
a Linear Parameter Varying (LPV model) in l. The resulting
controller is therefore an Adaptive MPC [20] (in which the
predictive matrices are updated at every control instant with
the current value of the cable length l(k)).

NONLINEAR MPC WITH NULL CABLE VELOCITY:
Similarly to the previous case, that is by making Assumption
A, considering the length of the cable equal to l(k) for the
whole predictive horizon, also model (1) can be exploited,
obtaining a Nonlinear MPC (NMPC) controller [21].

NONLINEAR MPC WITH CONSTANT CABLE VELOC-
ITY: By making Assumption B, the use of model (1) allows
to explicitly take into account the evolution of the cable over
the predictive horizon. The resulting controller is again a
NMPC one.

V. RESULTS

For comparison purpose, adaptive and nonlinear MPC are
compared with the linear MPC in [18] by means of simu-
lations considering different maneuvers with both horizontal
travelling and hoisting. Nonlinear MPC approach has been
simulated with both the Assumptions explained in Section
III for the inclusion of the varying cable length along the
prediction horizon.

For the simulations, a model of the overhead crane has
been built using Simcenter AmesimTM, which provides an
easy way of specifying also parameters that are not present
in the simplified models of Section II (e.g. masses, elasticity
of the cable and frictions), allowing for more realistic simu-
lations.
The mass of the cart has been set to mC = 600 kg, the
mass of the payload to m1 = 100 kg, the viscous friction of
the cart and of the cable to Cc = 0.1 Ns/m and C1 = 0.01
Nms/rad respectively. The cable has been characterized with
stiffness and viscous friction Kl = 1 · 106 N/m and Cl =
1000 Ns/m] per meter of cable. The Simcenter AmesimTM

model of the crane is shown in Figure 2.
The control part has been developed using SimulinkTM,

with a cycle time Ts = 20 ms, chosen considering the slow
dynamics of the system and the presence of already velocity

Fig. 2: Simcenter Amesim model of the overhead crane
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TABLE I: Time instants for the ten simulations analysed.1 2 3 4 5 6 7 8 9 10

t1 1.83 2.20 1.50 1.92 4.37 1.77 1.90 1.68 1.91 2.74

t2 4.21 3.60 3.75 2.24 2.28 1.72 2.53 2.54 3.77 3.67

t3 12.24 14.69 14.65 11.73 14.61 14.91 12.75 11.44 12.03 12.63

t4 12.57 11.51 13.62 12.13 11.40 13.75 13.50 12.20 12.48 12.34

and position control loops for the relatively fast dynamics
of the cart. The weights of the MPC controller have been
obtained through trial and error and have been set to λ1 = 1
and λu = 0.2, and control and prediction horizons Nc = 10
and Np = 100 respectively. The Simulink controller and the
Simcenter Amesim model run in cosimulation.
The manoeuvre that the crane has to follow can be di-
vided into horizontal and vertical reference. At time t1 the
travelling button is pressed, setting the horizontal velocity
reference to α = 1 m/s. At time t2, the payload is lifted at a
constant velocity β = 1 m/s for 4 seconds. The travelling
button is released at time t3 and the lowering button is
pressed at time t4 and is released after 4 seconds. Ten
different simulations have been analyzed; In order to take
into account the operator unpredictability in the manoeuvre,
the aforementioned time instants have been chosen in a
random fashion, and their value are shown in Table I.
For the sake of brevity, only Manoeuvre 1 is shown in the
following plots, while the quantitative analysis is performed
for all the manoeuvres in Table I.

The trajectories for Manoeuvre 1 are shown in Figure 3,
and the time instants t1,...4 are highlighted. In Figure 4 the
tracking between reference and payload velocity is shown.
First, Figure 4 clearly shows that the linear MPC approach

is not able to cope with varying cable lengths; when the
cable is shorten, oscillations around the reference value are
generated due to the difference between the overhead crane
and the predictive model.
Second, it has to be noted that, when the length of the
cable is considered constant along the prediction horizon
and equal to the one measured at each control instant,



Fig. 3: Length of the cable and payload horizontal velocity
reference over time.
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Fig. 4: velocity reference and payload velocity tracking
performance with the simulated MPC approaches.

adaptive and nonlinear MPC provide almost exactly the same
performance. In fact, in this case, the only difference between
the two approaches is the approximation for small sway
angles introduced by the linearization. As the sway angles
during industrial cranes manoeuvres are indeed small, the
results do not differ significantly.
On the other hand, when the length of the cable is considered
to vary during the prediction horizon with the velocity
measured at the present control instant, only NMPC can
be exploited. Nonetheless, as the cable length does not
vary significantly along the prediction horizon of 1 second
(∆l = ±1 m), the effect of this variation does not influence
the performance of the control in a significant way, so that
the NMPC with constant cable velocity along the prediction
horizon results to be comparable with the adaptive MPC.
On the other hand, the adaptive MPC can rely on a simpler
model of the crane, as the nonlinearities introduced by the
varying length do not have to be addressed.
In Figure 5 the manipulated variable (acceleration of the
cart) is shown for the simulated techniques. The constraint
of s̈max = 5 m/s2 is always satisfied. In order to quantify the
performance of the simulated techniques, two indices have
been computed: the total Integral Absolute Error (IAE) and
the position overshoot after the travelling button is released.
Results show that the technique in [18] yields an unsatisfac-
tory performance when dealing with simultaneous travelling
and hoisting manoeuvres, as its IAE always exceeds the ones
of the other techniques. Moreover, it is also not effective in
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Fig. 5: Acceleration of the cart resulting with the simulated
MPC approaches.

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

IA
E

ADAPTIVE

NMPC

NMPC CONSTANT

LINEAR

Fig. 6: Integral Absolute Error during the ten manoeuvres
with the compared techniques.

containing the position drift of the payload after the operator
releases the travelling button.
NMPC effectively reduces the IAE and the position drift
with respect to the other two techniques which consider
the cable length as invariant along the prediction horizon.
Nonetheless, the performance of adaptive, NMPC and NPMC
with constant cable length is very similar in all the ten
simulations.

VI. CONSIDERATIONS ON PRACTICAL IMPLEMENTATION

The results obtained through simulations allow us to make
assessments on the practical implementation of the tested
techniques on industrial setups. First of all, the increased
complexity of the nonlinear model (1) is not justified by
the slight increasing of control performance, as its velocity
tracking performance is comparable with a linear adaptive
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Fig. 7: Position overshoot after the release of the travelling
button for the ten simulations analysed.



approach. NMPC requires a computational effort which is
hardly supported by off-the-shelf industrial crane controllers,
while explicit formulations of linear MPC approaches are the
standard for the control of various mechatronic systems.
Moreover, NPMC approaches require nonlinear quadratic
solvers which, again, are rarely found on off-the-shelf in-
dustrial controllers. Even with an industrial hardware theo-
retically capable of supporting the increased computational
effort required by a nonlinear approach, the implementation
of nonlinear quadratic solver is non-trivial, requires a high-
level programming and the presence of usually proprietary
and expensive external libraries.
On the other hand, while linear MPC can be easily imple-
mented also in already in place control hardwares, Adaptive
MPC theoretically requires the online calculation of the
prediction matrices at each control instant, as they, again,
depend on the actual length of the cable, leading to an
heavy computational burden for the controller. Nonetheless,
an easy workaround to this problem is to precompute a set of
prediction matrices discretizing the length of the cable along
its possible values and store them into the hardware memory
[22].

It has to be noted that choosing the acceleration of the
cart as input of the system represents a clear advantage
for the implementation of the tested techniques in industrial
cranes, as the underlying control structure of an off-the-shelf
industrial gantry crane, based on cascade control for torque,
velocity and (possibly) position control loops of the sliding
cart, can be exploited. In fact, the cart acceleration computed
by the MPC controller can be integrated in order to obtain
velocity and position references for the already existing (and
supposedly tuned) cascade control loops.

VII. CONCLUSIONS

In this paper, a comparison of different MPC techniques
(linear, adaptive and nonlinear MPC) applied to the control
of operator maneuvered overhead cranes has been presented.
The obtained results show that a change in the length of
the cable strongly affects the linear MPC approach proposed
in [18], for which the performance strongly degrades when
the cable length is varied. Adaptive and NMPC approaches
can cope with cable length variations. Nonetheless, when the
evolution of the cable length over the prediction horizon is
not known in advance, such is the case of OIL overhead
cranes, the use of NMPC does not introduce a significant
advantage in performance with respect to an adaptive MPC
approach. Considerations on a practical implementation on
off-the-shelf industrial hardware of the tested techniques
prove the adaptive MPC technique to be a better option
than NMPC when controlling manually operated industrial
overhead cranes.

ACKNOWLEDGEMENT

This work has been developed within the European Union
H2020 program ECSEL-2016-1 under grant agreement n.
737453 (I-MECH).

REFERENCES

[1] P. Hyla, “The crane control systems: A survey,” in Prooceedings of the
IEEE International Conference on Methods and Models in Automation
and Robotics, 2012, pp. 505–509.

[2] W. Singhose, “Command shaping for flexible systems: A review of
the first 50 years,” International Journal of Precision Engineering and
Manufacturing, vol. 10, no. 4, pp. 153–168, 2009.

[3] F. Padula, A. Visioli, D. Facchinetti, and A. Saleri, “A dynamic
inversion approach for oscillation-free control of overhead cranes,”
in Proceedings of the IEEE International Conference on Emerging
Technologies and Factory Automation, 2015, pp. 1–6.

[4] A. Piazzi and A. Visioli, “Optimal dynamic-inversion-based control
of an overhead crane,” IEE Proceedings-Control Theory and Applica-
tions, vol. 149, no. 5, pp. 405–411, 2002.

[5] M. Giacomelli, F. Padula, L. Simoni, and A. Visioli, “Simplified
input-output inversion control of a double pendulum overhead crane
for residual oscillations reduction,” Mechatronics, vol. 56, pp. 37–47,
2018.

[6] H. M. Omar and A. Nayfeh, “Anti-swing control of gantry and
tower cranes using fuzzy and time-delayed feedback with friction
compensation,” Shock and Vibration, vol. 12, no. 2, pp. 73–89, 2005.

[7] A. Marttinen, “Pole-placement control of a pilot gantry,” in Proceed-
ings of the American Control Conference, 1989, pp. 2824–2826.

[8] J. Smoczek and J. Szpytko, “Comparision of model predictive, input
shaping and feedback control for a lab-scaled overhead crane,” in
Proceedings of the International Conference on Methods and Models
in Automation and Robotics, 2016, pp. 288–293.

[9] L. Van den Broeck, M. Diehl, and J. Swevers, “Experimental validation
of time optimal MPC on a flexible motion system,” in Proceedings of
the American Control Conference, 2011, pp. 4749–4754.

[10] J. Smoczek and J. Szpytko, “Soft-constrained predictive control for
an overhead crane,” Journal of KONES Powertrain and Transport,
vol. 24, no. 3, 2017.

[11] D. Schindele and H. Aschemann, “Fast nonlinear MPC for an overhead
travelling crane,” 18th IFAC World Congress, vol. 44, no. 1, pp. 7963–
7968, 2011.

[12] A. Khatamianfar and A. V. Savkin, “A new tracking control approach
for 3d overhead crane systems using model predictive control,” in
Proceedings of the European Control Conference, 2014, pp. 796–801.

[13] Z. Wu, X. Xia, and B. Zhu, “Model predictive control for improv-
ing operational efficiency of overhead cranes,” Nonlinear Dynamics,
vol. 79, no. 4, pp. 2639–2657, 2015.

[14] Z. Wu and X. Xia, “Energy efficiency of overhead cranes,” IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 19–24, 2014.

[15] D. Jolevski and O. Bego, “Model predictive control of gantry/bridge
crane with anti-sway algorithm,” Journal of Mechanical Science and
Technology, vol. 29, no. 2, pp. 827–834, 2015.
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